Μάστερ στην Εφαρµοσµένη Στατιστική

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μάστερ στην Εφαρµοσµένη Στατιστική"

Transcript

1 Μάστερ στην Εφαρµοσµένη Στατιστική Πρότυπο Πρόγραµµα Master Εξάµηνο Σπουδών Κωδικός Τίτλος Μαθήµατος ιδακτικές Μονάδες 1 ο Εξάµηνο ΜΑΣ650 Μαθηµατική Στατιστική 10 ΜΑΣ655 ειγµατοληψία 10 ΜΑΣ658 Στατιστικά Πακέτα 10 2 ο Εξάµηνο 3 ο Εξάµηνο Επιλογές : ΜΑΣ653 Γενικευµένα Γραµµικά Μοντέλα * 10 ΜΑΣ659 Πολυµεταβλητή Ανάλυση * 10 ΜΑΣ657 Ανάλυση ιακριτών εδοµένων * 10 Κωδικός Τίτλος Μαθήµατος ιδακτικές Μονάδες ΜΑΣ654 Απαραµετρική Στατιστική * 10 ΜΑΣ656 Ανάλυση Χρονοσειρών * 10 ΜΑΣ660 Θεωρία Πιθανοτήτων 10 ΜΑΣ661 Θέµατα Στατιστικής Ι 10 ΜΑΣ662 Θέµατα Στατιστικής ΙΙ 10 ΜΑΣ663 Θέµατα Στατιστικής ΙΙΙ 10 ΜΑΣ664 Μπεϋζιανή Στατιστική * 10 ΜΑΣ665 Υπολογιστική Στατιστική* 10 ΜΑΣ666 Βιοστατιστική * 10 * Στα µαθήµατα αυτά η χρήση στατιστικών πακέτων είναι αναπόσπαστο µέρος. + Η Επιλογή ΙΙΙ µπορεί να αντικατασταθεί από: (1) Την διεξαγωγή στατιστικής µελέτης κάτω από την επίβλεψη ενός από τους συναδέλφους του προγράµµατος (ΜΑΣ667). (2) Πρακτική εξάσκηση σε ιδιωτικό ή δηµόσιο φορέα (ΜΑΣ668). 1

2 Περιγραφή Μαθηµάτων ΜΑΣ650 Μαθηµατική Στατιστική Μονοδιάστατες και πολυδιάστατες τυχαίες µεταβλητές, συναρτήσεις κατανοµής. Από κοινού και δεσµευµένη κατανοµή, στοχαστική ανεξαρτησία, ροπές. Ειδικές παραµετρικές οικογένειες κατανοµών. Εκτιµητική. Μέθοδοι εξεύρεσης εκτιµητριών. Ιδιότητες εκτιµητριών, επάρκεια, αµεροληψία, συνέπεια. Σύγκριση εκτιµητριών. ιαστήµατα εµπιστοσύνης. Έλεγχος υποθέσεων. Απλές και σύνθετες υποθέσεις, συναρτήσεις σφάλµατος ισχύος. Μέθοδοι κατασκευής ελέγχων. Ιδιότητες ελέγχων, αµεροληψία, συνέπεια. Σύγκριση ελέγχων. Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης. ΜΑΣ653 Γενικευµένα Γραµµικά Μοντέλα Απλή και πολλαπλή γραµµική παλινδρόµηση, ανάλυση υπολοίπων και κριτήρια επιλογής µοντέλων, διαγνωστικά µέτρα. Ανάλυση διακύµανσης και µη γραµµική παλινδρόµηση. Αρχές σχεδιασµού πειραµάτων, πλήρως τυχαιοποιηµένοι σχεδιασµοί, πειράµατα µε δύο παράγοντες και αλληλεπίδραση, πειράµατα µε πολλούς παράγοντες, πλήρεις και/ή πλήρεις τεµαχικοί σχεδιασµοί, σχεδιασµοί split plot, εµφωλευµένοι σχεδιασµοί. ΜΑΣ654 Απαραµετρική Στατιστική ιατεταγµένες τυχαίες µεταβλητές και οι κατανοµές τους. Χωρία ανοχής. Έλεγχοι τάξεων και πρόσηµου για ένα και δύο δείγµατα. Έλεγχοι καλής προσαρµογής (Kolmogorov, Smyrnov, Lilliefors, Shapiro-Wilks). Έλεγχοι Siegel Tukey, Kruskal Wallis. Normal και Savage Scores. Fisher Exact Test για 2 x 2 πίνακες συνάφειας, Mantel-Haenszel Test για πολλαπλούς πίνακες συνάφειας, Kaplan-Meier εκτιµήτρια της καµπύλης επιβίωσης, Jonckheere-Terpstra και το Page Test για διατεταγµένες εναλλακτικές. Μη παραµετρικοί συντελεστές συσχέτισης (Spearman, Kendall κ.λ.π) και µέτρα συµφωνίας. ΜΑΣ655 ειγµατοληψία Σχεδιασµός δειγµατοληπτικών σχηµάτων, δειγµατοληπτικά και µη δειγµατοληπτικά σφάλµατα, απλή τυχαία δειγµατοληψία, στρωµατοποιηµένη δειγµατοληψία, συστηµατική δειγµατοληψία, δειγµατοληψία κατά συστάδες, λογοεκτιµήτριες, εκτιµήτριες παλινδρόµησης, βέλτιστη επιλογή δειγµατικού µεγέθους, µεροληψία στις δειγµατοληπτικές µεθόδους, σύγχρονες µέθοδοι διεξαγωγής δειγµατοληπτικών ερευνών. ΜΑΣ656 Ανάλυση Χρονοσειρών Στοχαστική ανέλιξη, ασθενώς και ισχυρώς στάσιµη στοχαστική ανέλιξη. Ανάλυση χρονοσειρών ως προς την γενική τάση και εποχιακή διακύµανση. Εµπειρική συνάρτηση αυτοσυσχέτισης και µερικής αυτοσυσχέτισης. Προβλέψεις. Παραµετρικές οικογένειες στοχαστικών ανελίξεων. Ανελίξεις ARMA, ARIMA και SARIMA. Ιδιότητες, εκτίµηση και παραδείγµατα. Ανελίξεις τύπου ARCH και GARCH, ιδιότητες εκτίµησης και παραδείγµατα. 2

3 ΜΑΣ657 Ανάλυση ιακριτών εδοµένων Είδη διακριτών δεδοµένων, πίνακες συνάφειας, στατιστικοί έλεγχοι για ανεξαρτησία και οµοιογένεια, µέτρα συσχέτισης, λογαριθµικά γραµµικά µοντέλα για πολυδιάστατους πίνακες συνάφειας, λογιστικό µοντέλο και αναλογίες µε την απλή γραµµική παλινδρόµηση, ειδικές µέθοδοι για διατεταγµένα κατηγορικά δεδοµένα. 2 Ασυµπτωτική θεωρία για x ελέγχους καλής προσαρµογής και λογιστική παλινδρόµηση. ΜΑΣ658 Στατιστικά Πακέτα Εκµάθηση των στατιστικών λογισµικών S-Plus και SPSS. Ανάγνωση και αποθήκευση αρχείων, περιγραφική στατιστική και διαγράµµατα, επεξεργασία µεταβλητών και δεδοµένων, ανάλυση παλινδρόµησης και ανάλυση διασποράς, στατιστική συµπερασµατολογία (Έλεγχοι υποθέσεων, καλής προσαρµογής, κλπ). ΜΑΣ659 Πολυµεταβλητή Ανάλυση Τυχαία διανύσµατα, µέτρα θέσης και απόκλισης στην πολυµεταβλητή ανάλυση, ανεξαρτησία, πολυδιάστατες ροπές. Πολυδιάστατη κανονική κατανοµή. Έλεγχοι κανονικότητας. Εκτίµηση µέσης τιµής και πίνακα συνδιασποράς. Κατανοµές Wishart και Hotelling. Στατιστική συµπερασµατολογία. Μέθοδος ένωσης τοµής. Περιοχές εµπιστοσύνης. Πολυδιάστατη ανάλυση διασποράς, πολυδιάστατη πολλαπλή παλινδρόµηση, η µέθοδος ελαχίστων τετραγώνων και η κατανοµή Wilks. Ανάλυση συνδιασποράς. Ανάλυση κυρίων συνιστωσών. Παραγοντική ανάλυση. ιαχωριστική ανάλυση. Ανάλυση κατά συστάδες. ΜΑΣ660 Θεωρία Πιθανοτήτων Μαθηµατική θεµελίωση πιθανοτήτων, δεσµευµένη πιθανότητα, ανεξαρτησία, τυχαίες µεταβλητές, κατανοµές, αναµενόµενη τιµή, ροπογεννήτριες και χαρακτηριστικές συναρτήσεις, σύγκλιση ακολουθιών τυχαίων µεταβλητών, νόµοι των µεγάλων αριθµών, κεντρικά οριακά θεωρήµατα. ΜΑΣ661, ΜΑΣ662, ΜΑΣ663 Θέµατα Στατιστικής Ι, ΙΙ, ΙΙΙ Θέµατα από Θεωρία Πιθανοτήτων, Στατιστική Θεωρία και εφαρµογών τους, όπως Κατηγορικές Χρονοσειρές, Απαραµετρική και Ηµιαπαραµετική Στατιστική, Στατιστικές Συναρτήσεις U, Μέθοδοι Bootstrap, Στατιστική και Επιδηµιολογία, Ανάλυση Επιβίωσης, Wavelets και εφαρµογές τους στην Στατιστική και σε Χρονοσειρές, Ανάλυση χωρικών δεδοµένων. ΜΑΣ664 Μπεϋζιανή Στατιστική Αντικειµενική και υποκειµενική πιθανότητα, ερµηνεία και εφαρµογή του κανόνα Bayes, εκ των προτέρων και εκ των υστέρων κατανοµές, συζυγείς και µη πληροφοριακές κατανοµές, εφαρµογή του κανόνα Bayes στην κανονική, εκθετική, διωνυµική και Poisson κατανοµή, εκτίµηση κατά σηµείο και κατά διάστηµα, Έλεγχοι υποθέσεων, εισαγωγή στην θεωρία αποφάσεων κατά Bayes, εισαγωγή στην εµπειρική στατιστική ανάλυση κατά Bayes, εισαγωγή σε Markov Chain Monte Carlo. 3

4 ΜΑΣ665 Υπολογιστική Στατιστική Αριθµητική Γραµµική Άλγεβρα: Πολλαπλή Ανάλυση Παλινδρόµησης, Cholesky παραγοντοποίηση, ιαγνωστικά και γραµµική εξάρτηση δεδοµένων, κύριες συνιστώσες και προβλήµατα ιδιοτιµών, γενικεύσεις ελαχίστων τετραγώνων. Μη Γραµµικές Στατιστικές Μέθοδοι: Εκτιµήτρια Μέγιστης Πιθανοφάνειας, Newton Raphson και άλλες µέθοδοι λύσεων εξισώσεων, Πολυδιάστατα δεδοµένα και εκτίµηση µε µεθόδους σαν την Newton-Raphson, Τεχνικές Βελτιστοποίησης, βελτιστοποίηση υπό περιορισµούς, EM αλγόριθµος. Αριθµητική Ολοκλήρωση και Προσέγγιση: Μέθοδος Newton-Cotes, παρεµβολή µε splines, Monte Carlo ολοκλήρωση, υπολογισµοί για Bayes ανάλυση, Γενικές µέθοδοι προσέγγισης. Εκτιµήτρια Συνάρτηση Πυκνότητας: Ιστόγραµµα, γραµµική οµαλοποίηση (smoothing), spline οµαλοποίηση, µη γραµµική οµαλοποίηση. Αναδειγµατοληψία ΜΑΣ666 Βιοστατιστική Ορισµός επιδηµιολογίας και είδη επιδηµιολογικών µελετών. Περιγραφική Στατιστική: γραφικές και αριθµητικές µέθοδοι περιγραφής ιατρικών δεδοµένων, µέτρα σχέσης και συσχέτισης. είκτες νοσηµάτων, αιτιολογικοί δείκτες και δείκτες εµπιστοσύνης. Στατιστική συµπερασµατολογία και µέση τιµή, ποσοστά, αιτιολογικούς δείκτες και συντελεστές συσχέτισης. Απαραµετρικοί έλεγχοι (Fisher s exact test, McNemar test κλπ). Αιτιολόγηση διαγνωστικών µεθόδων, ειδικότητα και ευαισθησία. Ποσοτικές µέθοδοι στην κλινική επιδηµιολογία, καµπύλες ROC. Μέθοδοι συστηµατικών ανασκοπήσεων. Λογοκριµένα δεδοµένα. Συναρτήσεις επιβίωσης και κινδύνου. Απαραµετρική συµπερασµατολογία (Kaplan-Meier και Nelson-Aalen εκτιµήτριες). Μέθοδοι σύγκρισης συναρτήσεων επιβίωσης (Log-rank, Breslow, Peto-Peto έλεγχοι). Ηµιπαραµετρική συµπερασµατολογία (µοντέλο αναλόγων συναρτήσεων κινδύνου του Cox, εκτίµηση µε τη µέθοδο µερικής πιθανοφάνειας). Παραµετρική συµπερασµατολογία (exponential, Weibull, log-logistic και log-normal µοντέλα, µοντέλο των αναλόγων odds). Μοντέλα frailty για ευάλωτους πληθυσµούς. ΜΑΣ667 Στατιστική Μελέτη Προσφέρεται στο 4 ο εξάµηνο του προγράµµατος Master και είναι µάθηµα 4 δ.µ.. Αφορά την εκπόνηση στατιστικής µελέτης γύρω από ένα συγκεκριµένο θέµα (project). Το µάθηµα δίνει την ευκαιρία στο φοιτητή να εντρυφήσει σε κάποια εφαρµογή της στατιστικής µεθοδολογίας, να αναπτύξει και να καλλιεργήσει την ερευνητική ικανότητα, να εµβαθύνει στην στατιστική µεθοδολογία και να εξοικειωθεί µε διάφορα επιστηµονικά αντικείµενα όπου εφαρµόζεται η στατιστική µεθοδολογία. Ο σκοπός αυτός επιτυγχάνεται είτε µέσα στα πλαίσια ερευνητικών προγραµµάτων µελών του ακαδηµαϊκού προσωπικού είτε στα πλαίσια µελετών που αναλαµβάνει το Τµήµα για συλλογή, ανάλυση και παρουσίαση δεδοµένων. Επιπλέον, δίνεται η ευκαιρία, ιδιαίτερα στους φοιτητές οι οποίοι επιθυµούν την εισαγωγή τους στο διδακτορικό πρόγραµµα να συµµετάσχουν στην έρευνα του ακαδηµαϊκού τους συµβούλου και να δηµοσιεύσουν τυχόν αποτελέσµατα. 4

5 ΜΑΣ668 Πρακτική Εξάσκηση Ο φοιτητής τοποθετείται σε οργανισµό του ιδιωτικού ή δηµόσιου τοµέα µε σκοπό την απόκτηση εµπειριών σε θέµατα που σχετίζονται άµεσα µε το περιεχόµενο του µεταπτυχιακού προγράµµατος σπουδών. Με το τέλος της πρακτικής άσκησης, η επίδοση του φοιτητή αξιολογείται µε βάση σχετική έκθεση που συντάσσεται από τον υπεύθυνο του οργανισµού. 5

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Συνοπτικά περιεχόμενα

Συνοπτικά περιεχόμενα b Συνοπτικά περιεχόμενα 1 Τι είναι η στατιστική;... 25 2 Περιγραφικές τεχνικές... 37 3 Επιστήμη και τέχνη των διαγραμματικών παρουσιάσεων... 119 4 Αριθμητικές μέθοδοι της περιγραφικής στατιστικής... 141

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

329 Στατιστικής Οικονομικού Παν. Αθήνας

329 Στατιστικής Οικονομικού Παν. Αθήνας 329 Στατιστικής Οικονομικού Παν. Αθήνας Σκοπός Το Τμήμα σκοπό έχει να αναδείξει επιστήμονες ικανούς να σχεδιάζουν, να αναλύουν και να επεξεργάζονται στατιστικές καθώς επίσης και να δημιουργούν προγράμματα

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ Ι. ΠΑΝΑΡΕΤΟΥ & Ε. ΞΕΚΑΛΑΚΗ Καθηγητών του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ (Εισαγωγή στις Πιθανότητες και την Στατιστική Συμπερασματολογία)

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

415 Μαθηματικών και Στατιστικής Κύπρου

415 Μαθηματικών και Στατιστικής Κύπρου 415 Μαθηματικών και Στατιστικής Κύπρου Το "Τμήμα Μαθηματικών και Στατιστικής" ιδρύθηκε το έτος 1989, ανήκει στη Σχολή Θετικών και Εφαρμοσμένων Επιστημών του Πανεπιστημίου Κύπρου (με έδρα του τη Λευκωσία)

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή 1. Γενικά... 25 2. Έννοια και Είδη Μεταβλητών... 26 3. Κλίμακες Μέτρησης Μεταβλητών... 29 3.1 Ονομαστική κλίμακα... 30 3.2. Τακτική κλίμακα... 31 3.3 Κλίμακα ισοδιαστημάτων... 34 3.4

Διαβάστε περισσότερα

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

Στατιστική ανάλυση αποτελεσμάτων

Στατιστική ανάλυση αποτελεσμάτων HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Στατιστική ανάλυση αποτελεσμάτων Βασίλης Αγγελής Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Πανεπιστήμιο Αιγαίου Κατερίνα Δημάκη Αν. Καθηγήτρια

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Μέρος Α. ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων

ΠΕΡΙΕΧΟΜΕΝΑ. Μέρος Α. ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... vii Μέρος Α ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων Πρόλογος Α Μέρους... 3 Αρχικές πληροφορίες και

Διαβάστε περισσότερα

Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΘΗΝΑ, 2001 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ iii ix ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ 1 1.1

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21

ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 Πίνακας Περιεχομένων Πρόλογος... 17 ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 (Basic Sampling Techniques and Questionnaire Analysis using

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3)

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 2 ο Εξάμηνο του Ακαδημαϊκού Έτους 2015-2016 ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Αντώνης Κ.

Διαβάστε περισσότερα

Τρόπος ιδασκαλίας: Προαπαιτούµενο(α) και Συναπαιτούµενο(α) Μάθηµα(τα): Προτεινόµενα/προαιρετικά µέρη του προγράµµατος: ιδασκαλία στην τάξη Κανένα Κανέ

Τρόπος ιδασκαλίας: Προαπαιτούµενο(α) και Συναπαιτούµενο(α) Μάθηµα(τα): Προτεινόµενα/προαιρετικά µέρη του προγράµµατος: ιδασκαλία στην τάξη Κανένα Κανέ Τίτλος Μαθήµατος: Βιοστατιστική και Επιδηµιολογία Κωδικός Μαθήµατος: MNU 612 Κατηγορία Μαθήµατος: (Υποχρεωτικό/Επιλεγόµενο) Επίπεδο Μαθήµατος: (πρώτου, δεύτερου ή τρίτου κύκλου) Έτος Σπουδών: 1 Τετράµηνο

Διαβάστε περισσότερα

Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3.

Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3. Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3. Η δημιουργία ικανών και άριστα εκπαιδευμένων επιστημόνων Γιατί Μαθηματικά

Διαβάστε περισσότερα

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων.

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων. Πανεπιστήµιο Κύπρου Το µάθηµα περιλαµβάνει Αριθµητικές και Υπολογιστικές Μεθόδους για Μηχανικούς, µε έµφαση στις µεθόδους: αριθµητικής ολοκλήρωσης/παραγώγισης, αριθµητικών πράξεων µητρώων, λύσεων µητρώων

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ Ι ΥΛΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΚΑΙ Ο ΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. Σάββας Παπαδόπουλος metrika@otenet.gr http://www.riskmetrica.wordpress.

ΣΤΑΤΙΣΤΙΚΗ Ι ΥΛΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΚΑΙ Ο ΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. Σάββας Παπαδόπουλος metrika@otenet.gr http://www.riskmetrica.wordpress. ΣΤΑΤΙΣΤΙΚΗ Ι Η Ύλη του µαθήµατος είναι στις διαφάνειες (slides) τα οποία καλύφθηκαν στην τάξη και βρίσκονται στην ιστοσελίδα: ανεξάρτητα µε το πιο βιβλίο που χρησιµοποιείται. Μερικά από τα θέµατα καλύπτονται

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

ΠΡΟΣΟΧΗ : Νέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 1ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ

ΠΡΟΣΟΧΗ : Νέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 1ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ στην Φυσική Ι ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ 1. Κινηματική (ευθύγραμμη και καμπυλόγραμμη κίνηση) 2. Σχετική κίνηση-μετασχηματισμοί Lorentz 3. Δυναμική ενός σωματιδίου (Νόμοι της δυναμικής-ορμή-στροφορμήσυστήματα

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Μαθήματα Διατμηματικού Π.Μ.Σ. "Μαθηματικά των Υπολογιστών και των Αποφάσε

Μαθήματα Διατμηματικού Π.Μ.Σ. Μαθηματικά των Υπολογιστών και των Αποφάσε Διατμηματικού Π.Μ.Σ. "Μαθηματικά των Υπολογιστών και των Αποφάσε - «Μαθηματικές Θεμελιώσεις της Επιστήμης των Υπολογιστών» - «Στατιστική, Επιχειρησιακή Έρευνα» - «Θεωρία Αριθμητικών Υπολογισμών» Μεταπτυχιακά

Διαβάστε περισσότερα

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών. Κουτσογιάννης Α. Ευστρατιάδης Φεβρουάριος 2002 Εισαγωγή

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ 5001003 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 1ο ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ «Ποσοτικές

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 1o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Εργασία στο µάθηµα Ανάλυση εδοµένων

Εργασία στο µάθηµα Ανάλυση εδοµένων Μεταπτυχιακό Υπολογιστικής Φυσικής Εργασία στο µάθηµα Ανάλυση εδοµένων ηµήτρης Κουγιουµτζής E-mail: dkugiu@gen.auth.gr 31 Ιανουαρίου 2017 Οδηγίες : Σχετικά µε την παράδοση της εργασίας ϑα πρέπει : Το κείµενο

Διαβάστε περισσότερα

http://kesyp.didefth.gr/ 1

http://kesyp.didefth.gr/ 1 248_Τµήµα Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης, Ηράκλειο Προπτυχιακό Πρόγραµµα Σκοπός του Τµήµατος Εφαρµοσµένων Μαθηµατικών είναι η εκαπαίδευση επιστηµόνων ικανών όχι µόνο να υπηρετήσουν και να

Διαβάστε περισσότερα

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου ΠΡΟΛΟΓΟΣ Η γραμμική παλινδρόμηση χρησιμοποιείται για την μελέτη των σχέσεων μεταξύ μετρήσιμων μεταβλητών. Γενικότερα, η γραμμική στατιστική συμπερασματολογία αποτελεί ένα ευρύ πεδίο της στατιστικής ανάλυσης

Διαβάστε περισσότερα

Κατατάξεις πτυχιούχων ΑΕΙ και ΤΕΙ στο Τμήμα ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ για το έτος 2013-14

Κατατάξεις πτυχιούχων ΑΕΙ και ΤΕΙ στο Τμήμα ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ για το έτος 2013-14 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Πανεπιστημιούπολη, 700 13 Βούτες Ηρακλείου Κρήτης, (Τ.Θ. 2208) Τηλ.: (2810) 393800, 393751, 393898,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ Εξάμηνο Υ/Ε Ώρες Θεωρίας Ώρες Ασκήσης Διδακτικές μονάδες ECTS A Υ 3 3 4 6 Διδάσκουσα Μ. Αλεξίου Χατζάκη, Επίκ. Καθηγήτρια Γεν. Βιολογίας. Aντικειμενικοί στόχοι του μαθήματος Οι στόχοι

Διαβάστε περισσότερα

Τυπικό Εξάµηνο σπουδών Υπεύθυνο Τµήµα Κατηγορία/Επίπεδο µαθήµατος

Τυπικό Εξάµηνο σπουδών Υπεύθυνο Τµήµα Κατηγορία/Επίπεδο µαθήµατος Μαθηµατικός Λογισµός Ι 1ο Προαπαιτούµενα µαθήµατα - Σκοπός του µαθήµατος είναι να διδαχθούν οι φοιτητές θέµατα από τον Αλγεβρικό και Απειροστικό Λογισµό τα οποία βρίσκουν εφαρµογή στην οικονοµία και διοίκηση.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

Τρίτη 01/09/2015 ΩΡΕΣ ΑΙΘΟΥΣΕΣ ΜΑΘΗΜΑΤΑ ΔΙΔΑΣΚΟΝΤΕΣ ΕΞΑΜΗΝΟ. 09:00-12:00 Νο1, Νο3 Πιθανότητες ΙI Χατζησπύρος Γ. Τετάρτη 02/09/2015

Τρίτη 01/09/2015 ΩΡΕΣ ΑΙΘΟΥΣΕΣ ΜΑΘΗΜΑΤΑ ΔΙΔΑΣΚΟΝΤΕΣ ΕΞΑΜΗΝΟ. 09:00-12:00 Νο1, Νο3 Πιθανότητες ΙI Χατζησπύρος Γ. Τετάρτη 02/09/2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Σ.Α.Χ.Μ. ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟΔΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 2015 Τρίτη 01/09/2015 09:00-12:00 Νο1, Νο3 Πιθανότητες ΙI Χατζησπύρος

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ Π.Μ.Σ. ΒΙΟΣΤΑΤΙΣΤΙΚΗ

ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ Π.Μ.Σ. ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ Π.Μ.Σ. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Πανεπιστήμιο Αθηνών Ιατρική Σχολή Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών Πανεπιστήμιο Ιωαννίνων Τμήμα Μαθηματικών Διαπανεπιστημιακό Μεταπτυχιακό Πρόγραμμα Σπουδών

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων

Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων 1. Αναζήτηση των κατάλληλων δεδοµένων. 2. Έλεγχος µεταβλητών και κωδικών για συµβατότητα. 3. Αποθήκευση σε ηλεκτρονική µορφή (αρχεία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ Πειραιάς, 19-04-2016 Θέμα: Κατατάξεις Πτυχιούχων για το Ακαδημαϊκό Έτος 2016-2017

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ ΠΕΡΙΕΧOΜΕΝΑ Πρόλογος στη δεύτερη έκδοση Πρόλογος στην πρώτη έκδοση Εισαγωγή Τι είναι η μεθοδολογία έρευνας Οι μέθοδοι έρευνας ΜEΡOΣ A : ΓNΩΡΙΜΙΑ ΜΕ ΤΗΝ ΕΠΙΣΤΗΜOΝΙΚΗ ΕΡΓΑΣΙΑ ΚΕΦΑΛΑΙO 1: Γενικά για την επιστημονική

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα

Διαβάστε περισσότερα

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Χρήσιμες Οδηγίες Με την βοήθεια του λογισμικού E-views να απαντήσετε στα ερωτήματα των επόμενων σελίδων, (οι απαντήσεις πρέπει να περαστούν

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Δημήτρης Κουτσογιάννης. Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων ΣΤΑΤΙΣΤΙΚΗ ΥΔΡΟΛΟΓΙΑ

Δημήτρης Κουτσογιάννης. Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων ΣΤΑΤΙΣΤΙΚΗ ΥΔΡΟΛΟΓΙΑ Δημήτρης Κουτσογιάννης Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων ΣΤΑΤΙΣΤΙΚΗ ΥΔΡΟΛΟΓΙΑ Έκδοση 4 Αθήνα 1997 ΣΤΑΤΙΣΤΙΚΗ ΥΔΡΟΛΟΓΙΑ Δημήτρης Κουτσογιάννης Επίκουρος Καθηγητής Τομέας Υδατικών Πόρων

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Σ.Α.Χ.Μ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Σ.Α.Χ.Μ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Σ.Α.Χ.Μ. ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟΔΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 2016 Δευτέρα 05/09/2016 No1-Νο3 ΑΓΓΛΙΚΑ ΛΑΝΔΡΟΥ-ΔΑΝΟΥΣΗΣ ΠΟΛΥΜΕΣΑ

Διαβάστε περισσότερα

Περιβαλλοντική Στατιστική

Περιβαλλοντική Στατιστική Περιβαλλοντική Στατιστική ηµήτρης Λέκκας Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών Περιγραφή Παρουσιάζονται τα κύρια θέµατα του µαθήµατος και αναλύονται τα προβλήµατα κατά την

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ Πειραιάς, 2/10/2014 ΑΝΑΚΟΙΝΩΣΗ ΚΑΤΑΤΑΚΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Η κατάταξη των υποψηφίων στο Τμήμα για το ακαδημαϊκό έτος 2014-15, θα

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης Περιγραφική Στατιστική Ακαδ. Έτος 2012-2013 1 ο εξάμηνο Κ. Πολίτης 1 2 Η στατιστική ασχολείται με τη συλλογή, οργάνωση, παρουσίαση και ανάλυση πληροφοριών. Οι πληροφορίες αυτές, πολύ συχνά αριθμητικές,

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern Recognition A Matlab Approach, S. Theodoridis,

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ B ΕΚΔΟΣΗ ΑΘΗΝΑ 2004 ΠΡΟΛΟΓΟΣ Η συλλογή και επεξεργασία δεδομένων από πεπερασμένους πληθυσμούς

Διαβάστε περισσότερα

Πιθανότητες & Στατιστική (ΜΥΥ 304)

Πιθανότητες & Στατιστική (ΜΥΥ 304) Πιθανότητες & Στατιστική (ΜΥΥ 304) Διδάσκων Κ. Μπλέκας, Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Σεπτέμβριος 2016 Πιθανότητες & Στατιστική Ώρες διδασκαλίας: Θεωρία Τρίτη 9-11 (Αμφιθέατρο

Διαβάστε περισσότερα

ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ)

ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ) ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ) Α1. ΣΥΝΤΟΜΗ ΠΕΡΙΓΡΑΦΗ ΦΥΣΙΚΟΥ ΑΝΤΙΚΕΙΜΕΝΟΥ Tο Πρόγραµµα Μεταπτυχιακών Σπουδών του Τµήµατος Μαθηµατικών του Πανεπιστηµίου Κρήτης είναι ένα από τα πρώτα οργανωµένα µεταπτυχιακά

Διαβάστε περισσότερα

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Συνάρτηση Γάμμα: Ιδιότητες o d Γ(α+)=αΓ(α) - αναδρομική συνάρτηση Γ(α+) = α! αν α ακέραιος. Πιθανότητες & Στατιστική 5 Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

(329) Τμήμα Στατιστικής Σχολή Επιστημών και Τεχνολογίας της Πληροφορίας Οικονομικό Πανεπιστήμιο Αθηνών

(329) Τμήμα Στατιστικής Σχολή Επιστημών και Τεχνολογίας της Πληροφορίας Οικονομικό Πανεπιστήμιο Αθηνών (329) Τμήμα Στατιστικής Σχολή Επιστημών και Τεχνολογίας της Πληροφορίας Οικονομικό Πανεπιστήμιο Αθηνών Ιστότοπος του Τμήματος http://www.stat-athens.aueb.gr 1 Αθήνα, 2014 2 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜEΡOΣ A : ΓNΩΡΙΜΙΑ ΜΕ ΤΗΝ ΕΠΙΣΤΗΜOΝΙΚΗ ΕΡΓΑΣΙΑ

ΠΕΡΙΕΧΟΜΕΝΑ ΜEΡOΣ A : ΓNΩΡΙΜΙΑ ΜΕ ΤΗΝ ΕΠΙΣΤΗΜOΝΙΚΗ ΕΡΓΑΣΙΑ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος στη δεύτερη έκδοση........................................... 13 Πρόλογος στην πρώτη έκδοση............................................ 17 Εισαγωγή................................................................

Διαβάστε περισσότερα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics)

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Τυχαίο δείγμα και στατιστική συνάρτηση Χ={x 1, x,, x n } τυχαίο δείγμα μεγέθους n προερχόμενο από μια (παραμετρική) κατανομή με σ.π.π. f(x;θ).

Διαβάστε περισσότερα

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Ιστότοπος του Τμήματος http://www.stat-athens.aueb.gr

Ιστότοπος του Τμήματος http://www.stat-athens.aueb.gr Ιστότοπος του Τμήματος http://www.stat-athens.aueb.gr Αθήνα, 2011 Γενικά Το τμήμα ιδρύθηκε τον Ιούνιο του 1989 με το ΠΔ 377/1989 και λειτούργησε από την ακαδημαϊκή χρονιά 1989 90. Ήταν και εξακολουθεί

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Εκτιμητική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

Ιστότοπος του Τμήματος http://www.stat-athens.aueb.gr

Ιστότοπος του Τμήματος http://www.stat-athens.aueb.gr Ιστότοπος του Τμήματος http://www.stat-athens.aueb.gr Αθήνα, 2013 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Πρυτανικές Αρχές ΠΡΥΤΑΝΗΣ Καθηγητής Κωνσταντίνος Γάτσιος ΑΝΤΙΠΡΥΤΑΝΕΙΣ Καθηγητής Εμμανουήλ Γιακουμάκης και

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ Αστική Μη Κερδοσκοπική Εταιρεία- ISO 9001 Σαπφούς 3, 81100 Μυτιλήνη (1ος Όροφος) 2251054739 (09:00-14:30) academy@aigaion.org civilacademy.ucoz.org «ΠΡΟΓΡΑΜΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

Πρόλογος 13 Κατάλογος συμβολών και συντμήσεων 15 1 ΓΙΑΤΙ ΝΑ ΑΣΧΟΛΗΘΟΥΜΕ ΜΕ ΤΗ ΣΤΑΤΙΣΤΙΚΗ; 21

Πρόλογος 13 Κατάλογος συμβολών και συντμήσεων 15 1 ΓΙΑΤΙ ΝΑ ΑΣΧΟΛΗΘΟΥΜΕ ΜΕ ΤΗ ΣΤΑΤΙΣΤΙΚΗ; 21 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 13 Κατάλογος συμβολών και συντμήσεων 15 1 ΓΙΑΤΙ ΝΑ ΑΣΧΟΛΗΘΟΥΜΕ ΜΕ ΤΗ ΣΤΑΤΙΣΤΙΚΗ; 21 Χρήση στατιστικών τεχνικών στις επιχειρήσεις 21 Οι δυο έννοιες της λέξης στατιστική 22 Πληθυσμοί

Διαβάστε περισσότερα

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΚΕΦΑΛΑΙΟ 13 ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Στις προηγούμενες ενότητες ασχοληθήκαμε με μεθόδους που οδηγούν σε εκτιμήτριες των τιμών μιας ή και περισσοτέρων αγνώστων παραμέτρων. Αυτό έγινε με την κατασκευή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ ΠΑΡΑ ΟΣΕΙΣ ΑΣΚΗΣΕΙΣ ΚΑΘΗΓΗΤΕΣ/ΤΡΙΕΣ

ΜΑΘΗΜΑΤΑ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ ΠΑΡΑ ΟΣΕΙΣ ΑΣΚΗΣΕΙΣ ΚΑΘΗΓΗΤΕΣ/ΤΡΙΕΣ Τεχνικές Προγραµµατισµού Εισαγωγή στον Προγραµµατισµό Γλώσσες Προγραµµατισµού, Θεωρία Γλωσσών Προγραµµατισµού 1999-2002 Θεωρία Γλωσσών 1996-2000, 2000-2002 Αρχές Γλωσσών Προγραµµατισµού 2002-2005 Τυπικές

Διαβάστε περισσότερα

215 Μηχανικών Η/Υ και Πληροφορικής Πάτρας

215 Μηχανικών Η/Υ και Πληροφορικής Πάτρας 215 Μηχανικών Η/Υ και Πληροφορικής Πάτρας Το Τμήμα ασχολείται με τη διδασκαλία και την έρευνα στην επιστήμη και τεχνολογία των υπολογιστών και τη μελέτη των εφαρμογών τους. Το Τμήμα ιδρύθηκε το 1980 (ως

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Τυπικές και εξειδικευµένες υδρολογικές αναλύσεις

Τυπικές και εξειδικευµένες υδρολογικές αναλύσεις Προς µια ορθολογική αντιµετώπιση των σύγχρονων υδατικών προβληµάτων: Αξιοποιώντας την Πληροφορία και την Πληροφορική για την Πληροφόρηση Υδροσκόπιο: Εθνική Τράπεζα Υδρολογικής & Μετεωρολογικής Πληροφορίας

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

1 ο ΕΤΟΣ 1 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ. 2 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ

1 ο ΕΤΟΣ 1 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ. 2 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Θ Α Ε ΔΜ 1 ο ΕΤΟΣ 1 ο ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Α1Υ Α2Υ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΚΑΙ ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ 3 1 1 5 2 2 5 Α3Υ ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Ι 3 1 1 6 Α10Υ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΟΥ ΜΠ&Δ

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ (ΜΑΕ531) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ MAE531 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ (ΜΑΕ531) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ MAE531 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o ΓΕΝΙΚΑ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ (ΜΑΕ531) ΣΧΟΛΗ ΤΜΗΜΑ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ MAE531 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ 6.1 Εισαγωγή Σε πολλές στατιστικές εφαρµογές συναντάται το πρόβληµα της µελέτης της σχέσης δυο ή περισσότερων τυχαίων µεταβλητών. Η σχέση

Διαβάστε περισσότερα