U(t,x) R m w i, i = 1,2,... t = τ i W R p º f(t,x,u) g(x,w) (t,x,u) [t 0,+ ) R n R m (x,w) R n R p ¹ U(t,x) (t,x) [t 0,+ ) R n

Σχετικά έγγραφα
Math-Net.Ru Общероссийский математический портал



Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

D. BAINOV, YU. DOMSHLAK, AND S. MILUSHEVA

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

A summation formula ramified with hypergeometric function and involving recurrence relation

Probabilistic Approach to Robust Optimization

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Sampling Basics (1B) Young Won Lim 9/21/13

Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Ανώτερα Μαθηματικά ΙI

Blowup of regular solutions for radial relativistic Euler equations with damping

Memoirs on Differential Equations and Mathematical Physics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Commutative Monoids in Intuitionistic Fuzzy Sets

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Second Order RLC Filters

EL 625 Lecture 2. State equations of finite dimensional linear systems

Homomorphism in Intuitionistic Fuzzy Automata

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Ανώτερα Μαθηματικά ΙI

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

6.003: Signals and Systems. Modulation

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Ανώτερα Μαθηματικά ΙI

v w = v = pr w v = v cos(v,w) = v w

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ER-Tree (Extended R*-Tree)

Μαθηματικά ΙII. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Αντίστροφος Μετασχηματισμός Laplace. Αθανάσιος Μπράτσος

Ανώτερα Μαθηματικά ΙI

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Finite difference method for 2-D heat equation

Problem Set 3: Solutions

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

The k-α-exponential Function

Ανώτερα Μαθηματικά ΙI

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

Tridiagonal matrices. Gérard MEURANT. October, 2008

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI

Phase-Field Force Convergence

Some New Friedrichs-Type Inequalities in Domains with Microinhomogeneous Structure

Gradient Descent for Optimization Problems With Sparse Solutions

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Εφαρμοσμένα Μαθηματικά

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 9: Παράγωγος Συνάρτησης Μέρος Ι. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Applying Markov Decision Processes to Role-playing Game

A Note on Intuitionistic Fuzzy. Equivalence Relation

D Alembert s Solution to the Wave Equation

Προγραμματισ μόςσ ε» ΙωάννηςΓºΤσ ούλος

Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

CORDIC Background (4A)

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Second Order Partial Differential Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Strain gauge and rosettes

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Επικαμπύλια Ολοκληρώματα. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

EXPERIMENT RESEARCH OF INFLUENCE OF DYNAMIC LOADING ON PROCESS OF CRACK FORMATION AT BOOTY OF LITHOIDAL BLOCKS T.

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Im{z} 3π 4 π 4. Re{z}

"!$#&%('*),+.- /,0 +/.1),032 #4)5/ /.0 )80/ 9,: A B C <ED<8;=F >.<,G H I JD<8KA C B <=L&F8>.< >.: M <8G H I

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

CORDIC Background (2A)

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Homomorphism of Intuitionistic Fuzzy Groups

2 Composition. Invertible Mappings

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT


ON THE STABILITY OF THE SOLUTIONS OF CERTAIN FIFTH ORDER NON-AUTONOMOUS DIFFERENTIAL EQUATIONS

High order interpolation function for surface contact problem

Transcript:

¾¼½ º þ º ¾ µ ½ º º º ü üü üþ þ þ º º ¹ º ¹ º þ ½ ¹ M. = { (tx) [t 0 ) R n : x M(t) } ¹ º ¹ Mº x(tx 0 ) freq(x) ¹ M [0] x(tx 0 ) M(t) º ¹ freq (x) freq (x)º ¹ κ κ [0] ¹ º þ ¹ freq (x) κ freq (x) κ. ¹ º ¹ M º ï ½º ẋ = f(txu) t τ i x t=τi = g(xw i ) (txuw i ) [t 0 + ) R n R m R p. ½µ R n n¹ x = xx u ¹ U(tx) R m w i i = 12... t = τ i W R p º f(txu) g(xw) (txu) [t 0 + ) R n R m (xw) R n R p ¹ U(tx) (tx) [t 0 + ) R n ½µ º {τ i } i=0 t 0 = τ 0 < τ 1 < τ 2 <... lim τ i = +. i

½º ½µ t (u(t)w(t)x(t)) R m R p R n ½µ u(t) I = (0τ 1 ) (τ 1 τ 2 )... ¾µ w(t) = 0 t I w(τ i ) = w i w i W i = 12... x t=τi = x(τ i ) x(τ i 0) = g(xw i ); µ x(t) ẋ = f(txu(t)) t (τ i τ i+1 ) i = 012... x(τ i ) = x(τ i 0)+g(xw i ) µ u(t) U(tx(t))º (u(t)w(t)x(t)) u(t) w(t) ¹ ½µº þ M =. { (tx) [t 0 + ) R n : x M(t) } t M(t) º t [t 0 + ) M(t) º M ε (t) ε¹ ¹ M(t) x R n (xm(t)) ε N ε (t) = M ε (t)\m(t) ε¹ M(t) (xm) = inf x y y M x R n M R n µº M ε. = { (tx) [t0 + ) R n : x M ε (t) } N ε. = { (tx) [t0 + ) R n : x N ε (t) }. ¾ º ¾ µº V(tx) (tx) [t 0 + ) R n M ¹ (tx) ½µ V(tx) 0 (tx) M ¾µ V(tx) > 0 r > 0 (tx) N r º ẋ = f(txu) ẋ F(tx) ¾µ (tx) [t 0 + ) R n F(tx) f(t i x i U(t i x i )) (t i x i ) (tx)º ý F(tx) º U(tx) ¹ (tx) F(tx) x 0 R n ¾µ º º ¼ µº ½º x 0 M r (t 0 ) ϕ(tx 0 ) ¾µ ¹ ϕ(t 0 x 0 ) = x 0 t t 0. º µº V(tx) ¹ (tx) [t 0 + ) R n q = (1p) p R n ¹ º µ V o (tx;q). = limsup (εy) (0+0x) V(t+εy +εp) V(ty) ε Vmin o (tx) =. inf V o (tx;q) Vmax(tx) o =. sup V o (tx;q) ¹ p F(tx) p F(tx) V(tx) ¹ ¾µº ½¼¼

ż = q(tz) t τ i z t=τi = l(z) (tz) [t 0 + ) R µ q(tz) z l(z) º þ ¹ L(z) = l(z)+z L(z) z Rº º µº þ x(tx 0 ) ½µ M. = { (tx) [t 0 ) R n : x M(t) } freq (x). = lim mes{t [0] : x(tx 0 ) M(t)} mes º ü freq (x) µº freq (x) = freq (x) freq(x). = lim mes{t [0]: x(tx 0 ) M(t)} x(tx 0 ) Mº κ. = lim mes{t [0] : z(t) 0} z(t) µº κ. = lim mes{t [0] : z(t) 0}. κ = lim mes{t [0] : z(t) 0}. ï ¾º ¹ ¹ ¹ º ¹ º ½º V(tx) q(tz) l(z) V(tx) M (tx) [t 0 ) R n Vmax o (tx) q(tv(tx)) max V(τ ix+g(xw)) L(V(τ i x)) i = 12... w W µ z(t) µ z(t 0 ) = V(t 0 x 0 )º x(tx 0 ) ½µ x(t 0 x 0 ) = x 0 freq (x) κ freq (x) κ. º x(tx 0 ) ½µ x(t 0 x 0 ) = x 0 [t 0 + ). v(t) = V(tx(tx 0 )) ¾ ¹ v(t) V o max(tx(tx 0 )) ½¼½

µ v(t) q(tv(t)) ¹ v(t)º v(t 0 ) = V(tx(t 0 x 0 )) = V(t 0 x 0 ) = z 0 º º ½ µ v(t) z(t) t [t 0 τ 1 ). µ v(τ 1 ) = V(τ 1 x(τ 1 x)) = V(τ 1 x(τ 1 0x 0 )+g(x(τ 1 0x 0 )w 1 )) max w W V(τ 1x(τ 1 0x 0 )+g(x(τ 1 0x 0 )w)) L(V(τ 1 x(τ 1 0x 0 ))) = L(v(τ 1 0)). v(τ 1 ) L(v(τ 1 0)) L(z(τ 1 0)) L(z) º z(τ 1 ) = L(z(τ 1 0)) v(τ 1 ) z(τ 1 )º ¹ [τ i τ i+1 ) i = 12... v(t) z(t) t [t 0 + ). mes{t [0] : v(t) 0} mes{t [0] : z(t) 0}. freq (x) =. mes{t [0] : x(tx 0 ) M(t)} lim lim mes{t [0] : z(t) 0} mes{t [0] : v(t) 0} = lim = κ. freq (x) κ freq (x) κ. ¾º V(tx) q(tz) l(z) V(tx) M (tx) [t 0 ) R n V o min(tx) q(tv(tx)) min w W V(τ ix+g(xw)) L(V(τ i x)) i = 12... µ z(t) µ z(t 0 ) = V(t 0 x 0 )º x(tx 0 ) ½µ x(t 0 x 0 ) = x 0 freq (x) κ freq (x) κ. º Ũ(tx). = {u U(tx) : V o (tx;f(txu)) q(tv(tx))} W. = {w W : V(τ i x+g(xw)) V(τ i x) i = 12...}. Ũ(tx) (tx) [t 0+ ) R n Ũ(tx) U(tx)º Ũ(tx) º {u i} i=1 u i Ũ(tx) u i u f(txu i ) f(txu) f V o (tx;f) º ¾ V o (tx;f(txu)) = lim i V o (tx;f(txu i )) 0. Ũ ẋ F(tx) F(tx) = co H(tx) µ H(tx) f(t i x i Ũ(t ix i )) (t i x i ) (tx) (tx) H(tx) (tx) F(tx) º ϕ i (tx i ) µ ϕ i (τ i x i ) = x i i = 012... ½¼¾

(tx) [t 0 ) R n Ũ(tx) U(tx) F(tx) F(tx)º ϕ i (tx i ) µ ¾µ ½ t t 0 º x(tx 0 ) ½µ x(t 0 x 0 ) = x 0 [t 0 τ 1 ) ϕ 0 (tx 0 ) [τ i τ i+1 ) ϕ i (tx i ) x i = ϕ i 1 (τ i x i 1 )+g ( ϕ i 1 (τ i x i 1 )w i ) wi W i = 12... v(t) = V(tx(tx 0 )) µ ¹ v(t) q(tv(t)) º µº v(t) τ 1 º µ v(τ 1 ) = V(τ 1 x(τ 1 x 0 )) = V(τ 1 x(τ 1 0x 0 )+g(x(τ 1 0x 0 )w)) L(V(τ 1 x(τ 1 0x 0 ))) = L(v(τ 1 0)). v(τ 1 ) L(v(τ 1 0)) L(z(τ 1 0)) L(z) º z(τ 1 ) = L(z(τ 1 0)) v(τ 1 ) z(τ 1 )º τ i v(t) z(t) t [t 0 + )º mes{t [0] : v(t) 0} mes{t [0] : z(t) 0}. freq (x) κ freq (x) κ. D(tX) ½µ t ¹ X. X D(tX) t t 0. x X x(tx 0 ) ½µ x(t 0 x 0 ) = x 0 R + = [0 ). þ α(x). = { t [0] : D(tX) M(t) }. º µº ¹ D(tX) ½µ M freq(x) =. mesα(x) lim = lim mes{t [0] : D(tX) M(t)} µ mes º µ freq (X) =. mesα(x) lim freq (X) =. mesα(x) lim M. º µº M ½µ freq ( M(0) ). mes { t [0] : D ( tm(0) ) M(t) } = lim freq ( M(0) ) = 1. ½º V(tx) ¹ M (tx) [t 0 ) R n µ κ = 1 M ½µº ½¼

º µº M ¹ ½µ x M(0) x(tx 0 ) ½µ t 0 x(t 0 x 0 ) = x 0 freq (x) =. mes{t [0] : x(tx 0 ) M(t)} lim = 1. ¾º V(tx) ¹ M (tx) [t 0 ) R n µ κ = 1 M ½µº ½º ºº ¹»» þ º º º º ¾¼½ º þ º ½º º ½ º ¾º ºüº º º ¹»» º þºüº º ¾¼¼ º º ¾ ¾º º ¾¼¾ ¾¾½º º üº º º º ½ º ¾¾ º º º º º ½ º ¼¼ º º º º ¹»» º ¾¼½¾º þ º ¾ ¼µº º ½ º º º º ¹»» º º ¾¼½ º í ½½º º ¾¼ ¾º º º º º º»» º ¾¼¼ º º º í ¾º º ¾ ¾ º º ºüº º º º ½ ¼º ½¼¾ º ¾ º¼ º¾¼½ ¹ ¾ ¼ º º ½º ¹Ñ Ð Ý Ò Ð Ö Ò Ñ ÐºÖÙ Ya. Yu. Larina Statistical characteristics of control systems with impulsive action Keywords: control systems attainability set differential inclusions statistical characteristics. MSC: 34A60 37N35 We consider the control systems with impulsive action at fixed time moments. We get estimations of statistical characteristics such as upper and lower relative frequency of entering solutions to a predetermined set. We also obtain the conditions under which the set is statistically invariant or statistically weakly invariant with respect to the control system with impulsive effect. REFERENCES 1. Larina Ya.Yu. Lyapunov functions and comparison theorems for control systems with impulsive actions Vestn. Udmurt. Univ. Mat. Mekh. Komp yut. Nauki 2015 vol. 25 no. 1 pp. 51 59 (in Russian). 2. Panasenko E.A. Tonkov E.L. Invariant and stably invariant sets for differential inclusions Proceedings of the Steklov Institute of Mathematics 2008 vol. 262 pp. 194 212. 3. Filippov A.F. Differentsial nye uravneniya s razryvnoi pravoi chast yu (Differential equations with discontinuous right-hand side) Moscow: Nauka 1985 223 p. 4. Clarke F. Optimization and nonsmooth analysis Wiley 1983. Translated under the title Optimizatsiya i negladkii analiz Moscow: Nauka 1988 300 p. 5. Rodina L.I. Invariant and statistically weakly invariant sets of control systems Izv. Inst. Mat. Inform. Udmurt. Gos. Univ. 2012 no. 2 (40) pp. 3 164 (in Russian). 104

6. Rodina L.I. Estimation of statistical characteristics of attainability sets of controllable systems Russian Mathematics 2013 vol. 57 no. 11 pp. 17 27. 7. Rodina L.I. Tonkov E.L. Statistical characteristics of attainable set of controllable system nonwandering and minimal attraction center Nelin. Dinam. 2009 vol. 5 no. 2 pp. 265 288 (in Russian). 8. Chaplygin S.A. Novyi metod priblizhennogo integrirovaniya differentsial nykh uravnenii (A new method of approximate integration of differential equations) Moscow Leningrad: Gostekhizdat 1950 102 p. Received 28.09.2015 Larina Yana Yur evna Post-graduate student Department of Mathematical Analysis Udmurt State University ul. Universitetskaya 1 Izhevsk 426034 Russia. E-mail: yana larina89@mail.ru ½¼