HY118- ιακριτά Μαθηµατικά Τρίτη, 21/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/21/2017 1 1
Σχέσεις 3/21/2017 2
ιµελής σχέση Έστω A, Bοποιαδήποτε σύνολα. Μίαδιµελής σχέση Rαπό το Aστο B, είναι ένα υποσύνολο του A B. Το (a, b) R σηµαίνει ότι «το a σχετίζεται µέσω της R µε το b» Επίσης γράφεται ως arb ή ως R(a,b) Π.χ.,έστω η σχέση ΚατοικείΣτηνΠόληη οποία ορίζεται ως ένα υποσύνολο του A B όπου Α το σύνολο των ανθρώπων και Β το σύνολο των πόλεων. Αντώνης ΚατοικείΣτηνΠόλη Ηράκλειο (Αντώνης, Ηράκλειο) ΚατοικείΣτηνΠόλη ΚατοικείΣτηνΠόλη(Αντώνης,Ηράκλειο) 3/21/2017 3
ιµελής σχέση Κι άλλο παράδειγμα: A = {Κώστας, Νίκος, Μαρία, Πάνος} Β = {Μακαρόνια, Μπριζόλες, Όσπρια, Σαλάτες} Σχέση Προτιμάει_το_φαγητό = {(Κώστας,Μπριζόλες), (Νίκος,Σαλάτες), (Μαρία,Όσπρια), (Πάνος, Σαλάτες)} 3/21/2017 4
n-µελείςσχέσεις Μία n-µελήςσχέση Rστα σύνολα A 1,,A n, είναι ένα υποσύνολο R A 1 A n. Αυτή είναι µία προφανής γενίκευση της διµελούς σχέσης. 3-µελείςσχέσεις, παραδείγµατα: Το a είναι µεταξύ του b και του c Ο a έδωσε το b στον c 3/21/2017 5
n-µελείςσχέσεις Μία n-µελήςσχέση Rστα σύνολα A 1,,A n, είναι ένα υποσύνολο R A 1 A n. Τα σύνολα A i ονοµάζονταιπεδίατης R. Ο βαθµόςτης Rείναι n. 3/21/2017 6
Συµπληρωµατικές σχέσεις Έστω R:A, B µία διµελής σχέση. Τότε, R:A B, το συµπλήρωµα της R, είναι η διµελής σχέση που ορίζεται από R: {(a,b) A B (a,b) R}=(A B) R Το συµπλήρωµα της R είναι το R. Παράδειγµα: < = {(a,b) (a,b) <} = {(a,b) (a<b)} = 3/21/2017 7
Αντίστροφες σχέσεις Κάθε διµελής σχέση R:A B έχει µία αντίστροφη σχέση R 1 :B A, που ορίζεται ως R 1 : {(b,a) (a,b) R}. Π.χ., < 1 = {(b,a) a<b} = {(b,a) b>a} = > Άλλο παράδειγµα: Εάν η R Άνθρωποι x Tροφή ορίζεται από a R b aτρώει την b, τότε: b R 1 a bτρώγεται από τον a. (παθητική φωνή) 3/21/2017 8
Σχέσεις και πράξεις συνόλων Εφόσον οι διµελείς σχέσεις είναι σύνολα από διατεταγµένα ζεύγη, οι έννοιες της τοµής ένωσης διαφοράς συµµετρικής διαφοράς σχέσεων είναι αυτές που γνωρίζουµε ήδη από τη θεωρία συνόλων. 3/21/2017 9
Σχέσεις επί συνόλου Μία (διµελής) σχέση από ένα σύνολο A στονεαυτό του ονοµάζεται σχέσηεπί του συνόλου A.Άρα, µίαδιµελήςσχέση Rεπί του A ορίζεται ως R A A. Π.χ., η σχέση < µπορεί να είναι µία σχέση επίτου συνόλουτων πραγµατικών αριθµών. 3/21/2017 10
Ιδιότητες: Ανακλαστική ιδιότητα Μία σχέση R επί του A είναι ανακλαστική εάν και µόνο αν a A(aRa). Π.χ., η σχέση : {(a,b) a b} είναι ανακλαστική. Η R είναι µη-ανακλαστική εάν και µόνο αν a A( (ara)) Σηµειώστε τη διαφορά µεταξύ µιας σχέσης που είναι µη ανακλαστική ( a A( (ara))) από µία σχέση που απλά δεν είναι ανακλαστική ( ( a A(aRa)), δηλαδή, a A (αra). 3/21/2017 11
Ιδιότητες: Ανακλαστική ιδιότητα Έστω η σχέση R=Θαυµάζει ={(Γ,Μ), (Β,Μ), (Μ,Β), (Γ,Γ)} ορισµένη επί του συνόλου Α={Β,Γ,Μ} Είναι η σχέση ανακλαστική; 3/21/2017 12
Ιδιότητες: Ανακλαστική ιδιότητα Έστω η σχέση R=Θαυµάζει ={(Γ,Μ), (Β,Μ), (Μ,Β), (Γ,Γ)} ορισµένη επί του συνόλου Α={Β,Γ,Μ} Είναι η σχέση ανακλαστική; Όχι, γιατί δεν ισχύει ότι a A(aRa) 3/21/2017 13
Ιδιότητες: Ανακλαστική ιδιότητα Έστω η σχέση R=Θαυµάζει ={(Γ,Μ), (Β,Μ), (Μ,Β), (Γ,Γ)} ορισµένη επί του συνόλου Α={Β,Γ,Μ} Είναι η σχέση µη ανακλαστική; 3/21/2017 14
Ιδιότητες: Ανακλαστική ιδιότητα Έστω η σχέση R=Θαυµάζει ={(Γ,Μ), (Β,Μ), (Μ,Β), (Γ,Γ)} ορισµένη επί του συνόλου Α={Β,Γ,Μ} Είναι η σχέση µη ανακλαστική; Όχι, γιατί δεν ισχύει ότι a A( (ara)) Π.χ. (Γ,Γ) R 3/21/2017 15
Ανακλαστική ιδιότητα Θεώρηµα:Μία σχέση Rείναιµη ανακλαστικήεάν και µόνο ανη συµπληρωµατική της σχέση είναι ανακλαστική. Παράδειγµα:η < είναι µη ανακλαστική. Η είναι ανακλαστική. Απόδειξη:. 3/21/2017 16
Μπορείτε να σκεφτείτε Ανακλαστικές σχέσεις Μη ανακλαστικές σχέσεις...που να έχουν να κάνουν µε αριθµούς, προτάσεις, ή σύνολα; 3/21/2017 17
Μερικά παραδείγµατα Ανακλαστικές:,,,, κλπ. Μη ανακλαστικές: <, >,, κλπ. 3/21/2017 18
Συµµετρική / ασσύµετρη διµελής σχέση Μία διµελής σχέση R επί ενός συνόλου A είναι συµµετρική εάν και µόνο αν a,b ((a, b) R (b, a) R). Π.χ., η = (ισότητα) είναι συµµετρική. Η < δεν είναι συµµετρική. Η είναι παντρεµένος µε είναι συµµετρική Η Συµπαθεί δεν είναι συµµετρική. Μία διµελής σχέση R είναι ασύµµετρη εάν και µόνο αν a,b((a,b) R (b,a) R). Π.χ.: Η <είναι ασύµµετρη, Η Συµπαθεί δεν είναι, κατ ανάγκη, ασύµµετρη. Τι ισχύει για τηνθαυµάζει={(γ,μ), (Β,Μ), (Γ,Γ)}; 3/21/2017 19
Συµµετρική ιδιότητα / ασσύµετρη διµελής σχέση Μία διµελής σχέση Rείναιασύµµετρηεάν και µόνο αν a,b((a,b) R (b,a) R). Τι ισχύει για την Θαυµάζει={(Γ,Μ), (Β,Μ), (Γ,Γ)}; εν είναι ασύµµετρηεξαιτίας τουότι (Γ,Γ) Θαυµάζει 3/21/2017 20
Μερικές άµεσες συνέπειες Θεωρήµατα: 1. Η R είναι συµµετρική αν και µόνο αν R = R 1, 2. Η R είναι ασύµµετρηαν και µόνο άνη R R 1 είναι κενή. 3/21/2017 21
Συµµετρική ιδιότητα 1. Η R είναι συµµετρικήαν και µόνο αν R = R 1 Ευθύ: Έστω ότι η R είναι συµµετρική. Τότε (x,y) R (y,x) R (x,y) R 1 Αντίστροφο:Έστωότι R = R 1. Τότε, (x,y) R (x,y) R 1 (y,x) R 3/21/2017 22
Συµµετρική ιδιότητα 2. Η R είναι ασύµµετρηαν και µόνο ανη R R 1 = ø. Ευθύ: Έστω ότι η R είναι ασύµµετρη. Τότε a,b((a,b) R (b,a) R). Εποµένως, a,b((a,b) R (a,b) R 1 ). Τότε όµως, R R 1 =ø. Αντίστροφο: Έστω ότι η R R 1 = ø. Τότε a,bµε (a,b) Rισχύει ότι (a,b) R 1. Τότε όµως, (b,a) R. Άρα, a,b((a,b) R (b,a) R) και εποµένως η R είναι ασύµµετρη. 3/21/2017 23
ΕΡΩΤΗΣΗ:Μπορείτε να βρείτε ένα σύνολο A και µία σχέση R επί του A έτσι ώστε η R να είναι συµµετρική και η R(x,y) να µπορεί λογικά να διαβαστεί ως ο x είναι γιός του y 3/21/2017 24
Απάντηση: κάθε µοντέλο στο οποίο δεν υπάρχουν x, y τέτοια ώστε ηγιός_του(x, y) να είναι αληθής Π.χ., A = {John, Mary, Sarah}, AxA R= {} Για την κενή σχέση, ισχύει ότι a,b((a,b) R (b,a) R) και εποµένως η κενή σχέση είναι συµµετρική! 3/21/2017 25