1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια"

Transcript

1 ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) Θέμα ο. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια θέση ισορροπίας, προκύπτει μια νέα ΑΑΤ σταθερού πλάτους, μόνο όταν οι επιμέρους ταλαντώσεις έχουν: α. ίσες συχνότητες β. παραπλήσιες συχνότητες. γ. διαφορετικές συχνότητες. δ. συχνότητες που η μία είναι ακέραιο πολλαπλάσιο της άλλης.. Σε μια εξαναγκασμένη ταλάντωση η συχνότητα του διεγέρτη είναι μεγαλύτερη της ιδιοσυχνότητας του ταλαντωτή. Αν αυξάνουμε συνεχώς τη συχνότητα του διεγέρτη το πλάτος της εξαναγκασμένης ταλάντωσης θα: α. μένει σταθερό, β. αυξάνεται συνεχώς, γ. μειώνεται συνεχώς, δ. αυξάνεται αρχικά και μετά θα μειώνεται. 3. Σε μια φθίνουσα ταλάντωση η δύναμη που αντιστέκεται στην κίνηση είναι της μορφής A0 F = - b u. Αν σε χρόνο t το πλάτος μειώνεται από Α 0 σε και σε χρόνο t μειώνεται A0 από σε A0 4 οι χρόνοι t και t συνδέονται με τη σχέση: α. t > t β. t = t γ. t < t δ. t = 4 t

2 4. Στο ιδανικό κύκλωμα LC του σχήματος, που εκτελεί ηλεκτρική ταλάντωση κάποια χρονική στιγμή η πολικότητα του πυκνωτή και η φορά του ηλεκτρικού i ρεύματος είναι αυτή που φαίνεται στο σχήμα. Εκείνη τη στιγμή συμβαίνει + μετατροπή ενέργειας: C - L α. Ηλεκτρικού πεδίου του πυκνωτή σε ενέργεια μαγνητικού πεδίου του πηνίου. β. Ηλεκτρικού πεδίου του πυκνωτή σε θερμική στο κύκλωμα. γ. Μαγνητικού πεδίου του πηνίου σε ενέργεια ηλεκτρικού πεδίου του πυκνωτή. δ. Μαγνητικού πεδίου του πηνίου σε θερμική στο κύκλωμα. 5. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες. r r r α. Όταν μια σφαίρα προσκρούει ελαστικά σε ένα τοίχο, τότε πάντα ισχύει u' = - u (u η r ταχύτητα της σφαίρας πριν την κρούση, u' η ταχύτητα της σφαίρας μετά την κρούση). r r β. Κατά την πλαστική κρούση δύο σωμάτων πάντα ισχύει p πριν = pμετα ( p r πριν η ορμή του συστήματος πριν τη κρούση, p r μετα η ορμή του συστήματος μετά την κρούση). γ. Κατά την κρούση δύο σωμάτων η κινητική ενέργεια του συστήματος πάντα διατηρείται. δ. Σώμα Α συγκρούεται ελαστικά και κεντρικά με ακίνητο αρχικά σώμα Β που έχει την ίδια μάζα με το Α. Τότε η ταχύτητα του Α μετά την κρούση μηδενίζεται. ε. Έκκεντρη ονομάζεται η κρούση αν οι ταχύτητες των σωμάτων βρίσκονται σε τυχαία διεύθυνση. Θέμα ο. Ένα σώμα μάζας m είναι προσδεμένο σε ελατήριο σταθεράς k και εκτελεί εξαναγκασμένη ταλάντωση. Η συχνότητα του διεγέρτη είναι f = f 0 όπου f 0 η ιδιοσυχνότητα του συστήματος. Αν τετραπλασιάσουμε τη μάζα m του σώματος, ενώ η συχνότητα του διεγέρτη παραμένει σταθερή, τότε: Α. Η ιδιοσυχνότητα του συστήματος α. γίνεται f0 β. γίνεται f 0 γ. παραμένει σταθερή. Να δικαιολογήσετε την απάντηση σας. (Μονάδες + ) Β. Το πλάτος της ταλάντωσης του συστήματος α. αυξάνεται. β. ελαττώνεται. γ. παραμένει σταθερό. Να δικαιολογήσετε την απάντηση σας. (Μονάδες + )

3 . Ταλαντωτής έχει εξίσωση: χ = 0,6 συν(4πt) ημ(500πt) (SI). α. Ποιες οι εξισώσεις των ταλαντώσεων από τις οποίες προέκυψε η κίνηση αυτή; β. Ποια η περίοδος της κίνησης και ποια η συχνότητα με την οποία μηδενίζεται το πλάτος της; (Μονάδες + 4) 3. Μικρό σώμα εκτελεί ταυτόχρονα δύο ταλαντώσεις που πραγματοποιούνται στην ίδια διεύθυνση γύρω από την ίδια θέση ισορροπίας. Οι ταλαντώσεις περιγράφονται από τις ε- π ξισώσεις είναι χ = ημ(5πt) (S.I.) και χ = ημ 5πt+ (S.I.). Η συνισταμένη κίνηση περιγράφεται από την εξίσωση: π π α) χ = 5πt+ (S.I.) β) χ = 5πt+ 4 (S.I.) π γ) χ = 5πt+ 4 (S.I.) δ) χ = 8 π 5πt+ (S.I.) 4 Να επιλέξετε τη σωστή απάντηση και να την αιτιολογήσετε. (Μονάδες + 3) 4. Σ ένα αρμονικό ταλαντωτή η δύναμη που αντιστέκεται στην κίνηση του είναι της μορφής F = - b u. Με ποιο ή ποια από τα παρακάτω συμφωνείτε ή διαφωνείτε; α. Το πλάτος της ταλάντωσης μειώνεται γραμμικά με το χρόνο. β. Το χρονικό διάστημα που απαιτείται για να μειωθεί οποιαδήποτε τιμή του πλάτους στο μισό της είναι σταθερό. γ. Ο λόγος δύο διαδοχικών τιμών του πλάτους είναι σταθερός. Να αιτιολογήσετε τις απαντήσεις σας. (Μονάδες 3 + 6) Θέμα 3 ο Για το κύκλωμα του σχήματος δίνονται V = 0 V, C = 8 μf και L = 0,0 H. Αρχικά ο διακόπτης (δ ) είναι κλειστός και ο διακόπτης (δ ) είναι R ανοικτός και το κύκλωμα δεν διαρρέεται από ρεύ- μα. Ανοίγουμε το διακόπτη (δ ) και κάποια στιγμή που + V τη θεωρούμε t = 0 s κλείνουμε το διακόπτη (δ ), οπότε - C L το ιδανικό κύκλωμα LC που δημιουργείται εκτελεί ηλεκτρικές ταλαντώσεις. α) Να υπολογίσετε την ενέργεια ταλάντωσης του κυκλώματος LC. (δ ) (δ )

4 β) Να γράψετε τις χρονικές εξισώσεις του φορτίου του πυκνωτή και της έντασης του ρεύματος που διαρρέει το κύκλωμα. γ) Να σχεδιάσετε τις γραφικές παραστάσεις της ενέργειας του μαγνητικού πεδίου του πηνίου και της ενέργειας του ηλεκτρικού πεδίου του πυκνωτή σε συνάρτηση του φορτίου του πυκνωτή, σε κοινό σύστημα βαθμολογημένων αξόνων. δ) Να υπολογίσετε την απόλυτη τιμή της ΗΕ από αυτεπαγωγή στα άκρα του πηνίου τη στιγμή που η ένταση του ηλεκτρικού ρεύματος που διαρρέει το κύκλωμα είναι ίση με i = + 0, 3 A. (Μονάδες ) Θέμα 4 ο Ένα σώμα, αμελητέων διαστάσεων, μάζας m ισορροπεί δεμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k, το πάνω άκρο του οποίου είναι ακλόνητα στερεωμένο. Στη θέση ισορροπίας το ελατήριο ασκεί στο μικρό σώμα δύναμη μέτρου F 0 = Ν. Ανεβάζουμε το σώμα από τη θέση ισορροπίας του κατακόρυφα προς τα πάνω έως τη θέση φυσικού μήκους του ελατηρίου και τη χρονική στιγμή t = 0, το εκτοξεύουμε με κατακόρυφη προς τα κάτω ταχύτητα μέτρου u 0. Το σώμα μετά την εκτόξευσή του εκτελεί απλή αρμονική ταλάντωση. To διάστημα που διανύει μεταξύ δύο διαδοχικών διελεύσεων απ τη θέση ισορροπίας του είναι s = 0,4 m σε χρόνο t = π 0 s. α) Να υπολογίσετε το πλάτος A και τη σταθερά k του ελατηρίου. β) Να βρείτε τη δυναμική ενέργεια του ελατηρίου στη θέση, που η δυναμική ενέργεια της ταλάντωσης είναι μηδέν. γ) Να υπολογίσετε το μέτρο της αρχικής ταχύτητας υ 0. δ) Να υπολογίσετε το ρυθμό μεταβολής της κινητικής ενέργειας του σώματος τη χρονική στιγμή t = 0. Θεωρήστε θετική φορά την προς τα πάνω. ίνεται η επιτάχυνση της βαρύτητας g = 0 m/s. (Μονάδες ) Καλή Επιτυχία!!!

5 ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Θέμα ο. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος που διαδίδεται προς τη θετική φορά του άξονα χ. Για τις φάσεις και τις ταχύτητες ταλάντωσης των σημείων Α και Β του μέσου ισχύει: ψ u α. φ Α < φ Β, u A < 0 και u Β < 0. Β β. φ Α > φ Β, u A > 0 και u Β > 0. χ Ο γ. φ Α < φ Β, u A > 0 και u Β < 0. Α δ. φ Α > φ Β, u A < 0 και u Β > 0.. ύο σύγχρονες πηγές Π και Π που βρίσκονται στην επιφάνεια νερού παράγουν αρμονικά κύματα πλάτους Α. Το πλάτος της ταλάντωσης ενός σημείου Σ που ισαπέχει από τις πηγές Π και Π είναι: α. 0 β. Α γ. Α δ. Α 3. Όταν σε μία εξαναγκασμένη ταλάντωση που βρίσκεται σε κατάσταση συντονισμού αυξήσουμε την περίοδο ταλάντωσης του διεγέρτη το πλάτος της ταλάντωσης: α) μειώνεται. β) παραμένει σταθερό. γ) αυξάνεται μέχρι κάποια τιμή και στη συνέχεια μειώνεται. δ) αυξάνεται. 4. Σε μια φθίνουσα ταλάντωση της οποίας το πλάτος μειώνεται εκθετικά με το χρόνο:

6 α. το μέτρο της δύναμης που προκαλεί την απόσβεση είναι ανάλογο της απομάκρυνσης. β. ο λόγος δύο διαδοχικών πλατών προς την ίδια κατεύθυνση δεν διατηρείται σταθερός. γ. η περίοδος διατηρείται σταθερή για ορισμένη τιμή της σταθεράς απόσβεσης. δ. το μέτρο της δύναμης που προκαλεί την απόσβεση είναι σταθερό. 5. Στο διάγραμμα του σχήματος παριστάνεται η γωνιακή επιτάχυνση ενός δίσκου που στρέφεται γύρω από τον άξονα που διέρχεται απ' το κέντρο του. Η μεταβολή της γωνιακής ταχύτητας του δίσκου σε συνάρτηση με το χρόνο παριστάνεται στο διάγραμμα: α Ο t t t 3 t ω (α) ω (β) ω (γ) ω (δ) Ο t t t 3 t Ο t t t 3 t Ο t t t 3 t Ο t t t 3 t Θέμα ο. Το πλάτος μίας φθίνουσας μηχανικής ταλάντωσης δίνεται από τη σχέση Α κ = Α 0 e - Λ t (Λ = σταθερά). Το ποσοστό επί τοις εκατό της ελάττωσης της ολικής ενέργειας της ταλάντωσης σε χρονικό διάστημα ίσο με το χρόνο υποδιπλασιασμού του πλάτους της ταλάντωσης είναι ίσο με: α) 5% β) 75%. Να επιλέξετε τη σωστή απάντηση και να την αιτιολογήσετε. (Μονάδες + 5). Ταλαντωτής έχει εξίσωση: χ = 0,6 συν(4πt) ημ(500πt) (SI). α. Ποιο το είδος της κίνησης του ταλαντωτή; β. Ποιες οι εξισώσεις των ταλαντώσεων από τις οποίες προέκυψε η κίνηση αυτή; γ. Ποια η περίοδος της κίνησης και ποια η συχνότητα με την οποία μηδενίζεται το πλάτος της; (Μονάδες )

7 3. ύο σύγχρονες κυματικές πηγές Π και Π βρίσκονται στα σημεία (Α) και (Β) αντίστοιχα της ελαστικής επιφάνειας ενός υγρού. Οι πηγές ταλαντώνονται κάθετα στην επιφάνεια του υγρού με το ίδιο πλάτος Α, παράγοντας κύματα με μήκος κύματος λ. Τα κύματα των πηγών συμβάλλουν σε σημείο (Σ) της επιφάνειας με χρονική διαφορά t = t t = Τ. Η μέγιστη ταχύτητα του υλικού σημείου (Σ) μετά τη συμβολή των κυμάτων είναι: α. ίση με τη μέγιστη ταχύτητα της ταλάντωσης των πηγών. β. διπλάσια από τη μέγιστη ταχύτητα της ταλάντωσης των πηγών. γ. τριπλάσια από τη μέγιστη ταχύτητα της ταλάντωσης των πηγών. Να επιλέξετε τη σωστή απάντηση και να δικαιολογήσετε την επιλογή σας. (Μονάδες + 6) Θέμα 3 ο Ένα σώμα μάζας m = 00 g εκτελεί κίνηση που προέρχεται από τη σύνθεση δύο απλών αρμονικών ταλαντώσεων, ίδιας διεύθυνσης, ίδιας συχνότητας, ίδιου πλάτος Α και γύρω από το ίδιο σημείο. Η πρώτη ταλάντωση έχει αρχική φάση μηδέν και υστερεί φασικά από τη δεύτερη. Η συνισταμένη κίνηση που προκύπτει έχει το ίδιο πλάτος Α με κάθε μια από τις επιμέρους ταλαντώσεις. Η κάθε μια ταλάντωση έχει ενέργεια 0, J, ενώ η δύναμη επαναφοράς έχει μέγιστη τιμή Ν. α) Να υπολογισθεί η διαφορά φάσης της: α ) δεύτερης ταλάντωσης με την πρώτη και α ) της σύνθετης ταλάντωσης με την πρώτη. β) Να γραφούν οι εξισώσεις της απομάκρυνσης των δύο αρχικών ταλαντώσεων. γ) Να γραφεί η εξίσωση της επιτάχυνσης χρόνου για την συνισταμένη ταλάντωση. δ) Να υπολογισθεί η ταχύτητα ταλάντωσης του σώματος τη στιγμή που η δυναμική ενέργεια του σώματος είναι τριπλάσια της κινητικής. Θέμα 4 ο Κατά μήκος γραμμικού ελαστικού μέσου και κατά τη θετική φορά διαδίδεται αρμονικό κύμα. Η πηγή του κύματος Ο βρίσκεται στο αριστερό άκρο του μέσου και αρχίζει να ταλαντώνεται τη χρονική στιγμή t = 0 με εξίσωση: ψ = 0, ημ(πt) (S.I.)

8 Στο διπλανό σχήμα παριστάνεται γραφικά η φάση δύο φ(rad) σημείων Κ και Λ του μέσου, τα οποία απέχουν από το σημείο Ο αποστάσεις χ και (χ + ) μέτρα αντίστοιχα, σε σχέση με χ χ + το χρόνο. t (s) Α. Να γραφεί η εξίσωση του αρμονικού κύματος. Ο,5 Β. Να βρείτε το μέτρο της ταχύτητας του σημείου Κ, όταν το σημείο Λ αποκτά τη μέγιστη θετική απομάκρυνση. Γ. Να σχεδιαστεί το στιγμιότυπο του κύματος τη χρονική στιγμή που το σημείο Κ περνάει από τη θέση ισορροπίας του για τρίτη φορά μετά τη στιγμή που ξεκίνησε να ταλαντώνεται.. Σε απόσταση d = 0 m από το σημείο Ο βρίσκεται ένα μικρό κομμάτι φελλού μάζας m = g, το οποίο ταλαντώνεται με την επίδραση του κύματος. α. Να βρείτε την απομάκρυνση του φελλού από τη θέση ισορροπίας του και την ταχύτητα του τις χρονικές στιγμές 4 s και 6 s. (Μονάδες 3) β. Να σχεδιάσετε το διάγραμμα της απομάκρυνσης του φελλού σε συνάρτηση με το χρόνο. (Μονάδες 4) γ. Να υπολογίσετε την κινητική ενέργεια του φελλού όταν η απομάκρυνση του από τη θέση ισορροπίας είναι ψ = - A (π 0). (Μονάδες 3) Καλή Επιτυχία!!!

9 ΑΠΑΝΤΗΣΕΙΣ ΙΑΓΩΝΙΣΜΑΤΟΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΩΝ) Θέμα ο. α. γ 3. β 4. γ 5. α) Λ β) Σ γ) Λ δ) Σ ε) Λ. Α. ΣΣωωσσττόό ττοο αα.. Θέμα ο Η ιδιοσυχνότητα του συστήματος δίνεται από τη σχέση: f 0 = D D = k k f 0 = π m π m. Όταν τετραπλασιάσουμε τη μάζα του ταλαντωτή η ιδιοσυχνότητα του συστήματος θα γίνει: ' k m f 0 = = π 4 m π k ' f 0 = f0. Β. ΣΣωωσσττόό ττοο ββ..

10 Όταν η συχνότητα του διεγέρτη f είναι ίση με την ιδιοσυχνότητα f 0 του συστήματος, το σύστημα βρίσκεται σε συντονισμό και εκτελεί εξαναγκασμένη ταλάντωση με μέγιστο πλάτος. Όταν υποδιπλασιαστεί η ιδιοσυχνότητα του συστήματος θα είναι f οπότε το σύστημα θα πάψει να βρίσκεται σε συντονισμό και το πλάτος της εξαναγκασμένης ταλάντωσης θα ελαττωθεί. ' f 0. α. Η εξίσωση της συνισταμένης ταλάντωσης που το πλάτος της μεταβάλλεται συνημιτονοειδώς με το χρόνο δίνεται από τη σχέση: χ = A συν ω- ω t ημ ω + ω t Αντιπαραβάλλοντας την εξίσωση αυτή με την εξίσωση της ταλάντωσης που μας δίνεται: χ = 0,6 συν(4πt) ημ(500πt) (SI) παίρνουμε: Α = 0,6 m A = 0,3 m ω- ω t = 4π t ω ω = 8π rad/s () και ω + ω t = 500π t ω + ω = 000π rad/s () () + () ω = 008π ω = 504π rad/s και ω = 000π 504π = 496π rad/s Άρα οι εξισώσεις των απλών αρμονικών ταλαντώσεων από τις οποίες προέκυψε η παραπάνω κίνηση είναι: χ = 0,3 ημ(504π t) (SI) και χ = 0,3 ημ(496π t) (SI)

11 β. Από την εξίσωση της ταλάντωσης που μας δίνεται: χ = 0,6 συν(4πt) ημ(500πt) (SI) παίρνουμε: ω = 500π rad/s π Τ = 500π rad/s Τ = π 500π s T = 50 s H συχνότητα με την οποία μηδενίζεται το πλάτος της ταλάντωσης (συχνότητα ω διακροτήματος) είναι: f δ = f f = π - ω π f ω - ω δ = = 4 Hz. π 3. Σωστό το γ. Επειδή οι δύο ΑΑΤ που εκτελεί το σώμα γίνονται πάνω στην ίδια ευθεία, γύρω από την ίδια θέση ισορροπίας και έχουν την ίδια συχνότητα, η συνισταμένη ταλάντωση θα είναι ΑΑΤ με πλάτος: Α = π A + A + A A συν A = A + A = Α = m π Α ημ εφθ = Α = π Α + Α συν Α = θ = π 4 rad. + = 8 Συνεπώς η συνισταμένη ταλάντωση περιγράφεται από την εξίσωση: χ = π 5πt+ 4 (S.I.) 4. α. Λάθος Το πλάτος της ταλάντωσης μειώνεται εκθετικά με το χρόνο σύμφωνα με τη σχέση: A κ = A 0 e - Λt, όπου t = κ T, (κ = 0,,..)

12 β. Σωστό Το χρονικό διάστημα t που απαιτείται για να μειωθεί οποιαδήποτε τιμή του πλάτους στο μισό της είναι: Α κ = Α 0 e - Λ t A0 = Α 0 e - Λ t = e- Λ t ln = ln (e- Λ t ) - ln = - Λ t t = ln Λ = σταθερό γ. Σωστό Ο λόγος των διαδοχικών πλατών στην ίδια διεύθυνση, είναι: σταθερός κ = - Λ κ Τ A 0 e - Λ (κ+) Τ κ+ 0 A Α Α e = e Λ κ Τ + Λ (κ+) Τ = e Λ κτ + Λ κτ + ΛΤ A Α κ κ+ = e ΛT = Θέμα 3 ο α. Όταν ο διακόπτης δ είναι κλειστός η τάση στα άκρα του πυκνωτή είναι ίση με την τάση της πηγής, άρα το φορτίο του πυκνωτή είναι μέγιστο και ίσο με : Q = C V = Q = C. Q Η ενέργεια ταλάντωσης του κυκλώματος LC : Ε ολ = C Ε ολ = J. β. Επειδή τη χρονική στιγμή t = 0 το φορτίο του πυκνωτή είναι μέγιστο (q = Q) και η ένταση του ρεύματος i = 0, για το φορτίο του πυκνωτή και για την ένταση του ρεύματος ισχύουν αντίστοιχα οι σχέσεις: q = Q συν(ω t) () και i = - I ημ(ω t) ()

13 Η κυκλική συχνότητα ω της ηλεκτρικής ταλάντωσης είναι: ω = L C ω = = = ω = 500 rad/s. Το πλάτος Ι της έντασης του ηλεκτρικού ρεύματος είναι ίσο με: Ι = ω Q = = I = 0, A. Αντικαθιστώντας τις παραπάνω τιμές στις σχέσεις () και () παίρνουμε: q = συν500t (SI) και i = - 0, ημ500t (SI) γ. Το διάγραμμα της ενέργειας του μαγνητικού πεδίου του πηνίου και της ενέργειας του ηλεκτρικού πεδίου του πυκνωτή σε συνάρτηση με το φορτίο του πυκνωτή είναι: E (J) U B U E q (C) δ. Σε κάθε ιδανικό κύκλωμα LC ισχύει: Ε αυτ = V C Ε αυτ = q C ()

14 Εφαρμόζω αρχή διατήρησης της ενέργειας της ηλεκτρικής ταλάντωσης : U E + U β = Ε ολ q C + L i = Q C q + LC i = Q q = Q L C i q = = (64 48) 0-0 q = ± = ± C = Άρα από την σχέση () παίρνουμε: Ε αυτ = q -5 C = = 5 V. Θέμα 4 ο α) Επειδή το διάστημα, που διανύει το σώμα, μεταξύ δύο διαδοχικών διελεύσεων απ τη Θ.Ι. του είναι: s = A A = s = 0, m. Ακραία θέση (-Α) Η χρονική διάρκεια μεταξύ δύο διαδοχικών διελεύσεων απ τη Θ.Ι. του σώματος είναι: με: t = T T = t T = π 5 s και η γωνιακή συχνότητα ω ισούται ω = π Τ = 0 rad/s. Θ.Φ.Μ. Θ.Ι.Τ. l 0 F ελ mg t 0 = 0 u 0 A (+) u = 0 Το σύστημα ελατηρίου σώματος κάνει ΑΑΤ με D = k = m ω Εφαρμόζοντας συνθήκη ισορροπίας στη Θ.Ι.Τ. έχουμε: ΣF r F = 0 F ελ = m g m = 0 g = m = 0, Kg. 0

15 Άρα: D = k = m ω = 0, 00 = 0 Ν/m k = 0 N/m. β) H δυναμική ενέργεια του ελατηρίου υπολογίζεται από τη σχέση: U ελ = Κ l, όπου l είναι η απόσταση από τη Θέση Φυσικού Μήκους (ΘΦΜ) του ελατηρίου. Η θέση, που η δυναμική ενέργεια της ταλάντωσης είναι μηδέν, είναι η θέση ισορροπίας της ταλάντωσης. Άρα ζητείται η δυναμική ενέργεια του ελατηρίου στη ΘΙ, που όπως φαίνεται απ το σχήμα, απέχει l 0 από τη Θέση Φυσικού Μήκους. Εφαρμόζοντας το νόμο του Hooke στην ΘΙT παίρνουμε: F ελ = k l 0 l 0 = F 0 k = 0, m Συνεπώς η ζητούμενη δυναμική ενέργεια ελατηρίου θα είναι: U ελ = k l = 0 0 0,0 U ελ = 0,05 J γ) Για να υπολογίσουμε την αρχική ταχύτητα, θα εφαρμόσουμε την αρχή διατήρησης της ενέργειας της AAT του σώματος ανάμεσα στην αρχική θέση και στη θέση μέγιστης απομάκρυνσης. Κ 0 + U 0 = Ε ολ m u 0 + k l = 0 k A 0 u = u 0 = 3 u 0 = 3 m/s. δ) Τη χρονική στιγμή t = 0, το σώμα βρίσκεται σε απομάκρυνση χ = l 0 = 0, m και έχει ταχύτητα μέτρου 3 m/s με φορά αρνητική, άρα ο ρυθμός μεταβολής της κινητικής του ενέργειας είναι: W ΣF K ΣF x = = t t t = ΣF u 0 = - k χ u 0 = - 0 0, (- 3 ) Κ t = 3 J/s

16 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Θέμα ο δ. γ 3. α 4. γ 5. β. Σωστό το β. Θέμα ο Το ποσοστό επί τοις εκατό της ελάττωσης της ολικής ενέργειας της ταλάντωσης σε χρονικό διάστημα ίσο με το χρόνο υποδιπλασιασμού του πλάτους της ταλάντωσης είναι ίσο με: Α 0 k A 0 - k Α0 Ε 0 - Ε k A 0 - k τελ 00% = 00% = 4 00% = Ε 0 k A 0 k A 0 k A0-4 = 3 00% = 00% = 75% k A 4 0. α. Περιοδική κίνηση (ταλάντωση) της οποίας το πλάτος μεταβάλλεται συνημιτονοειδώς με το χρόνο.

17 β. Η εξίσωση της συνισταμένης ταλάντωσης που το πλάτος της μεταβάλλεται συνημιτονοειδώς με το χρόνο δίνεται από τη σχέση: χ = A συν ω- ω t ημ ω + ω t Αντιπαραβάλλοντας την εξίσωση αυτή με την εξίσωση της ταλάντωσης που μας δίνεται: χ = 0,6 συν(4πt) ημ(500πt) (SI) παίρνουμε: Α = 0,6 m A = 0,3 m ω- ω t = 4π t ω ω = 8π rad/s () και ω + ω t = 500π t ω + ω = 000π rad/s () () + () ω = 008π ω = 504π rad/s και ω = 000π 504π = 496π rad/s Άρα οι εξισώσεις των απλών αρμονικών ταλαντώσεων από τις οποίες προέκυψε η παραπάνω κίνηση είναι: χ = 0,3 ημ(504π t) (SI) και χ = 0,3 ημ(496π t) (SI) γ. Από την εξίσωση της ταλάντωσης που μας δίνεται: χ = 0,6 συν(4πt) ημ(500πt) (SI) παίρνουμε: ω = 500π rad/s π Τ = 500π rad/s Τ = π 500π s T = 50 s H συχνότητα με την οποία μηδενίζεται το πλάτος της ταλάντωσης (συχνότητα ω διακροτήματος) είναι: f δ = f f = π - ω π f ω - ω δ = = 4 Hz. π

18 3. Σωστή απάντηση: (β) Το πλάτος του (Σ) μετά τη συμβολή των κυμάτων ισούται με: r - r u t - u t Α Σ = Α συνπ = Α συνπ λ λ = Α u (t ) - t συνπ λ Α Σ = Α λ f t συνπ λ = A συνπ f t = A συνπ T = A συνπ Α Σ = Α. T Η μέγιστη ταχύτητα ταλάντωσης του σημείου (Σ) μετά τη συμβολή των κυμάτων σε αυτό είναι: u max = ω Α u max(σ) = ω Α Σ = ω A u max(σ) = u max όπου u max = ω Α η μέγιστη ταχύτητα ταλάντωσης των πηγών. Θέμα 3 ο a) α ) Έστω φ η διαφορά φάσης των δύο ταλαντώσεων. Το πλάτος της συνισταμένης ταλάντωσης δίνεται από τον τύπο: Α = A = A = A Α + Α + Α Α συνφ Α = Α + Α + Α Α συνφ A = A + A συνφ A συνφ = - A συνφ = - φ = π 3. α ) Η αρχική φάση θ της σύνθετης ταλάντωσης, βρίσκεται από τον τύπο: Α ημφ εφθ = Α + Α συνφ π Α ημ οπότε με αντικατάσταση προκύπτει: εφθ = 3 = π Α + Α συν 3 3 εφθ = 3

19 θ = π 3 rad. β) Εφόσον οι δύο ταλαντώσεις έχουν την ίδια συχνότητα και η συνισταμένη ταλάντωση θα έχει την ίδια συχνότητα. Άρα κάθε ταλάντωση θα έχει την ίδια σταθερά D, αφού D = m ω. F Ισχύει: F επ,max = D A D = επ,max A () E = D A A = 0, m. () E = F επ,max A A E = F επ,max A 0, J = A Η σταθερά επαναφοράς της ταλάντωσης θα υπολογιστεί από την σχέση (): D = 0 N/m. Η γωνιακή συχνότητα είναι: ω = D m = 0 0, = 00 ω = 0 rad/s. Άρα οι εξισώσεις απομάκρυνσης των δύο αρχικών ταλαντώσεων είναι: χ = A ημωt χ = 0, ημ0t και χ = A ημ(ωt + φ) χ = 0, ημ(0t + π 3 ) (S.I.) γ) Η εξίσωση της επιτάχυνσης χρόνου για την συνισταμένη ταλάντωση είναι: α = ωα max α = - α max ημ(ωt + θ) α = - 0 ημ(0t + π 3 ) (SI) δ) Η ταχύτητα ταλάντωσης για τη συγκεκριμένη χρονική στιγμή που ισχύει U = 3K, θα υπολογιστεί από την αρχή διατήρησης της ενέργειας: U = 3K Κ + U = Ε Κ + 3Κ = Ε 4 m u = E m u = E u = E 0, = u = 0,5 = 0,5 m/s. m 0,

20 Θέμα 4 ο Α. Η εξίσωση της αρμονικής ταλάντωσης της πηγής Ο δίνεται από τη σχέση: ψ = Α ημ πt T Αντιπαραβάλλοντας την παραπάνω εξίσωση με την εξίσωση ψ = 0, ημπt (S.I.) που μας δίνεται βρίσκουμε: Α = 0, m και Τ = s. Η φάση του αρμονικού κύματος που παράγεται από την πηγή Ο και διαδίδεται κατά την θετική φορά είναι: φ = π t χ - (S.I) (). T λ Άρα φάση του σημείου Κ, που απέχει από την πηγή Ο απόσταση χ, δίνεται από τη σχέση: φ Κ = π t χ - T λ () ενώ του σημείου Λ που απέχει από την πηγή απόσταση χ + από τη σχέση: φ Λ = π t χ + - T λ (3) Από το διάγραμμα του σχήματος, έχουμε: Για το σημείο Κ όταν t = s, φ Κ = 0 οπότε από τη σχέση () παίρνουμε: χ - λ = 0 χ - λ = 0 λ = χ (4).

21 Για το σημείο Λ όταν t =,5 s, φ Λ = 0 οπότε από τη σχέση (3) παίρνουμε:,5 χ + 3 χ - + = 0 - = 0 λ = 4 λ 4 λ 3 (χ + ) (5). Από τις σχέσεις (4) και (5) προκύπτει: χ = 4 3 χ χ = m. Άρα λ = χ = 4 m. Η εξίσωση του αρμονικού κύματος είναι: ψ = 0, ημπ t χ - 4 (S.I.). Β. Η διαφορά φάσης των ταλαντώσεων που κάνουν τα σημεία Κ και Λ είναι: φ = φ Κ φ Λ = π t χ - T λ - π t χ + - T λ χ + - χ = π λ φ = π rad. Όμως φ = ω t π = π Τ t t = Τ 4. Άρα όταν το σημείο Λ αποκτά τη μέγιστη θετική απομάκρυνση το σημείο Κ βρίσκεται στη θέση ισορροπίας του, οπότε η ταχύτητα του έχει μέτρο: V Κ = V max = ω Α = π Τ Α = π 0, V Κ = 0,34 m/s. Γ. Η ταχύτητα διάδοσης του αρμονικού κύματος είναι: u = λ f = λ Τ u = m/s. Το κύμα θα φθάσει στο σημείο Κ που απέχει χ Κ = χ = m από την πηγή, τη χρονική στιγμή t K = s.

22 Το σημείο Κ περνάει για τρίτη φορά από τη θέση ισορροπίας του, αφού ξεκίνησε την ταλάντωση του, τη χρονική στιγμή: Τ + Τ + Τ = 3Τ = 3 s. Άρα το σημείο Κ θα περάσει για τρίτη φορά από τη θέση ισορροπίας του τη χρονική στιγμή: t = t K + 3 s = s + 3 s t = 4 s. Το κύμα τη παραπάνω χρονική στιγμή t = 4 s έχει φθάσει στο σημείο που απέχει: χ = u t = 8 m από την πηγή. Η εξίσωση του κύματος εκείνη τη χρονική στιγμή γράφεται: ψ = 0, ημπ( - χ ) (S.I.) με χ 8 m 4 Η σχέση αυτή δίνει την απομάκρυνση όλων των σημείων του μέσου, από την πηγή έως το σημείο που απέχει χ = 8 m από την πηγή, την χρονική στιγμή t = 4 s. Σχηματίζουμε τον παρακάτω πίνακα τιμών: χ (m) 0 λ 4 = λ = 3λ 4 = 3 λ 5λ 4 = 5 3λ = 6 7λ 4 = 7 λ = 8 ψ (m) 0-0, 0 0, 0-0, 0 0, 0 Με τη βοήθεια του πίνακα σχεδιάζουμε το στιγμιότυπο του κύματος τη χρονική στιγμή t = 4 s. ψ (m ) 0, Ο χ (m ) -0,

23 . α. Η φάση του φελλού τη χρονική στιγμή t = 4 s είναι: φ = π t - d λ = π 4-5 = - π rad < 0. Άρα τη χρονική στιγμή 4 s η απομάκρυνση και η ταχύτητα του φελλού θα είναι μηδέν αφού δεν έχει αρχίσει ακόμη να ταλαντώνεται. Τη χρονική στιγμή 6 s η φάση του φελλού είναι: φ = π t - d λ = π = π rad > 0. Άρα τη χρονική στιγμή 6 s η απομάκρυνση και η ταχύτητα του φελλού θα είναι: ψ = 0, ημπ ψ = 0 m και u = ω Α συνπ= π 0, συνπ u = - 0,34 m/s. β. Ο φελλός θα αρχίσει να ταλαντώνεται τη χρονική στιγμή: d = u t t = d u = 5 s άρα το διάγραμμα απομάκρυνσης χρόνου θα είναι: ψ(m) 0, Ο t(s) - 0,

24 γ. Ο φελλός κάνει ΑΑΤ με D = m ω = m π Τ = 0-3 π = 0 - N/m. Εφαρμόζουμε την αρχή διατήρησης της ενέργειας για την απλή αρμονική ταλάντωση του φελλού: Κ + U = Ε ολ Κ = Ε ολ U K = D A - D Α = D Α Α - = D A K = 7,5 0-5 J.

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) 10 01-011 Θέμα 1 ο (Μονάδες 5) 1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια θέση ισορροπίας, προκύπτει μια νέα

Διαβάστε περισσότερα

α. Ηλεκτρικού πεδίου του πυκνωτή σε ενέργεια μαγνητικού πεδίου

α. Ηλεκτρικού πεδίου του πυκνωτή σε ενέργεια μαγνητικού πεδίου ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ ((Α ΟΜΑ Α)) 77 1111 -- 22001100 Θέμα 1 ο (Μονάδες 25) 1. Η εξίσωση που δίνει την ένταση του ρεύματος σε ιδανικό κύκλωμα ηλεκτρικών ταλαντώσεων LC

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΛΥΥΚΚΕΕΙΙΟΥΥ (ΑΠΟΦΦΟΙΙΤΤΟΙΙ) ( ) εευυττέέρραα 1144 ΙΙααννοουυααρρί ίοουυ 22001133 Θέμα 1 ο (Μονάδες 25) 1. Κατά τη συμβολή δύο αρμονικών κυμάτων που δημιουργούνται

Διαβάστε περισσότερα

s. Η περίοδος της κίνησης είναι:

s. Η περίοδος της κίνησης είναι: ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ ΚΚυυρρι ιαακκήή 66 Νοοεεμμββρρί ίοουυ 1111 Θέμα 1 ο 1. Ένα σημειακό αντικείμενο που εκτελεί ΑΑΤ μεταβαίνει από τη θέση ισορροπίας του σε ακραία

Διαβάστε περισσότερα

α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0.

α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0. ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΛΥΥΚΚΕΕΙΙΟΥΥ ΚΚυυρρι ιιαακκήή 1133 ΙΙααννοουυααρρί ίίοουυ 001133 Θέμα 1 ο (Μονάδες 5) 1. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος

Διαβάστε περισσότερα

Θέμα 1 ο. Θέμα 2 ο. Η ιδιοσυχνότητα του συστήματος δίνεται από τη σχέση:

Θέμα 1 ο. Θέμα 2 ο. Η ιδιοσυχνότητα του συστήματος δίνεται από τη σχέση: ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) Θέμα 1 ο 1100 11 -- 001111 1. α. γ 3. β 4. γ 5. α) Λ β) Σ γ) Λ δ) Σ ε) Λ 1. Α. ΣΣωωσσττόό ττοο αα.. Θέμα ο Η ιδιοσυχνότητα του συστήματος

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25) προς τη θετική φορά του άξονα χ. Για τις φάσεις και τις ταχύτητες ταλάντωσης των σημείων Α και Β του μέσου ισχύει:

Θέμα 1 ο (Μονάδες 25) προς τη θετική φορά του άξονα χ. Για τις φάσεις και τις ταχύτητες ταλάντωσης των σημείων Α και Β του μέσου ισχύει: ΙΓΩΝΙΣΜ ΦΥΣΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ 99 11 -- 1111 Θέμα 1 ο 1. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος που διαδίδεται προς τη θετική φορά του άξονα χ. Για τις φάσεις και τις ταχύτητες

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ: ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: η (ΘΕΡΙΝ) ΗΜΕΡΟΜΗΝΙ: /0/ ΘΕΜ ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12 ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 3-0-0 ΘΕΡΙΝ ΣΕΙΡ ΘΕΜ ο ΔΙΓΩΝΙΣΜ ΣΤΗ ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 2 ο ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 2 ο ΕΚΦΩΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά.. Ένα σώμα εκτελεί

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση χωρίς να αιτιολογήσετε την επιλογή σας.

ΘΕΜΑ Α Στις ερωτήσεις να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση χωρίς να αιτιολογήσετε την επιλογή σας. '' Περί Γνώσεως'' Φροντιστήριο Μ.Ε. Φυσική Προσανατολισμού Γ' Λ. ΜΑΘΗΜΑ /Ομάδα Προσανατολισμού Θ.Σπουδών / ΤΑΞΗ : ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΦΥΣΙΚΗ / Προσανατολισμού / Γ ΛΥΚΕΙΟΥ 2 o ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Τρίτη 3-1-2012 2 ΘΕΜΑ 1ο Να γράψετε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Τρία διαπασών Δ 1, Δ 2 παράγουν ήχους με συχνότητες 214 Hz, 220 Hz και f 3 αντίστοιχα. Όταν πάλλονται ταυτόχρονα τα διαπασών Δ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: ΑΡΧΩΝ ΜΑΡΚΟΣ-ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ-KΥΡΙΑΚΑΚΗΣ ΓΙΩΡΓΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: ΑΡΧΩΝ ΜΑΡΚΟΣ-ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ-KΥΡΙΑΚΑΚΗΣ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: 19-10-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ-ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ-KΥΡΙΑΚΑΚΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα.

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα. 1ο Κριτήριο αξιολόγησης στα κεφ. 1-2 Θέμα 1 Ποια από τις παρακάτω προτάσεις είναι σωστή; 1. Ένα σώμα μάζας m είναι δεμένο στην ελεύθερη άκρη κατακόρυφου ιδανικού ελατηρίου σταθεράς k και ηρεμεί στη θέση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ ΘEMA 1 Να γράψετε στη κόλλα σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.1 Το αποτέλεσμα της σύνθεσης δύο αρμονικών

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 19/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 19/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 19/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α

Διαβάστε περισσότερα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα Φυσική Γ Λυκείου Κατεύθυνσης Προτεινόμενα Θέματα Θέμα ο Ένα σώμα εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Η φάση της ταλάντωσης μεταβάλλεται με το χρόνο όπως δείχνει το παρακάτω σχήμα : φ(rad) 2π π 6

Διαβάστε περισσότερα

α) = β) Α 1 = γ) δ) Μονάδες 5

α) = β) Α 1 = γ) δ) Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19-10-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ-ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ-ΚΥΡΙΑΚΑΚΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ Λ Υ Κ Ε Ι Ο Υ 08/01/2017 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ Λ Υ Κ Ε Ι Ο Υ 08/01/2017 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ Λ Υ Κ Ε Ι Ο Υ 08/01/2017 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις πολλαπλού τύπου 1-7, να επιλέξετε τη σωστή απάντηση και στο απαντητικό σας φύλλο να μεταφέρετε τον αριθμό και το γράμμα της

Διαβάστε περισσότερα

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2.

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2. Τάξη Μάθημα : Γ ΛΥΚΕΙΟΥ : Φυσική Εξεταστέα Ύλη : ΚΕΦΑΛΑΙΟ 1 ΚΑΙ 2 Καθηγητής : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Ημερομηνία : 11-11 -2012 ΘΕΜΑ 1ο 1) Η ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση μεταβάλλεται,

Διαβάστε περισσότερα

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α 3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 014 Ταλαντώσεις - Πρόχειρες Λύσεις Θέµα Α Α.1. Ηλεκτρικό κύκλωµα LC, αµελητέας ωµικής αντίστασης, εκτελεί η- λεκτρική ταλάντωση µε περίοδο T. Αν

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΙΑΑΓΓΩΝΝΙΙΣΣΜΑΑ ΦΦΥΥΣΣΙΙΚΚΗΗΣΣ ΚΚΑΑΤΤΕΕΥΥΘΘΥΥΝΝΣΣΗΗΣΣ ΑΑΠΟΟΦΦΟΟΙΙΤΤΩΝΝ 0055 -- -- 00 Θέμα ο. Ένα σημειακό αντικείμενο που εκτελεί ΑΑΤ μεταβαίνει από τη θέση ισορροπίας του σε ακραία θέση σε χρόνο s. Η

Διαβάστε περισσότερα

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Δύο εγκάρσια κύματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΧΕΙΜΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 30/12/11 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΧΕΙΜΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 30/12/11 ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΧΕΙΜΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 30// ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα

Διαβάστε περισσότερα

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α 3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 014 Ταλαντώσεις - Πρόχειρες Λύσεις Θέµα Α Α.1. Ηλεκτρικό κύκλωµα LC, αµελητέας ωµικής αντίστασης, εκτελεί η- λεκτρική ταλάντωση µε περίοδο T. Αν

Διαβάστε περισσότερα

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Α.

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Α. ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη Αυγούστου 05 Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Οµάδα Α Θέµα Α Α.. Σε µια απλή αρµονική ταλάντωση η αποµάκρυνση και η επιτάχυνση την ίδια

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 6-0- ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 3-0-0 ΘΕΡΙΝ ΣΕΙΡ ΘΕΜ ο ΔΙΓΩΝΙΣΜ ΣΤΗ ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

Α = 0,6 m A = 0,3 m ω - ω t = 4π t ω ω = 8π rad/s () και ω + ω t = 500π t ω + ω = 000π rad/s () () + () ω = 008π ω = 504π rad/s και ω = 000π 504π = 49

Α = 0,6 m A = 0,3 m ω - ω t = 4π t ω ω = 8π rad/s () και ω + ω t = 500π t ω + ω = 000π rad/s () () + () ω = 008π ω = 504π rad/s και ω = 000π 504π = 49 ΑΠΑΝΤΗΣΕΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ Σ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ Θέµα ο. δ. γ 3. α 4. γ 5. β ΚΚυυρρι ιιαακκήή 33 ΙΙααννοουυααρρί ίίοουυ 0033 Θέµα ο. Α) Σωστή απάντηση: (β) Αφού ο τροχός κυλίεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 15/11/2015

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 15/11/2015 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-06 ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: //0 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΤΑΛΑΝΤΩΣΕΙΣ - ΑΡΜΟΝΙΚΟ ΚΥΜΑ ΘΕΜΑ Α Α. Σε μια εξαναγκασμένη ταλάντωση η συχνότητα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1 ο Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 33 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες

Διαβάστε περισσότερα

Ονοματεπώνυμο: Επιμέλεια διαγωνίσματος: Αξιολόγηση :

Ονοματεπώνυμο: Επιμέλεια διαγωνίσματος: Αξιολόγηση : Ονοματεπώνυμο: Μάθημα: Υλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση : Φυσική Προσανατολισμου Γ Λυκείου Ταλαντώσεις Σχολικό έτος 2017-2018 Σελίδα 1 Διαγώνισμα Ταλαντώσεις Θέμα Α Στις ημιτελείς προτάσεις Α.1

Διαβάστε περισσότερα

ΚΑΛΗ ΧΡΟΝΙΑ. b. x = 5ημ10πt (S.I.). c. x = 5ημ(10πt+π) (S.I.). d. x = 15ημ10πt (S.I.). ( μονάδες 5)

ΚΑΛΗ ΧΡΟΝΙΑ. b. x = 5ημ10πt (S.I.). c. x = 5ημ(10πt+π) (S.I.). d. x = 15ημ10πt (S.I.). ( μονάδες 5) ΚΑΛΗ ΧΡΟΝΙΑ ΘΕΜΑ Α 1) Στο πρότυπο του απλού αρμονικού ταλαντωτή η δυναμική του ενέργεια: Επιλογή μίας απάντησης. Α) έχει τη μέγιστη τιμή της στη θέση ισορροπίας. Β) είναι ίση με την ολική του ενέργεια

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Φυσικής Γ Λυκείου Κρούσεις-Ταλαντώσεις-Κύματα

Επαναληπτικό Διαγώνισμα Φυσικής Γ Λυκείου Κρούσεις-Ταλαντώσεις-Κύματα Επαναληπτικό Διαγώνισμα Φυσικής Γ Λυκείου Κρούσεις-Ταλαντώσεις-Κύματα Θέμα Α 1) Η ιδιοσυχνότητα ενός συστήματος που εκτελεί εξαναγκασμένη ταλάντωση χωρίς τριβή είναι 20 Hz. Το πλάτος της ταλάντωσης γίνεται

Διαβάστε περισσότερα

Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις

Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις Όπου χρειάζεται, θεωρείστε ότι g = 10m/s 2 1. Σε μία απλή αρμονική ταλάντωση η μέγιστη απομάκρυνση από την θέση ισορροπίας είναι Α = 30cm. Ο χρόνος που χρειάζεται

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

φ(rad) t (s) α. 4 m β. 5 m α. 2 m β. 1 m

φ(rad) t (s) α. 4 m β. 5 m α. 2 m β. 1 m ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ Τετάρτη 4 Φεβρουαρίου 05 ΘΕΜΑ Β Γ Α B φ(rad) 6π 0 0,3 0,5 0,7 t (s) Στα σηµεία Α και Β του παραπάνου σχήµατος βρίσκονται δύο σύγχρονες πηγές Π και Π, που εκπέµπουν στην επιφάνεια

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ δυαδικό ΦΡΟΝΤΙΣΤΗΡΙΑ η εξεταστική περίοδος 0-3 Σελίδα - - ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 8-0-0 Διάρκεια: 3 ώρες Ύλη: Ταλαντώσεις Καθηγητής: ΑΤΡΕΙΔΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Στις ερωτήσεις 4 να σημειώσετε την σωστή. ) Σώμα εκτελεί απλή αρμονική ταλάντωση. Η συνολική δύναμη που δέχεται: (α) είναι σταθερή.

Διαβάστε περισσότερα

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Β.

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Β. ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη Αυγούστου 05 Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Οµάδα Β Θέµα Α Α.. Σε µια απλή αρµονική ταλάντωση η αποµάκρυνση και η επιτάχυνση την ίδια

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ γ τάξη ενιαίου λυκείου (εξεταστέα ύλη: κρούσεις, ταλαντώσεις, εξίσωση κύματος) διάρκεια εξέτασης: 1.8sec ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΜΑΘΗΤΡΙΑΣ: ΤΜΗΜΑ: ΘΕΜΑ Α Στις ερωτήσεις Α1 Α4 να επιλέξετε

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες

Διαβάστε περισσότερα

Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 8//06 ΕΩΣ 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη 7 Δεκεμβρίου 06 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις

Διαβάστε περισσότερα

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις)

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ΘΕΜΑ 1 ο Στις παρακάτω ερωτήσεις 1 4 επιλέξτε τη σωστή πρόταση 1. Ένα σώμα μάζας

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις. Θέµα Α

Ενδεικτικές Λύσεις. Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Ταλαντώσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Σε µία ϕθίνουσα ταλάντωση στην οποία το πλάτος µειώνεται εκθετικά µε το χρόνο : (ϐ) όταν η σταθερά απόσβεσης b µεγαλώνει, το

Διαβάστε περισσότερα

ΘΕΜΑ Β Β1. Ένας ταλαντωτής εκτελεί φθίνουσα ταλάντωση με πλάτος που μειώνεται εκθετικά με το

ΘΕΜΑ Β Β1. Ένας ταλαντωτής εκτελεί φθίνουσα ταλάντωση με πλάτος που μειώνεται εκθετικά με το ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2015-2016 ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 08/11/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Α1 δ Α2 γ Α3 δ Α4 α Α5 β ΘΕΜΑ Β Β1 Ένας ταλαντωτής

Διαβάστε περισσότερα

ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις Α1 Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις Α1 Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 05-06 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 08//05 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από

Διαβάστε περισσότερα

2. Σώμα εκτελεί Α.Α.Τ. και η εξίσωση της απομάκρυνσης σε σχέση με το χρόνο είναι:

2. Σώμα εκτελεί Α.Α.Τ. και η εξίσωση της απομάκρυνσης σε σχέση με το χρόνο είναι: 1. Σώμα εκτελεί Α.Α.Τ. με περίοδο 2 s και πλάτος ταλάντωσης 0,1 m. Τη χρονική στιγμή 0 το σώμα διέρχεται από τη θέση ισορροπίας του με θετική ταχύτητα. Να υ πολογιστούν: α) η συχνότητα και η γωνιακή συχνότητα

Διαβάστε περισσότερα

Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση

Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Ταλαντώσεις Θέμα Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Α1. Αν μεταβληθεί η ολική ενέργεια της ταλάντωσης

Διαβάστε περισσότερα

Σύνολο Σελίδων: Ενδεικτικές Λύσεις Κυριακή 30 Σεπτέµβρη Θέµα Α

Σύνολο Σελίδων: Ενδεικτικές Λύσεις Κυριακή 30 Σεπτέµβρη Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Ταλαντώσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις Κυριακή 30 Σεπτέµβρη 018 Θέµα Α Α.1. Ταλαντωτής εκτελεί ϕθίνουσα ταλάντωση µικρής απόσβεσης. Η αντιτιθέµενη δύναµη είναι

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις. Θέµα Α

Ενδεικτικές Λύσεις. Θέµα Α 3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Ταλαντώσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Στη σύνθεση δύο απλών αρµονικών ταλαντώσεων της ίδιας συχνότητας που γίνονται γύρω από το ίδιο σηµείο και στην ίδια διεύθυνση,

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΑΛΓΟΡΙΘΜΟΣ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΑΛΓΟΡΙΘΜΟΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 08 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 08 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ημιτελείς προτάσεις

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό κάθε μίας από τις παρακάτω ερωτήσεις Α.1- Α.4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό κάθε μίας από τις παρακάτω ερωτήσεις Α.1- Α.4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2011-2012 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό κάθε μίας από τις παρακάτω ερωτήσεις Α.1- Α.4 και δίπλα το

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKTΩΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKTΩΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKTΩΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ - Γ ΛΥΚΕΙΟΥ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ - Γ ΛΥΚΕΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Να επιλέξετε την σωστή απάντηση στις παρακάτω προτάσεις: 1. Σε μια φθίνουσα ταλάντωση,

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις -4 να βρείτε τη σωστή απάντηση. Α. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

b. η ταλάντωση του σώματος παρουσιάζει διακρότημα.

b. η ταλάντωση του σώματος παρουσιάζει διακρότημα. ΘΕΜΑ 1 Ο 1) Το σώμα μάζας m του σχήματος εκτελεί εξαναγκασμένη ταλάντωση μέσα σε ρευστό από το οποίο δέχεται δύναμη της μορφής με =σταθ. Ο τροχός περιστρέφεται με συχνότητα f. Αν η σταθερά του ελατηρίου

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2013 Γ Λυκείου Θετική & Τεχνολογική Κατεύθυνση ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1. Σώμα

Διαβάστε περισσότερα

Προγραμματισμένο διαγώνισμα Φυσικής κατεύθυνσης Γ Λυκείου στις

Προγραμματισμένο διαγώνισμα Φυσικής κατεύθυνσης Γ Λυκείου στις Προγραμματισμένο διαγώνισμα Φυσικής κατεύθυνσης Γ Λυκείου στις 3-11-13 Ονοματεπώνυμο εξεταζόμενου:. Καμιά άλλη σημείωση δεν επιτρέπεται στα θέματα τα οποία θα παραδώσετε μαζί με το γραπτό σας. Έτσι οι

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1 Ένα σώμα εκτελεί αρμονική ταλάντωση με ακραίες θέσεις που

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 016 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2.

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2. Τάξη Μάθημα : Γ ΛΥΚΕΙΟΥ : Φυσική Εξεταστέα Ύλη : ΚΕΦΑΛΑΙΟ 1 ΚΑΙ 2 Καθηγητής : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Ημερομηνία : 11-11 -2012 ΘΕΜΑ 1ο 1) Η ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση μεταβάλλεται,

Διαβάστε περισσότερα

δ. έχουν πάντα την ίδια διεύθυνση.

δ. έχουν πάντα την ίδια διεύθυνση. Διαγώνισμα ΦΥΣΙΚΗ Κ.Τ Γ ΛΥΚΕΙΟΥ ΖΗΤΗΜΑ 1 ον 1.. Σφαίρα, μάζας m 1, κινούμενη με ταχύτητα υ1, συγκρούεται μετωπικά και ελαστικά με ακίνητη σφαίρα μάζας m. Οι ταχύτητες των σφαιρών μετά την κρούση α. έχουν

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α (μονάδες 25) Α1. Σε μια Α.Α.Τ. η εξίσωση της απομάκρυνσης είναι x=a.συνωt. Τη χρονική στιγμή

Διαβάστε περισσότερα

Μάθημα: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Ονοματεπώνυμο: Τμήμα: Β ΘΕΜΑΤΑ: Θέμα 1. (5Χ5=25 μον)

Μάθημα: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Ονοματεπώνυμο: Τμήμα: Β ΘΕΜΑΤΑ: Θέμα 1. (5Χ5=25 μον) Μάθημα: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Καθηγητής/τρια: Χρόνος: Ονοματεπώνυμο: Τμήμα: Β ΘΕΜΑΤΑ: Θέμα 1. (5Χ5=25 μον) 1. Σε μια φθίνουσα ταλάντωση ποιο από τα παρακάτω μεγέθη παραμένει σταθερό: α) το πλάτος

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Α1. Ένα σώμα εκτελεί α.α.τ. χωρίς αρχική φάση και σε χρόνο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5o ΔΙΑΓΩΝΙΣΜΑ ΔΙΑΓΩΝΙΣΜΑ - ΘΕΜΑΤΑ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5o ΔΙΑΓΩΝΙΣΜΑ ΔΙΑΓΩΝΙΣΜΑ - ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5o ΔΙΑΓΩΝΙΣΜΑ ΔΙΑΓΩΝΙΣΜΑ - ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΑΓΩΝΙΣΜΑ Ηµεροµηνία: Τετάρτη 7 Ιανουαρίου 05 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α Α4 να γράψετε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΑ ΚΕΦΑΛΑΙΑ: ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΤΑΛΑΝΤΩΣΕΙΣ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΑ ΚΕΦΑΛΑΙΑ: ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΤΑΛΑΝΤΩΣΕΙΣ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ Σελίδα 1 από 6 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΑ ΚΕΦΑΛΑΙΑ: ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΤΑΛΑΝΤΩΣΕΙΣ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:... ΘΕΜΑ Α Στις παρακάτω προτάσεις 1-5 να γράψετε στο τετράδιο

Διαβάστε περισσότερα

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της 1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό των ερωτήσεων και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό των ερωτήσεων και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. ιαγώνισµα φυσικής Γ λυκείου σε όλη την υλη Θέµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό των ερωτήσεων και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.Μονοχρωµατική

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου 1ο Επαναληπτικό ιαγώνισµα Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου 1ο Επαναληπτικό ιαγώνισµα Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου 1ο Επαναληπτικό ιαγώνισµα Ενδεικτικές Λύσεις Θέµα Α Α.1. Μικρό σώµα εκτελεί απλή αρµονική ταλάντωση µε περίοδο Τ και πλάτος Α. Μεταξύ δύο διαδοχικών µηδενισµών της κινητικής

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ:ΗΛΕΚΤΡΙΚΕΣ-ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΜΑ 1 Ο Στις ερωτήσεις 1-4 να επιλέξετε τη σωστή πρόταση. 1.Σώμα εκτελεί απλή αρμονική ταλάντωση και κάποια

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 20: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα

Διαβάστε περισσότερα

2 ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

2 ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ δυαδικό ΦΡΟΝΤΙΣΤΗΡΙΑ ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ: 3 ώρες ΒΑΘΜΟΣ:.. ΗΜΕΡΟΜΗΝΙΑ: 3// ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: Ατρείδης Γιώργος Θ Ε Μ Α

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΟΦΟΙΤΟΙ ΗΜΕΡΟΜΗΝΙΑ: /10/1 ΘΕΜΑ 1 ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΜΑ 1ο Στις προτάσεις 1.1 έως 1.4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο.

1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο. 1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου σταθεράς, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο. Το σώμα εκτελεί απλή αρμονική ταλάντωση, κατά τη διεύθυνση του άξονα

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Διαγωνίσματα 2012-2013 Θεματικό πεδίο: Διαγώνισμα Γ Λυκείου Ταλαντώσεις-Κρούσεις-Doppler Ημερομηνία.. Νοεμβρίου 2012 Διάρκεια 3 Ώρες ΘΕΜΑ 1 25 μονάδες Α. Ερωτήσεις πολλαπλής

Διαβάστε περισσότερα

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ(ΘΕΡΙΝΑ)

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ(ΘΕΡΙΝΑ) ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ(ΘΕΡΙΝΑ) 5/01/2019 ΟΙΚΟΝΟΜΟΥ ΓΙΩΡΓΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΧΡΗΣΤΟΣ- ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική περίοδος 04-5 - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 06-04-05 Διάρκεια: ώρες Ύλη: Όλη η ύλη Καθηγητής: Ονοματεπώνυμο: ΘΕΜΑ Α Στις

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα