ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Τι ονομάζουμε συνάρτηση; Συνάρτηση ονομάζεται η αλληλεξάρτηση (ή η σχέση) δυο μεταβλητών εις τρόπον ώστε για κάθε τιμή της μιας μεταβλητής (ελεύθερη μεταβλητή) να προκύπτει μια μοναδική αντίστοιχη τιμή για την άλλη μεταβλητή (δεσμευμένη μεταβλητή). [Η αλληλεξάρτηση αυτή συνήθως δίνεται από κάποιο αλγεβρικό τύπο ο οποίος «συνδέει» τις δυο μεταβλητές]. Εναλλακτικός ορισμός: Συνάρτηση ονομάζεται ένας κανόνας μέσω του οποίου αντιστοιχούμε αριθμούς σε αριθμούς.. Να σχεδιάσετε τη γραφική παράσταση της συνάρτησης με εξίσωση. Ανήκει το σημείο, στη γραφική παράσταση της συνάρτησης; (Να δικαιολογήσετε την απάντησή σας). Αν αντικαταστήσουμε στο τύπο της συνάρτηση 3 και 9, έχουμε 9 3, δηλαδή 9 9 που δεν ισχύει. Άρα το σημείο 3, 9 δεν ανήκει στη γραφική παράσταση της συνάρτησης. Για να σχεδιάσουμε το γράφημα της συνάρτησης κατασκευάζουμε έναν πίνακα τιμών. x -1 0 1 y 1 0 1 Η γραφική παράσταση της συνάρτησης είναι η παρακάτω παραβολή fx () = x 1 1 10 (-3,3) (3,9) (,) (,) (-1,1) (1,1) 1
3. Τι ξέρετε για τη γραφική παράσταση των συναρτήσεων της μορφής ; Πώς ονομάζεται το ; Η γραφική παράσταση των συναρτήσεων της μορφής, είναι ευθεία γραμμή που διέρχεται από την αρχή των αξόνων. Το ονομάζεται κλίση της ευθείας.. Να γράψετε την εξίσωση της ευθείας που διχοτομεί το πρώτο και τρίτο τεταρτημόριο. Ομοίως και την εξίσωση της ευθείας που διχοτομεί το δεύτερο και τέταρτο τεταρτημόριο. Η εξίσωση της ευθείας που διχοτομεί το πρώτο και τρίτο τεταρτημόριο είναι, ενώ η εξίσωση της ευθείας που διχοτομεί το δεύτερο και τέταρτο τεταρτημόριο είναι. 5. Να βρείτε την εξίσωση της ευθείας που διέρχεται από την αρχή των αξόνων και το σημείο Α(,. Κάθε ευθεία που διέρχεται από την αρχή των αξόνων έχει εξίσωση της μορφής. Αρκεί να προσδιορίσουμε την τιμή του. Εφόσον η ευθεία διέρχεται από το σημείο Α(3,, το σημείο Α(3, ανήκει στη γραφική παράσταση της ευθείας, άρα οι συντεταγμένες του επαληθεύουν την εξίσωση της. Έχουμε λοιπόν 3, οπότε. Επομένως η εξίσωση της ευθείας που διέρχεται από την αρχή των αξόνων και το σημείο Α(3, είναι.. Ένα κατάστημα πουλάει όλα του τα είδη με έκπτωση 0%. Να εκφράσετε τη σχέση μεταξύ της τιμής ενός προϊόντος πριν την έκπτωση και της τιμής με την έκπτωση. Να κάνετε γραφική παράσταση της σχέσης που βρήκατε. Αν ένα προϊόν κόστιζε 0 πριν την έκπτωση πόσο κοστίζει μετά την έκπτωση με την έκπτωση; Να δείξετε την απάντησή σας γραφικά. Αν η τιμή ενός προϊόντος πριν την έκπτωση είναι, μετά την έκπτωση θα είναι 0, 0,, άρα 0,. Για να σχεδιάσουμε το γράφημα της συνάρτησης 0, κατασκευάζουμε έναν πίνακα τιμών. Επειδή η γραφική παράσταση είναι ευθεία, αρκούν δυο σημεία. x 1 y 0, 1, Η γραφική παράσταση της ευθείας εμφανίζεται στην επόμενη σελίδα.
(1,0.) (,1.) - - 7. Ποιες από τις παρακάτω ευθείες είναι η ; Η Τρίτη διότι το σημείο 3, 1 από το οποίο διέρχεται επαληθεύει την εξίσωση της συνάρτησης. Πραγματικά, 1.. Να σχεδιάσετε τις ευθείες με εξισώσεις, και. Για οικονομία αλλά και για λόγους σύγκρισης σχεδιάζω τις τρεις ευθείες στο ίδιο σύστημα αξόνων. Κατασκευάζω τον πίνακα τιμών για κάθε συνάρτηση παίρνοντας μόνο δυο σημεία εφόσον οι γραφικές παραστάσεις είναι ευθείες. 3
X 0 1 y=x 0 x 0 1 y=3x 0 3 x 0 3 y=/3x 0 Οι γραφικές παραστάσεις των συναρτήσεων είναι sx () = ( 3 ) x qx () = 3 x hx () = x (1,3) (1,) (0,0) Ι (3,) - - 9. Να σχεδιάσετε την ευθεία με εξίσωση, αν. Επειδή δεν επιτρέπονται τιμές μικρότερες του 1 η γραφική παράσταση θα είναι μια ημιευθεία. Κατασκευάζω τον πίνακα τιμών παίρνοντας τιμές από το 1 και πάνω (συμπεριλαμβανομένου το 1). x 1 y=x Η γραφική παράσταση εμφανίζεται στην επόμενη σελίδα
(,) (1,) - - 10. Να σχεδιάσετε την ευθεία με εξίσωση, αν. Εδώ επιτρέπεται να πάρουμε τιμές μόνο από το -1 έως το 1. Κατασκευάζουμε τον πίνακα τιμών παίρνοντας δυο τιμές (πρόκειται περί ευθείας) ακριβώς τις δυο ακραίες τιμές για να μη χάσω κάποιο κομμάτι τις γραφικής παράστασης. (-1,) - (1,-) - 5
11. Ένα κινητό κινείται με σταθερή ταχύτητα /. Να εκφράσετε την απόσταση που διανύει ως συνάρτηση του χρόνου. Να παραστήσετε γραφικά τη συνάρτηση αυτή. Κατασκευάζουμε έναν πίνακα τιμών ο οποίος μας δίνει τις τιμές της απόστασης συναρτήσει του χρόνου. Επειδή η μεταβλητή t εκφράζει χρόνο, πρέπει 0. Η γραφική παράσταση είναι t 0 1 s 0 (,) (1,) -10-5 Ε 5 10 - - 1. Να βρείτε την εξίσωση της ευθείας η οποία διέρχεται από την αρχή των αξόνων και από το σημείο,. Η ζητούμενη ευθεία θα είναι της μορφής. Εφόσον η ευθεία διέρχεται από το σημείο, 3, το σημείο αυτό ανήκει στη γραφική παράσταση της ευθείας, άρα οι συντεταγμένες του σημείου επαληθεύουν την εξίσωση της. Έχουμε λοιπόν 3, οπότε. Επομένως η εξίσωση της ευθείας που διέρχεται από την αρχή των αξόνων και το σημείο Α(, 3 είναι.
13. Να σχεδιάσετε σε ορθογώνιο σύστημα αξόνων μια ευθεία η οποία διέρχεται από την αρχή των αξόνων και έχει κλίση. Η ευθεία αυτή έχει εξίσωση. Κατασκευάζουμε έναν πίνακα τιμών παίρνοντας δυο σημεία (εφόσον είναι ευθεία) Η γραφική παράσταση είναι x 0 y=-5/x 0-5 -5 h 1 () x = ( ) x (0,0) Ι - - (,-5) 1. Ανήκει ο άξονας x x στην οικογένεια των συναρτήσεων της μορφής ; Ναι. Για 0, η εξίσωση του ο άξονας x x είναι 0 ή 0 (εκτός ύλης) 15. Να βρείτε την κλίση της ευθείας η οποία διέρχεται από την αρχή Ο των αξόνων και από το σημείο Α,. Κάθε ευθεία που διέρχεται από την αρχή Ο των αξόνων είναι της μορφής. Επειδή η συγκεκριμένη ευθεία διέρχεται και από το σημείο Α, 1, οι συντεταγμένες του σημείου επαληθεύουν της εξίσωση της. Έχουμε λοιπόν, 1, άρα. 7
1. Να εξετάσετε αν η ευθεία που διέρχεται από τα σημεία Α, και Β, διέρχεται και από την αρχή Ο των αξόνων. Αν η ευθεία που διέρχεται από τα σημεία Α3, 1 και Β, 3 διέρχεται και από την αρχή Ο των αξόνων τότε η ευθεία που ορίζεται από την αρχή των αξόνων και το σημείο Α θα διέρχεται και από το Β. Βρίσκουμε πρώτα την εξίσωση της ευθείας που διέρχεται από την αρχή Ο των αξόνων και από το σημείο Α3, 1. Η εν λόγω ευθεία θα είναι της μορφής. Επειδή η συγκεκριμένη ευθεία διέρχεται από το σημείο Α3, 1, οι συντεταγμένες του σημείου επαληθεύουν της εξίσωση της. Έχουμε λοιπόν, 1 3, άρα. Οπότε την εξίσωση της ευθείας που διέρχεται από την αρχή Ο των αξόνων και από το σημείο Α3, 1 είναι. Το σημείο Α, 3 όμως δεν επαληθεύει την παραπάνω εξίσωση, εφόσον δεν ισχύει υη ισότητα 3. Άρα, η ευθεία που διέρχεται από τα σημεία Α3, 1 και Β, 3 δεν διέρχεται και από την αρχή Ο των αξόνων. 17. Τι ξέρετε για τη γραφική παράσταση των συναρτήσεων της μορφής με ; Η γραφική παράσταση των συναρτήσεων της μορφής με 0 είναι μια ευθεία παράλληλη της ευθείας με εξίσωση, και διέρχεται από το σημείο 0, του άξονα y y. 1. Εκφράζει η συνάρτηση με εξίσωση ανάλογα ποσά. Εξετάζουμε αν το πηλίκο των αντίστοιχων τιμών και είναι σταθερό. Αν 1, τότε 3 15. Αν, τότε 3. Αλλά, άρα η συνάρτηση με εξίσωση 3 δεν εκφράζει ανάλογα ποσά. 19. Εκφράζουν οι ευθείες ανάλογα ποσά; Αν 0, τότε η εκφράζει ανάλογα ποσά. Αν 0, τότε αν διαιρέσουμε και τα δυο μέλη της εξίσωσης με 0 έχουμε. Βλέπουμε λοιπόν ότι το πηλίκο δεν είναι σταθερό εφόσον εξαρτάται από το (για συγκεκριμένες τιμές των και.
Να παραστήσετε γραφικά τις ευθείες με εξισώσεις, και. Για οικονομία αλλά και για λόγους σύγκρισης σχεδιάζω τις τρεις ευθείες στο ίδιο σύστημα αξόνων. Κατασκευάζω τον πίνακα τιμών για κάθε συνάρτηση παίρνοντας μόνο δυο σημεία εφόσον οι γραφικές παραστάσεις είναι ευθείες. x 1 y=x-1 1 3 x 1 y=x+3 1-1 x 0 3 y=/3x+1 1-1 Οι γραφικές παραστάσεις των συναρτήσεων είναι vx () = x+3 tx () = x-1 wx () = ( 3 ) x+1 (,3) (0,1) (1,1) (0,0) Ι (,-1) (3,-1) - - 0. Να παραστήσετε γραφικά την ευθεία με εξίσωση, αν. Κατασκευάζω τον πίνακα τιμών παίρνοντας μόνο δυο σημεία εφόσον η γραφική παράσταση είναι ευθεία. Παρότι το, παίρνω και την τιμή για να την αποκλείσω στο τέλος. Αυτό γίνεται για να μην χάσω κομμάτι της ζητούμενης γραφικής παράστασης. Αν παραδείγματος χάριν, πάρω ακραία μεγαλύτερη τιμή 1, θα χάσω το κομμάτι τής γραφικής παράστασης που θα αποτελείται από σημεία που έχουν τετμημένη μεγαλύτερη του 1, και μικρότερη του 1,. Για να 9
δείξω ότι το «τελευταίο) σημείο προς τα δεξιά αφαιρείται βάζω ένα κυκλάκι (κάτι που δεν εμφανίζεται στην εικονιζόμενη γραφική παράσταση για τεχνικούς λόγους). x 1 y=3x 1 (,) (1,1) -10-5 Ε 5 10 - - 1. Η ταχύτητα (σε m/sec) ενός αεροπλάνου που προσγειώνεται, από τη στιγμή που αγγίζει το έδαφος μέχρι να σταματήσει, δίνεται από τη σχέση, όπου ο χρόνος που πέρασε από τη χρονική στιγμή που το αεροπλάνο άγγιξε το έδαφος: (α) Να βρείτε την ταχύτητά του τη στιγμή που αγγίζει το έδαφος (β) Να βρείτε το χρόνο που απαιτείται για να σταματήσει το αεροπλάνο και να παραστήσετε γραφικά την ταχύτητά του ως συνάρτηση του χρόνου. (α) Τη στιγμή που άγγιξε το έδαφος έχουμε 0. Άρα 53 05. Επομένως, η ταχύτητα του αεροπλάνου τη στιγμή που αγγίζει το έδαφος είναι 5 m/s. (β) Όταν σταματήσει το αεροπλάνο η ταχύτητά του θα είναι μηδέν. Θα έχουμε λοιπόν 053, οπότε 5 3 και άρα 15. Άρα ο χρόνος που απαιτείται για να σταματήσει το αεροπλάνο είναι t 15 sec. Η γραφική παράσταση εμφανίζεται στην επόμενη σελίδα 10
. Να γράψετε τις εξισώσεις δυο ευθειών που είναι παράλληλες με την ευθεία με εξίσωση. Εφόσον οι ευθείες είναι παράλληλες με την ευθεία με εξίσωση 3 θα έχουν την ίδια κλίση με αυτήν. Δυο τέτοιες ευθείες είναι οι 31 και 3. 3. Όταν χρησιμοποιούμε ταξί, πληρώνουμε 0,5 για τη σημαία και 0, για κάθε χιλιόμετρο διαδρομής. Να βρείτε της εξίσωση της συνάρτησης που μας δίνει το ποσό που θα πληρώσουμε για μια διαδρομή χιλιομέτρων. Αν πληρώσουμε πόσα χιλιόμετρα διανύσαμε με το ταξί; Για μια διαδρομή χιλιομέτρων θα πληρώσουμε 0, 0,5 ευρώ. Άρα 0, 0,5. Αν, έχουμε 0, 0,5, οπότε 0,5 0,, δηλαδή 3,5 0,. Άρα,, 117,5. Επομένως 117,5 χιλιόμετρα.. Τι γνωρίζετε για τη γραφική παράσταση των συναρτήσεων της μορφής,; 11
5. Να κάνετε γραφική παράσταση των συναρτήσεων Κατασκευάζω έναν πίνακα τιμών για την κάθε συνάρτηση.,. x -5-1 y=1/x -0, -0,5-0,5 1 0,5 0,5 x -5-1 1 5 y=-5/x 1,5 5-5,5-1 Οι γραφικές παραστάσεις εμφανίζονται στην επόμενη σελίδα. f 1 x () = 1 x (1,1) (,0.5) (-5,0.) (0,0) Ι (-,0.5) (,-0.5) (,0.5) - - 1
-5 g 1 () x = x (-1,5) (,.5) (-5,1) (0,0) Ι (5,-1) (,,5) - - (1,-5). Να κάνετε γραφική παράσταση της συνάρτησης,. Εργαζόμαστε όπως στη προηγούμενη άσκηση όπου πραγματευτήκαμε τη συγκεκριμένη εξίσωση συνάρτησης. Επειδή όμως, 0, παίρνουμε μόνο τον έναν κλάδο της υπερβολή, αυτό που βρίσκεται στο τέταρτο τεταρτημόριο (τα σημεία αυτού του κλάδου έχουν θετική τετμημένη). Η γραφική παράσταση έχει ως εξής: 13
7. Τέμνει η γραφική παράσταση της τον άξονα x x; Τέμνει η γραφική παράσταση της τον άξονα y y (εκτός ύλης) Για να τέμνει το άξονα x x θα πρέπει 0. Δηλαδή 0 ή 0 που είναι αδύνατη. Άρα η γραφική παράσταση της δεν τέμνει τον άξονα x x. Για να τέμνει το άξονα y y θα πρέπει 0. Δεν επιτρέπεται όμως η διαίρεση δια του μηδενός, επομένως η γραφική παράσταση της δεν τέμνει τον άξονα y y. 1