ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Σχετικά έγγραφα
Ιστορία των Μαθηματικών

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό.

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

«Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Ονοματεπώνυμο Τμήμα. 1. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

x 2 + y 2 x y

Θέμα: «Κωνσταντίνος και Ελένη. Ήσαν Άγιοι και οι δύο.» (Κ + Ε = Α + 2). Την εποχή της Στερεομετρίας.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας.

ΓΕΩΜΕΤΡΙΑ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ. 1. Να σχεδιάσετε ένα σκαληνό τρίγωνο με περίμετρο 10 cm. Πόσες λύσεις έχει το πρόβλημα;

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΕΦΑΡΜΟΓΕΣ

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας

ΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα).

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του.

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: info@hms.gr

Κύκλος. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΧΡΟΝΟΣ : 2 Ώρες Υπογραφή :

Β ΓΥΜΝΑΣΙΟΥ ,,,,,,,

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)

Ασκήσεις - Πυθαγόρειο Θεώρηµα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

: :

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014)

4.6 Η ΣΦΑΙΡΑ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

Μαθηματικά Α Τάξης Γυμνασίου

Βασικές Γεωμετρικές έννοιες

Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία


Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. β γ α β. α γ β δ. Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1. Προηγούµενες και απαραίτητες γνώσεις

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013


ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

Μαθηματικά προσαματολισμού Β Λσκείοσ

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων

1 ΘΕΩΡΙΑΣ...με απάντηση

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων.

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Γεωμετρία Β Λυκείου. Τράπεζα Θεμάτων 18-22/1/2015

MATHematics.mousoulides.com

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ

3.1. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Transcript:

Εαρινό εξάμηνο 2014 27.03.12 Χ. Χαραλάμπους

Προσέγγιση για το π (Αρχιμήδης) "Κύκλου μέτρησις" Το θεώρημα εκφράζει τον λόγο της περιφέρειας του κύκλου ως προς τη διάμετρο του κύκλου, δηλ. το π. 3 10 / 71 < π < 3 1/ 7 71 (3.14085 < π < 3.14286)

Ο Αρχιμήδης κατασκευάζει δύο κανονικά 96-γωνα (ένα εγγεγραμένο και ένα περιγεγραμένο του κύκλου), διχοτομώντας διαδοχικά τις γωνίες. Η ΟΑ είναι κάθετη στην εφα- πτομένη. Έτσι οι γωνίες είναι π/ 6, π/12,

Χρησιμοποιεί τη Πρόταση 3, ββ βιβλίο 6, «Στοιχεία», χ Ευκλείδης AD διχοτομεί την γωνία BAC Τότε BD: DC= AB: AC Μαζί με τη χρήση του Πυθαγορείου Θεωρήματος, συγκρίνει το λόγο της διαμέτρου του κύκλου με τις περιφέρειες των εγγεγραμμένων και περιγεγραμμένων 96-γώνων και παίρνει άνω και κάτω όρια.

Παλίμψηστος

Παλίμψηστα: αρχαίοι πάπυροι και περγαμηνές πολλαπλής χρήσης. Το παλίμψηστο (συλλογή προσευχών) εξετάστηκε το 1906 στη Κωνσταντινούπολη από τον Heiberg που αντιλήφθηκε τη σημασία του. Διάβασε 80%, και βρήκε 7 κείμενα του Αρχιμήδη. Χάθηκε 1922-1998. Βρέθηκε σε πολύ χειρότερη κατάσταση Το 1998 πουλήθηκε σε πλειστηριασμό του Christie s στην Νέα Υόρκη για 2,2 εκατομμύρια δολάρια. Αγοραστής: άγνωστος Σήμερα βρίσκεται στο Walters Art Museum

Στο Παλίμψηστο βρίσκονται 7 έργα του Αρχιμήδη «Περί επιπέδων ισορροπιών» «Κύκλου μέτρησις» «Περί των μηχανικών θεωρημάτων, προς Ερατοσθένη έφοδος» «Περί ρ ελίκων» «Στομάχιον» «Περί των επιπλεόντων σωμάτων» «Περί σφαίρας και κυλίνδρου».

Παλίμψηστος--ευχολόγιον

ος μοι πα στω και τα γαν κινάσω Βιβλίο 1, περί επιπέδων ισορροπιών ΤΑ ΜΕΓΕΘΕΑ ΙΣΟΡΡΟΠΕΟΝΤΙ ΑΠΟ ΜΑΚΕΩΝ ΑΝΤΙΠΕΠΟΝΘΟΤΩΣ ΤΟΝ ΑΥΤΟΝ ΛΟΓΟΝ ΕΧΟΝΤΩΝ ΤΟΙΣ ΒΑΡΕΣΙΝ. Τα μεγέθη Γ, Δ τοποθετημένα στο Β και στο Α αντίστοιχα θα έρθουν σε ισορροπία ως προς το Ε όταν οι αποστάσεις τους από το Ε,, δηλ. ΒΕ,, ΑΕ ικανοποιούν σχέση αντιστρόφως ανάλογες με το βάρος τους: Γ:Δ=AΕ: BE ΤΟ ΚΙΝΟΥΜΕΝΟΝ ΒΑΡΟΣ ΠΡΟΣ ΤΟ ΚΙΝΟΥΝ, ΤΟ ΜΗΚΟΣ ΠΡΟΣ ΤΟ ΜΗΚΟΣ ΑΝΤΙΠΕΠΟΝΘΕΝ.

Αρχιμήδης, Περί των μηχανικών θεωρημάτων προς Ερατοσθένην έφοδος Καὶ γάρ τινα τῶν πρότερόν μοι φανέντων μηχανικῶς ὕστερον γεωμετρικῶς ἀπεδείχθη διὰ τὸ χωρὶς ἀποδείξεως εἶναι τὴν διὰ τούτου τοῦ τρόπου θεωρίαν ἑτοιμότερον γάρ ἐστι προλαβόντα διὰ τοῦ τρόπου γνῶσίν τινα τῶν ζητημάτων πορίσασθαι τὴν ἀπόδειξιν μᾶλλον ἤ μηδενὸς ἐγνωσμένου ζητεῖν. Άλλωστε κάποιες ιδιότητες που στην αρχή μου αποκαλύφθηκαν με τη μηχανική στη συνέχεια αποδείχθηκαν με τη γεωμετρία, διότι η προσέγγιση που γίνεται με τη μέθοδο αυτή δεν επιδέχεται απόδειξης. Είναι ευκολότερο να οδηγηθείς στην απόδειξη, εάν έχεις αποκτήσει εκ των προτέρων κάποια γνώση του πράγματος, παρά αν ψάχνεις κάτι για το οποίο δεν έχεις την παραμικρή ιδέα.

Ο Αρχιμήδης στην Έφοδο για την μέθοδό του: για να βρούμε ένα ζητούμενο εμβαδόν ή όγκο κόβουμε την επιφάνεια ή το σώμα σ' ένα πολύ μεγάλο αριθμό λεπτές, παράλληλες και επίπεδες λωρίδες ή λεπτές παράλληλες φέτες και (νοητά) κρεμάμε αυτά τα κομμάτια στο ένα άκρο δεδομένου μοχλού με τέτοιον τρόπο, ώστε αυτά να βρίσκονται σε ισορροπία με ένα σχήμα του οποίου η περιεκτικότητα και το κέντρο βάρους είναι γνωστά.

Το Θεώρημα του Αρχιμήδη: Ο όγκος του κυλίνδρου (με ακτίνα r και ύψος 2r) είναι ίσος με τα 3/2 του όγκου της σφαίρας (με ακτίνα r)!

Ογκος κυλίνδρου Σήμερα ο όγκος του κυλίνδου υπολογίζεται εύκολα ως το τριπλό ολοκλήρωμα

Όγκος σφαίρας Ο όγκος της σφαίρας επίσης προκύπτει από κατάλληλο τριπλό ολοκλήρωμα (ποιο?)

Όγκος κώνου Ο κώνος χαρακτηρίζεται από την ιδιότητα ότι (αν θεωρήσουμε ότι ξεκινάμε από τη βάση, με ύψος 0 και προχωράμε προς τη κορυφή ) τότε η εγκάρσια τομή στο ύψος z είναι κύκλος ακτίνα r(h-z)/h. Έτσι ο όγκος του κώνου προκύπτει από το ολοκλήρωμα

Στο βιβλίο βλί 12 των Στοιχείων του Ευκλείδη, στη πρόταση 18 (τη τελευταία του βιβλίου) ο Ευκλείδης αποδεικνύει ότι : Αν S και Τ είναι δύο σφαιρες με ακτίνες r1 και r2 και όγκους V1 και V2 τότε V V r 3 1 1 3 2 r2 Άρα ο όγκοςτης σφαίρας είναι ίσος με κάποια σταθερά επί το κύβο της ακτίνας. (Ποια σταθερά όμως?)

Στο ίδιο βιβλίο βλί ο Ευκλείδης δείχνει ότι ο όγκος του κώνου είναι το 1/3 του όγκου του κυλίνδρου με το ίδιο ύψος. Το κάνει χρησιμοποιώντας την αρχή της εξάντλησης του Ευδόξου. Πρώτα κατασκευάζει δύο ακολουθίες πολυεδρικών στερεών εγγεγραμμένων στον κώνο και στον κύλινδρο αντίστοιχα και δείχνει ότι τα πολύεδρα ικανοποιούν την επιθυμητή σχέση.

ος μοι πα στω και τα γαν κινάσω Βιβλίο 1, περί επιπέδων ισορροπιών ΤΑ ΜΕΓΕΘΕΑ ΙΣΟΡΡΟΠΕΟΝΤΙ ΑΠΟ ΜΑΚΕΩΝ ΑΝΤΙΠΕΠΟΝΘΟΤΩΣ ΤΟΝ ΑΥΤΟΝ ΛΟΓΟΝ ΕΧΟΝΤΩΝ ΤΟΙΣ ΒΑΡΕΣΙΝ. Τα μεγέθη Γ, Δ τοποθετημένα στο Β και στο Α αντίστοιχα θα έρθουν σε ισορροπία ως προς το Ε όταν οι αποστάσεις τους από το Ε,, δηλ. ΒΕ,, ΑΕ ικανοποιούν σχέση αντιστρόφως ανάλογες με το βάρος τους: Γ:Δ=AΕ: BE ΤΟ ΚΙΝΟΥΜΕΝΟΝ ΒΑΡΟΣ ΠΡΟΣ ΤΟ ΚΙΝΟΥΝ, ΤΟ ΜΗΚΟΣ ΠΡΟΣ ΤΟ ΜΗΚΟΣ ΑΝΤΙΠΕΠΟΝΘΕΝ.

Θεωρούμε τον κύλινδρο και τον κώνο που οι βάσεις τους έχουν ακτίνα ΥΟ φορές την ακτίνα της σφαίρας Γνωστό από τον Ευκλείδη: Κύλινδρος LEFG=3 κώνος AEF, [Στοιχεία, Πρόταση 7.10] Κύλινδρος =3 κώνος [Στοιχεία, Πρόταση 13.10]

Θα ισορροπήσουμε το σύστημα σφαίρας,κώνου, κυλίνδρου ως προς Α, τη κορυφή του κώνου. Έστω ΗΑ=ΑC=2r

Οι εγκάρσιες τομές σφαίρας, κώνου και του κυλίνδρου, είναι κύκλοι!! Θεωρούμε την τομή MN Από ιδιότητες ομοίων τριγώνων προκύπτει ότι ΑC: AS= MN 2 : (OP 2 +QR 2 ) Το τετράγωνο MN 2 αντιστοιχεί στον κύκλο που είναι η εγκάρσια τομή του κυλίνδρου. Το τετράγωνο OP 2 αντιστοιχεί στον κύκλο που είναι η εγκάρσια τομή της σφαίρας. Το τετράγωνο QR 2 αντιστοιχεί στον κύκλο που είναι η εγκάρσια τομή του κώνου.

Αφού HA=AC, από τη προηγούμενη σχέση προκύπτει ότι το σύστημα των εγκάρσιων τομών κυλίνδρου, σφαίρας και κώνου ισορροπεί ως προς το Α αν τις τομές της σφαίρας και του κώνου στο H και τη τομή του κυλίνδρου στο S. Το S όμως (σε αντίθεση με το Α) είναι μεταβλητό: για κάθε τομή του κυλίνδρου είναι το κέντρο του κύκλου. Τι γίνεται αν θεωρήσουμε τα στερεά και όχι μόνο τις τομές τους??

Συμπέρασμα: μ Το σύστημα ισορροπεί ως προς το Α αν θέσουμε στο Η την σφαίρα και τον κώνο και τον κύλινδρο στο Κ (αφού Κ είναι το κέντρο βάρους του).

Άρα ΗΑ: AK=κύλινδρος : σφαίρα + κώνος Αφού HA=2 ΑΚ συμπεραίνουμε ότι όγκος κόκκινου κυλίνδρου είναι διπλάσιος του αθροίσματος των όγκων της σφαίρας και του μπλέ κώνου). Αφού όπως γνωρίζουμε από τον Ευκλείδη ο όγκος του κόκκινου κυλίνδρου είναι τρεις φορές ο όγκος του μπλέ κώνου, τελικά ο όγκος του μπλε κώνου είναι δύο φορές ο όγκος της σφαίρας.

Τέλος συγκρίνουμε τον όγκου του μπλέ κώνου με τον όγκο του κώνου με βάση στο BD και ύψος KA. Σύμφωνα με τον Ευκλείδη (12.12) ο μπλε όγκος είναι οκταπλάσιος του μικρότερου. Άρα η σφαίρα μας έχει τετραπλάσιο όγκο από τον όγκου του μικρού κώνου. Πάλι από τον Ευκλείδη ο όγκος του μικρού κώνου είναι το 1/3 του όγκου του αντίστοιχου κυλίνδρου, και άρα το 1/6 του όγκου του κυλίνδου που μας ενδιαφέρει. Έτσι προκύπτει ότι ο όγκος του κυλίνδρου είναι 3/2 του όγκου της εγγεγραμμένης σφαίρας.

Λογισμός και Αρχιμήδης: η μέθοδος της εξάντλησης "Τετραγωνισμόςπαραβολής" ό βλή" Το εμβαδόν ανάμεσα στην παραβολή και τέμνουσα ισούται τα 4/3 του αντίστοιχου τριγώνου (προσοχή στη κατασκευή του τριγώνου) Το σημείο στη παραβολή που προσδιορίζει το τρίγωνο απέχει το μέγιστο από τη τέμνουσα, και η εφαπτομένη σε αυτό το σημείο είναι παράλληλη προς τη τέμνουσα.

Ισορροπία και εμβαδά Το εμβαδόν ανάμεσα στην παραβολή και τέμνουσα ισούται τα 4/3 του αντίστοιχου τριγώνου Ιδιότητα τριγώνου: τέμνουσα παράλληλη με εφαπτομένη στο C Μία απόδειξη ήταν Γεωμετρική. Χρησιμοποίησε τη μέθοδο της εξάντλησης και υπολόγισε ένα άπειρο άθροισμα (όριο σειράς).

Απόδειξη βασισμένη στην έννοια της ισορροπίας (θέμα παρουσίασης) BC εφαπτομένη στο Β, BD=DP Τρίγωνο ABC = 4 τρίγωνο ΑΒV Ιδιότητες παραβολής Βασική ιδέα: παίρνουμε τομές και θεωρούμε ότι το τρίγωνο ABC και το κομμάτι ανάμεσα στη παραβολή και τέμνουσα ΑΒ αποτελείται από ευθύγραμμα τμήματα που θα ισορροπήσουμε ως προς D.