6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2013 ΠΕΡΙΕΧΟΜΕΝΑ 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6.2 Διάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός Προφόρτισης με Στραγγιστήρια 6.4 Σταδιακή Προφόρτιση Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1
6.1 Επίδραση Προφόρτισης στην Μηχανική Συμπεριφορά δ. Κατασκευή γ. Αποφόρτιση (προφορτισμένο έδαφος) α. Αρχικό έδαφος (απροφόρτιστο) β. Προφόρτιση συμπιεστότητα φόρτιση παραμόρφωση εδαφικού στοιχείου aπευθείας επιβολή q: επιβολή q μετά την προφόρτιση: (a β) Δe I =e a -e β (γ δ) Δe II e γ -e δ e γ -e β,δe II <<< Δe I Μείωση συμπιεστότητας... από σε R (< ) Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 2
αστράγγιστη διατμητική αντοχή σ 1 σ 3 σ 1 - σ 3 σ 3 u = + σ 3 u 1 u 2 ισοτροπική συμπίεση ( σ c = σ 3 ) μονοαξονική συμπίεση ( σ d = σ 1 - σ 3 ) u 1 =Β σ 3 u 2 =Β A ( σ 1 - σ 3 ) άρα, τελικώς. u = B [ σ 3 + Α( σ 1 - σ 3 )] Α = Α(ε, OR) & Β=1 για πλήρως κορεσμένο έδαφος (ή αλλοιώς Β=0) άρα, τελικώς. u = B[ [ σ 3 + Α( σ 1 - σ 3 )] Α = Α(ε, OR) & Β=1 για πλήρως κορεσμένο έδαφος (ή αλλοιώς Β=0) 10 1.0 1/3 0 A(ε, OR) -1.0 10 αξονική παραμόρφωση ε d 0 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3
Θεωρητικά μπορεί να αποδειχθεί ότι η αστράγγιστη διατμητική αντοχή δίνεται από την σχέση: U 2σ' sinφ 1 (1 2A )sinφ a Μεταβολή του Α α με τον βαθμό προφόρτισης OR A a 1.10 0.20 OR 1.17 Αα OR Θεωρητικά μπορεί να αποδειχθεί ότι η αστράγγιστη διατμητική αντοχή δίνεται από την σχέση: U 2σ' sinφ 1 (1 2A a )sinφ Εξ άλλου, από πειραματικές μετρήσεις προκύπτει ότι: U kσ' kσ' OR 0.80 OR kσ',max όπου: k 0.11 0.0037I p (%) Είναι δηλαδή σαφές ότι αυξανομένου του OR αυξάνεται και το U. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. άρα Μηχανικών, Ε.Μ.Π. 4
επίδραση στην αστράγγιστη διατμητική αντοχή aπευθείας επιβολή q (a β) OR = 100 1.00 ui (0.15 0.30) σ νο Αύξηση η αστράγγιστης διατμητικής αντοχής επιβολή q μετά την προφόρτιση (γ δ) σ OR νο Δσ ν 1 σ νο Δσ ν σ II u 0.15 0.30 (σ νο +Δσ ν ) c I ui + (0.15 0.30)Δσ 0 ν νο συντελεστής στερεοποίησης.. υπενθύμιση: για U 92%, και t 2 H V, V, U-R V,L H H ροή Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 5
συντελεστής στερεοποίησης.. υπενθύμιση: για U 92%, και t 2 H V, V, U-R V,L γιατί V,U-R >> V,L ;;;;; Αύξηση του συντελεστή στερεοποίησης άρα τελικώς κύρια αποτελέσματα: μείωση καθιζήσεων (λόγω μείωσης της συμπιεστότητας) αύξηση φέρουσας ικανότητας (λόγω αύξησης της αστράγγιστης διατμητικής αντοχής) δευτερευόντως: δραστική μείωση του χρόνου ολοκλήρωσης των καθιζήσεων που οφείλονται στο έργο (όχι στην προφόρτιση), μια και για U 92%, και H 2 t90 V V, U-R V, L L Ερώτηση για το σπίτι: Υπάρχει όριο στις ευεργετικές επιδράσεις της προφόρτισης (μείωση καθιζήσεων, αύξηση u, μείωση t 90 ); Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 6
1 η ΕΦΑΡΜΟΓΗ ΔΙΔΟΝΤΑΙ: (α) Ομοιόμορφο εδαφικό στρώμα κορεσμένης αργίλου πάχους H=10m επί διαπερατού υποβάθρου, με OR=1, e o =1, γ κορ. =20 kn/m 3, c v,l =10-7 m 2 /s, c v,u-l =10-6 m 2 /s, =0.30, R =0.06, Ip=30% (β) Φόρτιση Δq=100 kpa (γ) Τέσσερα σενάρια προφόρτισης, με p πρ. =0 kpa, 60 kpa, 100 kpa και 160 kpa. ΖΗΤEIΤΑΙ να υπολογισθούν, για κάθε ένα σενάριο προφόρτισης: η μέση αστράγγιστη διατμητική αντοχή της αργίλου κατά την στιγμή της επιβολής του φορτίου Δq, οι καθιζήσεις που θα ακολουθήσουν, και ο χρόνος που θα χρειασθεί για να ολοκληρωθούν. Ερώτηση: Υπάρχει όριο στις ευεργετικές επιδράσεις της προφόρτισης (μείωση καθιζήσεων, αύξηση u, μείωση t 90 )????? Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 7
6.2 Διάφορες Περιπτώσεις Προφόρτισης ΠΕΡΙΠΤΩΣΗ Ι: P>Δq II: P=Δq III: P<ΔqΔ Περίπτωση Ι Περίπτωση ΙΙ α β β γ γ δ προ-φόρτιση από-φόρτιση φόρτιση Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 8 Περίπτωση ΙΙΙ
ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ Δt (1) 0 ΤΕΛΟΣ ΠΡΟΦΟΡΤΙΣΗΣ H 2 V,L ΤΕΛΟΣ ΑΠΟΦΟΡΤ. ΑΡΧΗ ΦΟΡΤΙΣΗΣ ΤΕΛΟΣ ΦΟΡΤΙΣΗΣ σ Δ σ ν σ vo σ νo + P σ νo +Δq < σ νo νo +P Δu 0 0 0 0 OR 10 1.0 10 1.0 1 P u a σ νo (a=0.15-0.35) 0 Δe (1) 0 a (σ νo +P) a H 2 V,U-R σ' νο OR νο σ' νο 0.8 log(1 P ) ( -R)log(1 P ) σ' σ' νο νο H 2 V,U-R P Δq 1 σ' Δq a (σ νο νο Δq) OR νο 0.8 log(1 + Δq ) R σ' e e o ε Ι =e o -Δe e ΙΙ =e Ι + Δe e ΙΙΙ =e ΙΙ - Δe (1) σε σχέση με την προηγούμενη κατάσταση ΠΕΡΙΠΤΩΣΗ I: Pπροφ < Δq ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΕΛΟΣ ΠΡΟΦΟΡΤΙΣΗΣ ΤΕΛΟΣ ΑΠΟΦΟΡΤ. ΑΡΧΗ ΦΟΡΤΙΣΗΣ ΤΕΛΟΣ ΦΟΡΤΙΣΗΣ Δt (1) 0 σ ν σ vo Δu 0 OR 1.0 u a σ νo (a=0.15-0.35) Δe (1) 0 e e o (1) σε σχέση με την προηγούμενη κατάσταση ΠΕΡΙΠΤΩΣΗ II: Pπροφ = Δq Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 9
ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΕΛΟΣ ΠΡΟΦΟΡΤΙΣΗΣ ΤΕΛΟΣ ΑΠΟΦΟΡΤ. ΑΡΧΗ ΦΟΡΤΙΣΗΣ ΤΕΛΟΣ ΦΟΡΤΙΣΗΣ Δt (1) 0 σ ν σ vo Δu 0 OR 1.0 u a σ νo (a=0.15-0.35) Δe (1) 0 e e o (1) σε σχέση με την προηγούμενη κατάσταση ΠΕΡΙΠΤΩΣΗ ΙΙΙ: Pπροφ < Δq Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 10
2 η ΕΦΑΡΜΟΓΗ ΔΙΔΟΝΤΑΙ: (α) Ομοιόμορφο εδαφικό στρώμα κορεσμένης αργίλου πάχους H=10m επί διαπερατού υποβάθρου, με OR=1, e o =1, γ κορ. =20 kn/m 3, c v,l =10-7 m 2 /s, c v,u-l =10-6 m 2 /s, =0.30, R =0.06, Ip=30% (β) Φόρτιση Δq=100 kpa από κυκλικό επιφανειακό θεμέλιο ακτίνας R=5m ΖΗΤEI EIΤΑΙ να υπολογισθεί το ελάχιστο απαιτούμενο φορτίο προφόρτισης εάν η επιτρεπόμενη καθίζηση είναι ρ επ. = 20cm και o ελάχιστος συντελεστής ασφαλείας FS min =2. Οι υπολογισμοί να γίνουν με αναφορά στο μέσον του στρώματος της αργίλου. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 11
6.3 Συνδυασμός Προφόρτισης με Στραγγιστήρια Υπολογισμός του συντελεστή στερεοποίησης για συνδυασμένη κατακόρυφη και οριζόντια στράγγιση: (1-U)=(1-Ur)(1-Uv) H H ροή Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 12
Κατακόρυφη Στράγγιση Οριζόντια στράγγιση U r U r U r (T r,n) T r r D t 2 De, n D e d Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 13
Οριζόντια στράγγιση U r ή εναλλακτικά U r Tr 1-exp(-8T r /A) r t 2 De æ ö Re 3 A= ln ç çè - R dø 4 ΠΑΡΑΤΗΡΗΣΕΙΣ D e = 1.05 S για ισόπλευρο τριγωνικό κάνναβο στραγγιστηρίων, πλευράς S D e =1.13S για τετραγωνικό κάνναβο στραγγιστηρίων, πλευράς S Η διαστασιολόγηση των στραγγιστηρίων, δηλαδή η εκτίμηση της ακτίνας R d και της πλευράς του καννάβου S, γίνεται ΕΠΑΝΑΛΗΠΤΙΚΑ (trial and error) Kr r v Kv Τύπος Αργίλου K r / K v - Ομοιογενείς Αποθέσεις 1-1.5 15 - Προσχωσιγενείς Αποθέσεις με διακοπτόμενες ενστρώσεις αμμο-ιλύος - Προσχωσιγενείς Αποθέσεις με συνεχείς ενστρώσεις αμμο-ιλύος 2-4 3-15 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 14
ΠΑΡΑΤΗΡΗΣΕΙΣ D e = 1.05 S για ισόπλευρο τριγωνικό κάνναβο στραγγιστηρίων, πλευράς S D e =1.13S για τετραγωνικό κάνναβο στραγγιστηρίων, πλευράς S Η διαστασιολόγηση των στραγγιστηρίων, δηλαδή η εκτίμηση της ακτίνας R d και της πλευράς του καννάβου S, γίνεται ΕΠΑΝΑΛΗΠΤΙΚΑ (trial and error) Kr r v Kv Τύπος Αργίλου K r / K v - Ομοιογενείς Αποθέσεις 1-1.5 - Προσχωσιγενείς Αποθέσεις με διακοπτόμενες ενστρώσεις αμμο-ιλύος - Προσχωσιγενείς Αποθέσεις με συνεχείς ενστρώσεις αμμο-ιλύος 2-4 3-15 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 15
3 η ΕΦΑΡΜΟΓΗ ΔΙΔΕΤΑΙ: Στρώμα κορεσμένης αργίλου, πάχους 10m, επί διαπερατού υποβάθρου, με OR=1, e o =1, γ κορ. =20 kn/m 3, c v,l =10-7 m 2 /s, c vu-l =10-6 m 2 /s, =0.30, R =0.06, k r /k v = 4 v,u L R r v ΖΗΤΕΙΤΑΙ να διαστασιολογηθεί 3-γωνικός ς κάνναβος πλαστικών στραγγιστηρίων με ισοδύναμη διάμετρο D eq = 7 cm έτσι ώστε η ολοκλήρωση της προφόρτισης να γίνει σε 2 μήνες (5.2 10 6 sec). Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 16
Ζώνη Αναμόχλευσης ή SMEAR ZONE αρχι ικό έδα φος K r =1 15 k V U r 1-exp(-8T r/a) r t Tr D R A ln R 2 e e d 3-4 K K r r,s R 1ln R s d μειώνεται αποτελεσματικότητα του στραγγιστηρίου η Ζώνη Αναμόχλευσης ή SMEAR ZONE U r 1-exp(-8T r/a) r t T r μειώνεται η 2 De αποτελεσματικότητα του στραγγιστηρίου R e 3 K r R s A ln - 1ln (αυξάνεται το Α) Rd 4 Kr,s Rd Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 17
Παραμετρική Εφαρμογή Στον Πίνακα που ακολουθεί συνοψίζονται τα αποτελέσματα παραμετρικής εφαρμογής της ανωτέρω αναλυτικής σχέσεως για τον βαθμό ακτινικής στερεοποίησης Ur. Η παραμετρική ανάλυση αφορά στον υπολογισμό του χρόνου που απαιτείται για να επιτευχθεί Ur=90% (t 90 =0.30ADe 2 /c r ) και καλύπτει το εύρος τιμών των βασικών παραμέτρων που είναι αναμενόμενο στην πράξη. Κατά την γνώμη σας, ποιοί παράγοντες έχουν (και ποιοί δεν έχουν) σημαντική επίδραση στην εξέλιξη της ακτινικής στερεοποίησης; Ανάλυση # r m 2 /yr 2R d (m) 2R e (m) K r /K r,s R s /R d t r,90% (months) Ανάλυση #i Ανάλυση #1 1 2 005 0.05 2 1 1 20.3 100 1.00 2 2 0.05 1 1 1 3.9 0.19 3 2 005 0.05 25 2.5 1 1 34.1 168 1.68 4 2 0.06 2 1 1 19.1 0.94 5 2 007 0.07 2 1 1 18.0 087 0.87 6 4 0.05 2 1 1 10.2 0.50 7 8 0.05 2 1 1 5.1 0.25 8 1 0.05 2 1 1 40.6 2.00 9 2 0.05 2 2 2 25.1 1.24 10 2 0.05 2 4 4 49.0 2.41 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 18
4 η ΕΦΑΡΜΟΓΗ ΔΙΔΕΤΑΙ: Ομοιόμορφο εδαφικό στρώμα κορεσμένης αργίλου, πάχους 10m, επί διαπερατού υποβάθρου, με OR=1, e o =1, γ κορ. =20 kn/m 3, c v,l =10-7 m 2 /s, c v,u-l =10-6 m 2 /s, =0.30, R =0.0606 ΖΗΤΕΙΤΑΙ να διαστασιολογηθεί 3-γωνικός κάνναβος πλαστικών στραγγιστηρίων με ισοδύναμη διάμετρο D eq = 7 cm έτσι ώστε η ολοκλήρωση οο της προφόρτισης να γίνει σε 2 μήνες (5.2 10 6 sec). Na θεωρήσετε ζώνη αναμόχλευσης με R S =2R d και k rs =0.5 k r. (συγκρίνετε τα αποτελέσματα με την 3 η Εφαρμογή) Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 19
6.4 Σταδιακή Προφόρτιση Ένα τελευταίο εμπόδιο το οποίο θα πρέπει να ξεπεραστεί προκειμένου ο σχεδιασμός της προφόρτισης να είναι πλήρης, είναι η εξασφάλιση της ευστάθειας του πρανούς του επιχώματος προφόρτισης έναντι (κυκλικής) μορφής αστοχίας. Ο έλεγχος αυτός είναι κρίσιμος δεδομένου το έδαφος έδρασης του επιχώματος δεν έχει ακομη στερεοποηθεί κάτω από το πρόσθετο βάρος που του επιβάλλουμε, ε με αποτέλεσμα α η αστράγγιστη σ δα διατμητική του αντοχή να είναι πολύ μικρή (ίση προς την αντοχή του φυσικου-απροφόρτιστου εδάφους). Έτσι,, σε περίπτωση που η κατασκευή του επιχώματος προφόρτισης ρ σε ένα στάδιο δεν είναι ασφαλής, το κατασκευάζουμε σταδιακά, αφήνοντας επαρκή χρόνο μεταξύ των σταδίων κατασκευής προκειμένου να ολοκληρωθούν οι καθιζήσεις του κάθε σταδίου. Προφανώς, χρησιμοποιούμε στραγγιστήρια προκειμένου ο χρόνος αναμονής να περιοριστεί. Με αυτό τον τρόπο, το ύψος του επιχώματος αυξάνεται παράλληλα με την αστράγγιστη διατμητική αντοχή του εδάφους και αποφεύγεται η αστοχία του πρανούς. Στην πράξη, ο έλεγχος ευστάθειας του πρανούς γίνεται με την «μέθοδο των λωρίδων», έτσι ώστε να μπορεί να λάβει συστηματικά υπόψη την γεωμετρία (κλίση και ύψος) ) του πρανούς, τις διαφορετικές μηχανικές ιδιότητες δό του επιχώματος και του εδάφους έδρασης, κλπ. Προσεγγιστικά,, στα πλαίσια του περιορισμένου ρ χρόνου που έχουμε στην διάθεση μας, μπορεί να χρησιμοποιηθεί και η μέθοδος Taylor (βλ. ακόλουθη διαφάνεια) η οποία ισχύει για: αστράγγιστες συνθήκες φόρτισης ενιαίες και σταθερές με το βάθος τιμές του φαινόμενου ειδικού βάρους (γ) και της αστράγγιστης διατμητικής αντοχής (u) του εδάφους και του επιχώματος Οι παραδοχές που θα χρειασθούν για την ενδεικτική εφαρμογή αυτής της μεθόδου στο «βασικό παράδειγμα προφόρτισης» που εξετάζουμε, θα σας εξηγηθούν κατά την διάρκεια του μαθήματος. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 20
Σταδιακή Προφόρτιση (ανάλυση ευστάθειας πρανούς κατά Taylor) FS min = U / (N S γ Η) Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 21
5 η ΕΦΑΡΜΟΓΗ ΔΙΔΟΝΤΑΙ: (α) Ομοιόμορφο μ εδαφικό στρώμα κορεσμένης αργίλου πάχους H=10m επί διαπερατού υποβάθρου, με OR=1, e o =1, γ κορ. =20 kn/m 3, c v,l =10-7 m 2 /s, c v,u-l =10-6 m 2 /s, =0.30, R =0.06, Ip=30% (β) Επίχωμα προφόρτισης με ύψος Η επ =6.5m, γ επ =22kN/m3, φ επ =42deg (c=0) και γωνία κλίσης πρανούς α=26 deg. ΖΗΤEIΤΑΙ να ελεγχθεί: (α) Εάν είναι χρειάζεται σταδιακή προφόρτιση ή όχι. (β) Εάν είναι ασφαλής η κατασκευή του επιχώματος σε 4 στάδια (0-1.5m, 1.5-3.0m, 3.0-4.5m και 4.5-6.5m). Να ελεγχθεί κυκλική επιφάνεια αστοχίας με ακτίνα R=15m και μέγιστο βάθος 6m εντός της αργίλου. Κατά την σταδιακή προφόρτιση αρκεί συντελεστής ασφαλείας μεγαλύτερος από 115 1.15-1.20 120 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 22
6 η ΕΦΑΡΜΟΓΗ ΔΙΔΟΝΤΑΙ: (α) Ομοιόμορφο εδαφικό στρώμα κορεσμένης αργίλου πάχους H=10m επί διαπερατού υποβάθρου, με OR=1, e o =1, γ κορ. =20 kn/m 3, c v,l =10-7 m 2 /s, c v,u-l =10-6 m 2 /s, =0.30, R =0.06, Ip=30% (β) Φόρτιση Δq=100 kpa από κυκλικό επιφανειακό θεμέλιο ακτίνας R=5m ΖΗΤEI EIΤΑΙ να υπολογισθεί το ελάχιστο απαιτούμενο φορτίο προφόρτισης εάν η επιτρεπόμενη καθίζηση είναι ρ επ. = 20cm και o ελάχιστος συντελεστής ασφαλείας FS min =2. Οι υπολογισμοί να γίνουν με αναφορά στο μέσον του στρώματος της αργίλου. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 23
7 η ΕΦΑΡΜΟΓΗ (επαναληπτική) Απαιτήσεις σχεδιασμού: FS>2, ρ<12cm, t 92 =3 μήνες Επίχωμα προφόρτισης: γ επ =20 kn/m 3, φ επ =38 ο γωνία κλίσης πρανούς α=26 ο, βάθος κύκλου αστοχίας Ζ max =4m Στραγγιστήρια: Πλαστικά, D στρ =5cm ZHTOYNTAI: Η κατανομή του OR και του σ v,max με το βάθος Ζώνη αναμόχλευσης, D sm =10cm 4-γωνικός κάνναβος, πλευράς S Το ελάχιστο ύψος του επιχώματος προφόρτισης Η ελάχιστη απόσταση μεταξύ των στραγγιστηρίων Χρειάζεται σταδιακή προφόρτιση?? Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 24
8 η ΕΦΑΡΜΟΓΗ (επαναληπτική) Επίχωμα προφόρτισης: Η επ =10m γ επ =20 kn/m 3, φ επ =38 ο γωνία κλίσης πρανούς α=26 ο, κύκλος αστοχίας Ζ max =4m, R=15m ZHTOYNTAI: O χρόνος αφαίρεσης της προφόρτισης Η κατανομή του OR και του σ v,max με το βάθος ΤΟ ΕΠΙΧΩΜΑ ΠΡΟΦΟΡΤΙΣΗΣ ΑΦΑΙΡΕΙΤΑΙ OΤΑΝ ΤΟ ΠΟΣΟΣΤΟ ΣΤΕΡΕΟΠΟΙΗΣΗΣ ΓΙΝΕΙ U V =50 % Ο συντελεστής ασφάλειας έναντι αστοχίας FS, μετά την προφόρτιση (με αναφορά στο σημείο Μ) Οι καθίζησεις μετά την προφόρτιση (4 στρώσεις των 2m) Χρειάζεται σταδιακή προφόρτιση?? Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 25