ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Σχετικά έγγραφα
Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 28/3/2012. Lecture07 1

Τμήμα Εφαρμοσμένης Πληροφορικής

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Επιχειρησιακή Έρευνα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

7 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ MATLAB

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Υπολογιστικά & Διακριτά Μαθηματικά

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί

Θεωρία Πιθανοτήτων & Στατιστική

Επιχειρησιακή Έρευνα

Δυϊκότητα. Δημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Επιχειρησιακή Έρευνα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

Οικονομικά Μαθηματικά

5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Επιχειρησιακή Έρευνα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

Μέθοδοι Βελτιστοποίησης

Εφαρμοσμένη Βελτιστοποίηση

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

Οικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης

Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Υπολογιστικά & Διακριτά Μαθηματικά

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 3/4/2012. Lecture08 1

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

Εισαγωγή στους Αλγορίθμους

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Διοίκηση Επιχειρήσεων

Λογιστικές Εφαρμογές Εργαστήριο

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Υπολογιστικά & Διακριτά Μαθηματικά

Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Θεωρία Πιθανοτήτων & Στατιστική

Μαθηματική Ανάλυση ΙI

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ιστορία της μετάφρασης

Επιχειρησιακή Έρευνα

Εισαγωγή στους Αλγορίθμους

Μικροβιολογία & Υγιεινή Τροφίμων

Επιχειρησιακή Έρευνα

Εισαγωγή στους Αλγορίθμους

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Ενότητα 4: Εισαγωγή στο Λογισμό Μεταβολών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

Αυτοματοποιημένη χαρτογραφία

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex

Μοντελοποίηση Λογικών Κυκλωμάτων

Θεωρία Μεθόδου Simplex

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

Επιχειρησιακή Έρευνα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διδάσκων: Νίκος Λαγαρός

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Πληροφορική. Εργαστηριακή Ενότητα 1 η : Εισαγωγή στα Λογιστικά Φύλλα με το MS Excel. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Υπολογιστικά & Διακριτά Μαθηματικά

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Εφαρμοσμένη Στατιστική

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Transcript:

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 11: Σχέσεις Πρωτεύοντος και Δυϊκού Προβλήματος, Χαρακτηριστικά Αλγορίθμων τύπου Simplex Σαμαράς Νικόλαος

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

Σχέσεις πρωτεύοντος και δυϊκού προβλήματος (1) min c T x.. Ax b (Π) x 0 max T w b T T.. w A c w 0 (Δ) όπου c, x n, Α m x n και w, b m 4

Σχέσεις πρωτεύοντος και δυϊκού προβλήματος (2) ΘΕΩΡΗΜΑ ασθενές δυϊκό θεώρημα (weak duality theorem) : Αν x είναι μια εφικτή λύση του (Π) και w μια εφικτή λύση του (Δ) τότε c T x w T b ΘΕΩΡΗΜΑ: Έστω (x, w) είναι μια εφικτή λύση του (Π) και του (Δ) αντίστοιχα. Αν ισχύει c T x = w T b τότε η λύση (x, w) είναι βέλτιστη για το (Π) και το (Δ) αντίστοιχα. 5

Άσκηση (1) Έστω το παρακάτω γραμμικό πρόβλημα min z = 2x 1 + 3x 2 + 5x 3 + 2x 4 + 3x 5 μ.π. x 1 + x 2 + 2x 3 + x 4 + 3x 5 4 2x 1-2x 2 + 3x 3 + x 4 + x 5 3 x 1, x 2, x 3, x 4, x 5 0 Ελέγξτε αν οι λύσεις (x 1, x 5 ) = (1, 1) και (w 1, w 2 ) = (4/5, 3/5) είναι βέλτιστες για το παραπάνω γραμμικό πρόβλημα και το δυϊκό του. 6

Άσκηση (2) Το δυϊκό πρόβλημα είναι max 4w 1 + 3w 2 μ.π. w 1 + 2w 2 2 w 1-2w 2 3 2w 1 + 3w 2 5 w 1 + w 2 2 3w 1 + w 2 3 w j 0, (j = 1, 2) 7

Χαρακτηριστικά αλγορίθμων τύπου simplex (1) Έστω το γραμμικό πρόβλημα στην τυποποιημένη μορφή min {c T x : Ax = b, x 0} (Π) όπου c, x n, b m και Α mxn. Το δυϊκό του προβλήματος (Π) είναι max{b T w: A T w + s = c, s 0} (Δ) όπου w m είναι οι δυϊκές και s n είναι οι χαλαρές δυϊκές μεταβλητές. 8

Παράδειγμα (1) Έστω το παρακάτω γραμμικό πρόβλημα max 2x 1 + 3x 2 μ.π. -3x 1 + 4x 2-2x 3-2 x 1-2x 2 + 3x 3 3 2x 1 - x 2 - x 3 5 x 2 0, x 2 0, x 3 0 9

Παράδειγμα (2) To γραμμικό πρόβλημα σε μορφή μητρών γράφεται x j 0, j = 1, 2,, 6 10

Ισχύει 1 m < n και rank(α)=m Β {1, 2,, n}, B =m. Θέτουμε Ν = {1, 2,, n} ~ B. Αν δίνεται η διαμέριση Β, Ν του συνόλου {1, 2,, n} μπορούμε να διαμερίσουμε και τη μήτρα Α στις υπομήτρες Β και Ν, οπότε θα γράφουμε Α = [Β, Ν]. Με παρόμοιο τρόπο διαχωρίζονται και οι συνιστώσες του x n στα υποδιανύσματα x B και x N. x = (x B, x N ) Τ = Χαρακτηριστικά αλγορίθμων x x τύπου simplex (2) B N 11

Με παρόμοιο τρόπο διαχωρίζονται και οι συνιστώσες του c n στα υποδιανύσματα c B και c N. c T = (c B, c N ) Χαρακτηριστικά αλγορίθμων τύπου simplex (3) Το γραμμικό πρόβλημα, χρησιμοποιώντας τη διαμέριση Α=(Β,Ν) γράφεται Min c BT x B + c NT x N μ.π. Bx B + Nx N = b x B x N 0 12

Χαρακτηριστικά αλγορίθμων τύπου simplex (4) Το σύνολο δεικτών Β ονομάζεται βάση (basis), ανν ισχύει για τη μήτρα Β, rank(b)=m. Δηλ. η μήτρα Β είναι αντιστέψιμη. H μήτρα Β ονομάζεται βασική μήτρα (basic matrix) ή απλά βάση ενώ η μήτρα Ν μη βασική (non basic matrix). H λύση x B = Β -1 b ονομάζεται βασική λύση (basic solution). Ένα βασικό σημείο x είναι εφικτό αν είναι x B 0, x N =0. 13

Χαρακτηριστικά αλγορίθμων τύπου simplex (5) Αν το βασικό σημείο ικανοποιεί ακριβώς n-m ανισότητες σαν ισότητες, ονομάζεται μη εκφυλισμένο (non degenerate). Σε ένα μη εκφυλισμένο βασικό σημείο όλες οι βασικές μεταβλητές είναι διάφορες του μηδενός. Αν ένα βασικό σημείο ικανοποιεί τουλάχιστο n-m+1 ανισοτικούς περιορισμούς σαν ισότητες, ονομάζεται εκφυλισμένο (degenerate). Στα εκφυλισμένα βασικά σημεία, τουλάχιστον μία βασική μεταβλητή είναι ίση με μηδέν. 14

Χαρακτηριστικά αλγορίθμων τύπου simplex (6) Σε γραμμικά προβλήματα στην κανονική μορφή min {c T x : Ax b, x 0} όπου c, x n, b m και Α mxn και {, }, βασικό σημείο είναι αυτό, στο οποίο υπάρχουν τουλάχιστο n ενεργοί περιορισμοί. Αν υπάρχουν ακριβώς n ενεργοί περιορισμοί, είναι μη εκφυλισμένο, ενώ, αν υπάρχουν τουλάχιστο n+1, είναι εκφυλισμένο. 15

Παράδειγμα (1) Έστω οι παρακάτω περιορισμοί 3x 1 + 4x 2 24 (1) x 1 x 2 2 (2) 5x 1 2x 2 10 (3) -x 1 + x 2 3 (4) 7x 1 32 (5) x j 0, (j = 1, 2) Να παρασταθεί γραφικά η περιοχή στο χώρο των μεταβλητών. Να βρεθεί ένα βασικό εφικτό μη εκφυλισμένο, ένα βασικό εφικτό εκφυλισμένο, ένα βασικό μη εφικτό μη εκφυλισμένο και ένα βασικό μη εφικτό εκφυλισμένο σημείο. 16

Παράδειγμα (2) 17

Παράδειγμα (1) Για το ίδιο γραμμικό πρόβλημα 3x 1 + 4x 2 24 (1) x 1 x 2 2 (2) 5x 1 2x 2 10 (3) -x 1 + x 2 3 (4) 7x 1 32 (5) x j 0, (j = 1, 2) Μετατρέψτε την περιοχή στην τυποποιημένη μορφή και περιγράψτε τα σύνολα βασικών και μη βασικών δεικτών που αντιστοιχούν σε κάθε βασικό εφικτό σημείο. 18

Παράδειγμα (2) Μετά την προσθήκη χαλαρών μεταβλητών το γραμμικό πρόβλημα γίνεται 3x 1 + 4x 2 +x 3 = 24 (1) x 1 x 2 +x 4 = 2 (2) 5x 1 2x 2 +x 5 = 10 (3) -x 1 + x 2 +x 6 = 3 (4) 7x 1 +x 7 = 32 (5) x j 0, (j = 1, 2,, 7) 19

Παράδειγμα (3) 20

Παράδειγμα (4) Στο σημείο D μπορούμε να αντιστοιχήσουμε οποιοδήποτε από τα παρακάτω 3 ζευγάρια. Τα βασικά εφικτά σημεία είναι κορυφές του πολυέδρου της εφικτής περιοχής. 21

Παράδειγμα (5) Το σημείο J(2,2) είναι εφικτό και ικανοποιεί όλους τους περιορισμούς σαν αυστηρές ανισότητες. Το σημείο αυτό είναι εσωτερικό (interior point). Το σημείο L(1,4) είναι εφικτό, ικανοποιεί έναν ανισοτικό περιορισμό σαν ισότητα και όλους τους υπόλοιπους σαν αυστηρές ανισότητες. Το σημείο αυτό ονομάζεται συνοριακό (boundary point). Στα συνοριακά σημεία το πλήθος των ανισοτικών περιορισμών που ικανοποιούνται σαν ισότητες είναι μικρότερο ή ίσο του n-m. Το σημείο Κ(-3,3) είναι μη βασικό μη εφικτό. 22

Υπολογισμός Δυϊκών Μεταβλητών w T = (c B ) T B -1 s T = c Τ w T A = c T (c B ) T B -1 A w i = (c B ) T (B -1 ).i s j = c j w T a j = c j (c B ) T B -1 a j όπου (B -1 ).i είναι η i στήλη της αντίστροφης βασικής μήτρας. 23

Παράδειγμα Έστω το παρακάτω γραμμικό πρόβλημα min x 1 + x 2 s.t. x 1 + 2x 2 4 x 2 1 x j 0, j= 1, 2 Να υπολογιστούν οι δυϊκές μεταβλητές w και οι δυϊκές χαλαρές μεταβλητές s. 24

Τέλος Ενότητας