ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0



Σχετικά έγγραφα
Κεφ. 9 Ανάλυση αποφάσεων

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια;

δημιουργία: επεξεργασία: Ν.Τσάντας

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Βασικές Αρχές της Θεωρίας Παιγνίων

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

Μικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1

Δεύτερο πακέτο ασκήσεων

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

Notes. Notes. Notes. Notes Ε 10,10 0,3 Λ 3,0 2,2

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 4: Μεικτές Στρατηγικές. Ε. Μαρκάκης. Επικ. Καθηγητής


Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 2: Έννοιες λύσεων σε παίγνια κανονικής μορφής. Ε. Μαρκάκης. Επικ. Καθηγητής

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων. Ε. Μαρκάκης. Επικ.

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

10/3/17. Κεφάλαιο 28 Ολιγοπώλιο. Μικροοικονομική. Ολιγοπώλιο. Ολιγοπώλιο. Ανταγωνισµός ποσότητας. Μια σύγχρονη προσέγγιση

6. Παίγνια αλληλοδιαδοχικών κινήσεων και η αξία του περιορισμού των επιλογών κάποιου ατόμου

Συνδυαστικά Παίγνια. ιαµόρφωση Παιγνίων. Θέµατα σε Πάιγνια Μηδενικού Αθροίσµατος

Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

Κεφάλαιο 29 Θεωρία παιγνίων

Μικροοικονομική Ι. Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών

Το Υπόδειγμα της Οριακής Τιμολόγησης

Ασκήσεις. Ιωάννα Καντζάβελου. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1

Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής.

Κυριαρχία και μεικτές στρατηγικές Μεικτές στρατηγικές και κυριαρχία Είδαμε ότι μια στρατηγική του παίκτη i είναι κυριαρχούμενη, αν υπάρχει κάποια άλλη

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Περιεχόμενα. 1. Ανάλυση ευαισθησίας. (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων

Β. Βασιλειάδης Αν. Καθηγητής. Επιχειρησιακή Ερευνα Διάλεξη 6 η - Θεωρεία Παιγνίων

Κριτικές στο Υπόδειγμα Cournot

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

Κεφάλαιο 5 R (2, 3) R (3, 0)

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

Κεφάλαιο 2ο (α) Αµιγείς Στρατηγικές (β) Μεικτές Στρατηγικές (α) Αµιγείς Στρατηγικές. Επαναλαµβάνουµε:

Κεφάλαιο 28 Ολιγοπώλιο

Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

1. Επιλογή Ποιότητας στην Ολιγοπωλιακή Αγορά: Κάθετη Διαφοροποίηση Προϊόντος

* τη µήτρα. Κεφάλαιο 1o

Αποτροπή Εισόδου: Το Υπόδειγμα των Spence-Dixit

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών. Ιωάννης Παραβάντης. Επίκουρος Καθηγητής. Απρίλιος 2016

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

( ) ΘΕΜΑ 1 κανονική κατανομή

A 2 B 2 Γ 2. u 1 (A 1, A 2 ) = 3 > 1 = u 1 (B 1, A 2 ) u 1 (A 1, Γ 2 ) = 1 > 0 = u 1 (B 1, Γ 2 ) A 2 B 2

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

(2) Χωροθετικά Υποδείγματα Διαφοροποιημένου Προϊόντος

Η προσδοκώµενη χρησιµότητα του κέρδους όταν η πιθανότητα η τιµή του προϊόντος Ρ1 είναι ψ, χ το επίπεδο παραγωγής και c(x) η συνάρτηση κόστους, είναι

Notes. Notes. Notes. Notes

Κεφάλαιο 4. Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία

Ολιγοπωλιακή Ισορροπία

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016

B 1 A 1 B 2 A 2. t 1. t 3 w. t 2 A 3 B 3. t 4. t 5


Εκτεταμένα Παίγνια (Extensive Games)

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

Οικονομία των ΜΜΕ. Ενότητα 8: Παίγνια και ολιγοπωλιακές επιχειρήσεις

Επίλυση Προβλημάτων 1

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Evolutionary Equilibrium

Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

Α2 Β2 Γ2 2 Α1 1,0 5,-1-1,-2 9,-2 Β1 2,1-2,0 0,2 0,-1 Γ1 0,3 14,2 2,1 8,1 1 1,2 0,1 3,0-1,0

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης

ΤΟΥΡΙΣΤΙΚΗ ΟΙΚΟΝΟΜΙΚΗ. ΚΕΦΑΛΑΙΟ 15.3 ΜΟΡΦΕΣ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΤΗΣ ΤΟΥΡΙΣΤΙΚΗΣ ΑΓΟΡΑΣ Το τουριστικό ολιγοπώλιο

ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

Κοινωνικά Δίκτυα Θεωρία Παιγνίων

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

Η θεωρία Weber Προσέγγιση του ελάχιστου κόστους

Ελαχιστοποίηση του Κόστους

Συστήματα Υποστήριξης Αποφάσεων Διάλεξη Νο2 και 3. Ενισχυτικές διαφάνειες

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ

Λήψη Αποφάσεων σε Συνθήκες Αβεβαιότητας. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Επιχειρησιακή Έρευνα I

Transcript:

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων των παικτών και δίνεται από τον πίνακα αποτελεσμάτων του παιγνίου (reward ή pay off matrix). Παράδειγμα : Κυρίαρχη στρατηγική (2 παίκτες, 2 στρατηγικές ο καθένας) Βfi 2 Αfl, 2 0, 2 2,, 0 Το ζευγάρι στοιχείων (α ij, β ij ) του πίνακα δείχνει το αποτέλεσμα του παιγνίου για τον Α(α ij ) και το αποτέλεσμα του παιγνίου για τον Β(β ij ) όταν ο Α παίζει τη στρατηγική του i και ο Β τη στρατηγική του j. r (A i,b j ) = (a ij,b ij ) Για τα συγκεκριμένα αριθμητικά στοιχεία το παιχνίδι αυτό παρουσιάζει αυτό που λέγεται κυρίαρχη στρατηγική. Ο Α είναι καλύτερα όταν ακολουθεί τη στρατηγική του 2, ανεξάρτητα από το τι παίζει ο Β, και ο Β είναι καλύτερα όταν ακολουθεί (παίζει) τη στρατηγική του ανεξάρτητα από το τι κάνει ο Α. Έτσι η κυρίαρχη στρατηγική είναι η (A2,B) με r (A2,B) = (2,). Παράδειγμα 2: Σημείο ισορροπίας κατά Nash (2 παίκτες, 2 στρατηγικές) Βfi 2 Αfl 2, 0, 2 0, 0, 2 Εάν και οι δύο παίκτες βρεθούν στο ισορροπίας κατά Nash αυτό κανένας από τους δύο δεν έχει κίνητρο να αλλάξει μόνον αυτός τη στρατηγική του. Ένα παιχνίδι μπορεί να έχει περισσότερα από ένα τέτοια σημεία.

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ σελ. 2/8 Τέτοια σημεία στο παίγνιο του παραδείγματος είναι το (Α,Β) και το (Α2,Β2) με r (A,B) = (2,) και r (A2,B2) = (,2). Παράδειγμα 3: Παίγνιο χωρίς ισορροπία κατά Nash σε καθαρές στρατηγικές Βfi 2 Αfl 0, 0 0, 2, 0, 3 Παράδειγμα : Το δίλημμα του κρατούμενου Βfi Ομολογία Άρνηση Αfl Ομολογία 3, 3 0, 6 Άρνηση 6, 0, Παίγνια 2 παικτών σταθερού αθροίσματος Το κέρδος όλων των παικτών για κάθε δυνατό συνδυασμό στρατηγικών τους έχει σταθερό άρθροισμα. Τα συμφέροντα των παικτών στην περίπτωση αυτή είναι διαμετρικά αντίθετα. Το παιχνίδι μπορεί να παρασταθεί μόνο από τα κέρδη (αποτελέσματα) του Α. Όταν ο Α μεγιστοποιεί το δικό του κέρδος τότε ελαχιστοποιεί του Β και αντίστροφα όταν ο Β ελαχιστοποιεί το κέρδος του Α τότε μεγιστοποιεί το δικό του. Πίνακας κερδών του Α Βfi 2 n Αfl α α n 2 m α m α mn

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ σελ. 3/8 α ij είναι το κέρδος του Α όταν ο Α παίζει την i στρατηγική και ο Β την j στρατηγική. Ο Α έχει m δυνατές και ο Β n δυνατές στρατηγικές. Λογική συντηρητικής συμπεριφοράς Ο Α επιδιώκει να κάνει την χειρότερη δυνατή περίπτωσή του όσο πιο ευνοϊκή γίνεται. Έτσι μεγιστοποιεί το κατοχυρωμένο του κέρδος. Αυτό το επιτυγχάνει διαλέγοντας το μέγιστο των ελαχίστων των γραμμών (max min). Ο Β επιδιώκει να κάνει την πιο ευνοϊκή περίπτωση του Α όσο χειρότερη γίνεται. Έτσι προσπαθεί να ελαχιστοποιήσει την χειρότερη γι αυτόν εκδοχή σε κάθε περίπτωση. Επιλέγει, συνεπώς το ελάχιστο των μέγιστων των στηλών (min max). α α n ε α κt α κj ελάχιστα γραμμών Έστω: α κj = max {ε,, ε m } α m α mn ε m μ α lt μ n μέγιστα στηλών το μέγιστο των ελαχίστων των γραμμών max min, και α lt = min {μ,, μ n } Ισχύει: το ελάχιστο των μεγίστων των γραμμών min max. α lt α κt α κj Άρα: max min min max

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ σελ. /8 Παράδειγμα: Βfi Αfl 8 8 2 2 5 6 6 5 3 5 7 3 8 8 7 Στο παράδειγμα max min = max {2,5,3} = 5 min max = min {8,8,7} = 7 Ο Α παίζοντας 2 εξασφαλίζει κέρδος 5 (το μέγιστο εξασφαλισμένο κέρδος). Ο Β παίζοντας 3 περιορίζει τον Α σε κέρδος το πολύ 7. Προφανώς ο Α δεν μπορεί να εξασφαλίσει μεγαλύτερο κέρδος από αυτό στο οποίο με βεβαιότητα του έχει περιορίσει ο Β. Στην πράξη εάν ο Α παίξει 2 και ο Β 3, ο Α θα κερδίσει 6 (κάτι μεταξύ 5 και 7). Και ο Α και ο Β αισθάνονται ότι υπάρχει κενό μεταξύ 5 και 7 που μπορούν να εκμεταλλευθούν. Μικτές στρατηγικές Βfi Αfl x α α n 2 m x m α m α mn Έστω ότι ο Α παίζει τις m στρατηγικές του με πιθανότητα x,, x m αντίστοιχα. 0 xi x m i= i =

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ σελ. 5/8 Τότε το προσδοκώμενο κέρδος του Α απέναντι στη στρατηγική του Β είναι: Ε = x α + x 2 α 2 + + x m α m και ανάλογα απέναντι στις στρατηγικές 2,, n του Β: Ε 2 = x α 2 + x 2 α 22 + + x m α m2 Ε n = x α n + + x m α mn Ο Α θέλει να επιλέξει τα x,, x m έτσι ώστε να μεγιστοποιήσει το ελάχιστο από τα Ε,, Ε n (max min). Έστω: V = min {Ε,, Ε i } Τότε ο Α έχει να λύσει το πρόβλημα: max V όταν V E i i =,, n ή το πρόβλημα: (Π) όταν max V α x + + α m x m V 0 α 2 x + + α m2 x m V 0 α n x + + α mn x m V 0 x + x 2 + + x m = x,, x m 0 Όμοια ο Β μπορεί να παίξει τις n στρατηγικές του με πιθανότητες y,, y n αντίστοιχα. 0 yi y n i= Τότε το προσδοκώμενο κέρδος του A απέναντι στη στρατηγική του A είναι αντίστοιχα: i = Ζ = α y + α 2 y 2 + + α n y n Ζ m = α m y + + α mn y n

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ σελ. 6/8 Ο B θέλει να προσδιορίσει τα y,, y m έτσι ώστε να ελαχιστοποιείται το μέγιστο από τα Ζ,, Ζ n (min max). Πρέπει λοιπόν να λύσει το πρόβλημα: ή το πρόβλημα: (Π2) όταν min W W = max {Z,, Z m } min W α y + α 2 y 2 + + α n x m W 0 α m y + + α mn y n W 0 y + y 2 + + y n = y,, y n 0 Τα προβλήματα (Π) και (Π2) είναι δυικά μεταξύ τους και επομένως: max V = min W Αυτό σημαίνει ότι το κενό που υπήρχε μεταξύ max min σε καθαρές στρατηγικές γεφυρώνεται και επομένως ότι κανείς από τους δύο παίκτες δεν μπορεί να επιτύχει κάτι καλύτερο. Άρα οι δύο παίκτες βρίσκονται σε σημείο ισορροπίας. Παράδειγμα: Βfi y y 2 Αfl x 5 x 2 3 6 3 5 6 O παίκτης Α έχει να λύσει το πρόβλημα: (Π) max V όταν 5x + 3x 2 V 0 x + 6x 2 V 0 x + x 2 = x 0, x 2 0 V ελεύθερο

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ σελ. 7/8 O παίκτης Β έχει να λύσει το πρόβλημα: (Π2) min W όταν 5y + y 2 W 0 3y + 6y 2 W 0 y + y 2 = y 0, y 2 0 W ελεύθερο Τα προβλήματα (Π) και (Π2) αποτελούν ένα ζευγάρι δυικών προβλημάτων. Το (Π) διαδοχικά γράφεται θέτοντας x = p, x 2 = p max V ή max V ή max V 5p + 3( p) V 0 2p V 3 2p V s = 3 p + 6( p) V 0 2p V 6 2p V s 2 = 6 0 p 0 p 0 p Επαλήθευση της άριστης λύσης ως προς βασικές μεταβλητές p, V: 0 p V [ 3 6 ] 2 2 2 2 yα s c s = 2 0 3 8 s 0, s 2 0 yα s2 c s2 = 2 0 Άρα η λύση είναι άριστη και επαληθεύει τον περιορισμό p.

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ σελ. 8/8 Aντίστοιχα το (Π2) διαδοχικά γράφεται θέτοντας y = q, y 2 = q min W ή min W q W 3q W 6 q W + t = 3q W + t 2 = 6 0 q 0 q t 0, t 2 0 Επαλήθευση της άριστης λύσης ως προς βασικές μεταβλητές q, W: 0 q W [ 6 ] 3 3 yα t c t = yα t2 c t2 = 3 0 0 2 8 Άρα έχουμε άριστη λύση, η οποία επαληθεύει τον περιορισμό q. Στο παράδειγμα παρατηρούμε ότι: Σε καθαρές στρατηγικές: max min = α 2 = min max = α = 5 8 Σε μικτές στρατηγικές: max V = min W = =,5. max min < min max