Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Σχετικά έγγραφα
Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Παράδειγμα. Στις χρονοσειρές σημαντικό ρόλο παίζει η αυτοσυσχέτιση: η αυτοσυσχέτιση. (lag k) ισούται με όπου γ

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

HMY 795: Αναγνώριση Προτύπων

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Συμπερασματολογία

HMY 795: Αναγνώριση Προτύπων

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Εφαρμοσμένη Στατιστική

WinBUGS. Το BUGS (Bayesian inference Using Gibbs Sampling) είναι ένα ελεύθερο λογισµικό στο διαδίκτυο (

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Παράδειγμα. Για τα ΝΒ10 δεδομένα έχουμε το μοντέλο:

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34

HMY 795: Αναγνώριση Προτύπων

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)

Στατιστική Συμπερασματολογία

Διαστήματα Εμπιστοσύνης

HMY 795: Αναγνώριση Προτύπων

Το Κεντρικό Οριακό Θεώρημα

Εθνικό Μετσόβιο Πολυτεχνείο

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Δειγματοληψία στην εκπαιδευτική έρευνα. Είδη δειγματοληψίας

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

REVERSIBLE JUMP MCMC ΣΕ ΜΕΙΞΕΙΣ ΚΑΝΟΝΙΚΩΝ ΚΑΤΑΝΟΜΩΝ ΜΕ ΚΟΙΝΕΣ ΜΕΣΕΣ ΤΙΜΕΣ

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ. Πιθανοτική προσέγγιση υδρολογικών µεταβλητών

ΑΚΟΛΟΥΘΙΑΚΕΣ ΜΕΘΟΔΟΙ MONTE CARLO ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΗ

Το Κεντρικό Οριακό Θεώρημα

Δειγματικές Κατανομές

Μαρκοβιανές Αλυσίδες

Μάστερ στην Εφαρµοσµένη Στατιστική

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΙΔΡΑΣΕΩΣ ΜΕΘΟΔΩΝ ΕΡΓΑΣΙΑΣ ΣΤΗΝ ΠΑΡΑΓΩΓΙΚΟΤΗΤΑ ΕΛΛΗΝΙΚΗΣ ΒΙΟΤΕΧΝΙΑΣ ΠΑΡΑΓΩΓΗΣ ΠΑΙΔΙΚΩΝ ΕΝΔΥΜΑΤΩΝ

Εισαγωγή στη Στατιστική

Μαθηματικά Και Στατιστική Στη Βιολογία

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης

Λήψη αποφάσεων κατά Bayes

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Bayesian Biostatistics Using BUGS 1

Στατιστική. Εκτιμητική

Το Κεντρικό Οριακό Θεώρημα

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Εκτιμήτριες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Εκτιμήτριες. μέθοδος ροπών και μέγιστης πιθανοφάνειας

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Εισαγωγή στη θεωρία ακραίων τιμών

Μέρος IV. Ελεγχοι Υποθέσεων (Hypothesis Testing)

HMY 795: Αναγνώριση Προτύπων

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

HMY 795: Αναγνώριση Προτύπων

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Εισαγωγή στην Εκτιμητική

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη

Ενότητα 2: Μέθοδοι δειγματοληψίας & Εισαγωγή στην Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

Εφαρμοσμένη Στατιστική

ΚΕΦΑΛΑΙΟ 8. Εισαγωγή στη Μέθοδο Bootstrap

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Είδη Μεταβλητών. κλίµακα µέτρησης

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 13 Μαρτίου /31

(X1 X 2 ) 2}. ( ) f 1 (x i ; θ) = θ x i. (1 θ) n x i. x i log. i=1. i=1 t2 i

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ. Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ

Μελετώντας τον αλγόριθµο Metropolis-Hastings

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Transcript:

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Τομέας Μαθηματικών, Τηλέφωνο: (210) 772-1702, Φαξ: (210) 772-1775. fouskakis@math.ntua.gr. Κτίριο Ε, Γραφείο 205.

Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling). WinBugs. Διαγνωστικοί Έλεγχοι. MCMC στα Γενικευμένα Γραμμικά Μοντέλα.

Διδασκαλία Σελίδα μαθήματος: http://www.math.ntua.gr/~fouskakis/ Ώρες διδασκαλίας: Πέμπτη 4μμ 7μμ, PC LAB, Τομέα Μαθηματικών. Από την σελίδα του μαθήματος κατεβάστε τις σημειώσεις του στατιστικού πακέτου R και εξοικειωθείτε με το λογισμικό.

Βιβλιογραφία Gamerman, D. and Lopes, H.F. (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman and Hall, New York and London. Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. (1995). Markov Chain Monte Carlo in Practice. Chapman and Hall, New York and London. Chen, M., Shao, Q. and Ibrahim, J.G. (2000). Monte Carlo Methods in Bayesian Computation. Springer Verlag, New York. Ntzoufras, N. (2009). Bayesian Modeling using Winbugs. Wiley, John & Sons, Incorporated, New York.

Δεδομένα Παράμετρος Μπεϋζιανή Στατιστική Πιθανοφάνεια (Likelihood) Εκ των προτέρων (Prior) y = (y 1,..., y n) θ = ( θ1,..., θk) Θ L( y θ) Εκ των υστέρων (Posterior) p( θ y) = Θ L( y θ) p( θ) p( θ) L( y θ) p( θ)dθ Posterior Likelihood x Prior Σταθερά κανονικοποίησης

Παραδείγματα Υ,..., Υ N( θ,1) 1 n 1 p( θ ) = π +θ 2 (1 ) 1 2 1+ θ n 2 (y i θ) i= 1 θ p( y) exp 2 n( θ y) 1 exp 2 1+θ 2 2

Παραδείγματα Υ Υ μ σ 2 1,..., n N(, ) 2 p( μσ, ) 1 σ 2 n 2 n (y i μ) + 1 2 i= 1 1 2 2 p( θ y) exp 2σ σ

Εισαγωγή Παρατηρούμε από τα δύο προηγούμενα παραδείγματα ότι ο πλήρης υπολογισμός της εκ των υστέρων κατανομής είναι δύσκολος σε κάποιες περιπτώσεις. Το πρόβλημα γίνεται ακόμα πιο περίπλοκο αν η παράμετρος είναι πολυδιάστατη. Λύσεις: Συζυγείς εκ των προτέρων (conjugate priors). Ασυμπτωτικές Προσεγγίσεις. MCMC.

MCMC Εισαγωγή 1949 Metropolis Ulam (αρχική ιδέα). 1954 Metropolis et al. (Metropolis Algorithm). 1970 Hastings (Metropolis Hastings Algorithm). 1984 Geman & Geman (Gibbs Sampling). 1990 Gelfand & Smith (Εφαρμογη MCMC σε Μπεϋζιανή Στατιστική). 1995 Green (Reversible Jump MCMC).

Εισαγωγή ΙΔΕΑ Ότι θέλεις να μάθεις για μια κατανομή μπορεί να επιτευχθεί απλά προσομοιώνοντας τυχαίες τιμές από αυτή (Metropolis Ulam 1949).

Monte Carlo Εκτιμητές Ας υποθέσουμε ότι ενδιαφερόμαστε για την p( θ y) την οποία δεν μπορούμε να υπολογίσουμε αναλυτικά και ας υποθέσουμε χάριν ευκολίας ότι το θ είναι μονοδιάστατο. Στην Μπεϋζιανή συμπερασματολογία συνήθως ενδιαφερόμαστε για διάφορα χαρακτηριστικά της εκ των υστέρων κατανομής όπως:

Μέσος Monte Carlo Εκτιμητές μ =Ε( θ y). Τυπική Απόκλιση Γράφημα. σ= V( θ y). Τεταρτημόρια (π.χ. για την κατασκευή ενός 95% εκ των υστέρων διάστημα εμπιστοσύνης για το θ πρέπει να γνωρίζεις τα 2.5% και 97.5% τεταρτημόρια της εκ των υστέρων κατανομής. Ας υποθέσουμε ότι με κάποιον τρόπο * * προσομοιώσαμε τιμές 1,..., από την θ y m Τότε μπορούμε εύκολα να εκτιμήσουμε όλα τα παραπάνω: θ θ p( ).

Monte Carlo Εκτιμητές Μέσος Τυπική Απόκλιση m * 1 * μ ˆ =Εˆ ( θ y) =θ = θi. m i = 1 m 1 ( * *) 2 σ= ˆ V( ˆ θ y) = θi θ. m 1 i = 1 Γράφημα Ιστόγραμμα των Τεταρτημόρια Μετράμε πόσες από τις τιμές * θ i των είναι μικρότερες από μια σειρά καθορισμένων τιμών, π.χ. γιαναεκτιμήσουμετο2.5% τεταρτημόριο, λύνουμε ως προς t την εξίσωση i= 1 θ *. i m 1 * ˆF θ(t) = I( θi t) = 0.025, I: δείκτρια συνάρτηση. m

Monte Carlo Εκτιμητές Αποδεικνύεται ότι για μεγάλο m, οι συγκεκριμένες Monte Carlo εκτιμήτριες, συγκλίνουν στην ως προς εκτίμηση ποσότητα με αρκετά μεγάλη πιθανότητα, * υπό την προϋπόθεση το δείγμα των θ να είναι τυχαίο. Ένας τρόπος επιλογής * τέτοιου δείγματος είναι τα θ i να είναι ανεξάρτητα και ισόνομα (IID), αλλά όπως τελικά θα δούμε παρακάτω αυτό δεν είναι αναγκαίο.

Monte Carlo Εκτιμητές Αν για παράδειγμα m * * θi m i = 1 θ = από IID δείγμα μεγέθους m από την προέρχεται τότε χρησιμοποιώντας κλασική στατιστική 1 p( θ y) έχουμε ότι * 2 V( θ ) =σ / m με σ 2 η διασπορά της p( θ y). Άρα μπορούμε να δημιουργήσουμε ένα Monte Carlo τυπικό σφάλμα για το * SE( θ ˆ ) = σˆ Χρησιμοποιείται συνήθως για να m * θ αποφασίσουμε πόσο μεγάλο πρέπει να είναι το m

IID Παράδειγμα Έστωηεκτωνυστέρωνκατανομή p( λ y) =Γ(29.001,14.001) Τότε μ =Ε( λ y) = 29.001/14.001 = 2.071 Ας δούμε πόσο καλά εκτιμά αυτή την ποσότητα ο Monte Carlo εκτιμητής

IID Παράδειγμα gamma.sim<- function(m,alpha,beta,n.sim,seed) { set.seed(seed) theta.out <- matrix(0,n.sim,2) for(i in 1:n.sim) { theta.sample<-rgamma(m,alpha,beta) theta.out[i,1]<-mean(theta.sample) theta.out[i,2]<-sqrt(var(theta.sample)/m) } return(theta.out) }

IID Παράδειγμα Η παραπάνω R συνάρτηση προσομοιώνει (n.sim φορές) m τυχαίες τιμές, ανεξάρτητες και ισόνομες από την κατανομή Γ(α,β) και επιστρέφει τον μέσο τους μαζί με το τυπικό σφάλμα.

IID Παράδειγμα

IID Παράδειγμα Άρα οι τιμές του δειγματικού μέσου είναι πολύ κοντά στις πραγματικές τιμές συν-πλην περίπου 0.012 που είναι επίσης πολύ κοντά στο πραγματικό τυπικό σφάλμα σ / m = α/ β m = 0.01216.