ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ"

Transcript

1 ΘΕΜΑ 1 ο (2.5) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Δευτέρα 3 Σεπτεμβρίου 2012 Διάρκεια εξέτασης: 3 ώρες (16:30-19:30) Δύο άνθρωποι υποβάλλουν σφραγισμένες προσφορές για ένα αντικείμενο που αξίζει 3 για τον καθένα τους. Μια προσφορά μπορεί να είναι μόνο ακέραιος αριθμός ευρώ, ειδικότερα 0, 1, 2 και 3. Το αντικείμενο το παίρνει ο παίκτης που υπέβαλλε τη μεγαλύτερη προσφορά, όμως και οι δύο παίκτες πληρώνουν το ποσό που προσέφεραν. Σε περίπτωση ισοβαθμίας, το αντικείμενο δίνεται σε έναν εκ των δύο παικτών με τυχαίο τρόπο (ισοπίθανα). Σε περίπτωση που και οι δύο προσφέρουν 0, το αντικείμενο δεν δίνεται σε κανένα. Βρείτε τις ισορροπίες Nash με καθαρές στρατηγικές του παραπάνω παιχνιδιού. Παρακάτω φαίνεται ο πίνακας του παιχνιδιού με καθαρές στρατηγικές. Α Β ,0 0,2 0,1 0,0 1 2,0 0.5,0.5-1,1-1,0 2 1,0 1,-1-0.5, ,0 3 0,0 0,-1 0,-2-1.5, -1.5 Δεν υπάρχει κανένα σημείο ισορροπίας με καθαρές στρατηγικές. ΘΕΜΑ 2 ο (2.5) Τρεις φοιτητές ανέλαβαν να εκπονήσουν μια εργασία. Κάθε φοιτητής έχει τις επιλογές να εργαστεί (με κόστος c) και να μην εργαστεί (με κόστος 0). Για να εκπονηθεί επιτυχώς η εργασία πρέπει να εργαστούν τουλάχιστον δύο από τους τρεις φοιτητές. Το όφελος από την επιτυχή εκπόνηση της εργασίας είναι K, όπου Κ>c. Βρείτε μια συμμετρική ισορροπία Nash με μικτές στρατηγικές για το παιχνίδι αυτό. Έστω ότι κάθε φοιτητής επιλέγει να εργαστεί με πιθανότητα p και να μην εργαστεί με πιθανότητα 1-p. Για να αποτελεί ο συνδυασμός αυτός σημείο ισορροπίας με μικτές στρατηγικές, θα πρέπει το όφελος για κάθε φοιτητή από την υιοθέτηση της μικτής στρατηγικής να είναι το ίδιο με την υιοθέτηση οποιασδήποτε καθαρής στρατηγικής, με δεδομένο ότι οι άλλοι δύο φοιτητές εξακολουθούν να επιλέγουν τη συγκεκριμένη μικτή στρατηγική. Έστω λοιπόν ότι ο πρώτος εκ των τριών φοιτητών επιλέγει καθαρή στρατηγική, ενώ οι άλλοι δύο επιλέγουν τη συγκεκριμένη μικτή στρατηγική (εργάζονται με πιθανότητα p και δεν εργάζονται με πιθανότητα 1-p). Εάν ο πρώτος φοιτητής επιλέξει να εργαστεί, το αναμενόμενο όφελός του θα είναι: -c + K(1-(1-p) 2 ) = -c + K(2p-p 2 ) μιας και αυτός θα υποστεί το κόστος της εργασίας, ενώ η πιθανότητα να εργαστεί τουλάχιστον ένας εκ των δύο άλλων (ώστε να εκπονηθεί επιτυχώς η εργασία) είναι 1-(1-p) 2.

2 Εάν ο πρώτος φοιτητής επιλέξει να μην εργαστεί, το αναμενόμενο όφελός του θα είναι: Kp 2 μιας και αυτός δεν θα υποστεί το κόστος της εργασίας, ενώ η πιθανότητα να εργαστούν και οι δύο έτεροι φοιτητές είναι p 2. Για να έχουμε ισορροπία μικτών στρατηγικών, θα πρέπει οι δύο παραπάνω αναμενόμενες απολαβές να είναι ίσες. Έχουμε λοιπόν: -c + K(2p-p 2 ) = Kp 2 2Kp 2-2Kp + c = 0 Έχουμε ένα τριώνυμο, με διακρίνουσα: Δ=4K 2-8Kc Η διακρίνουσα είναι θετική όταν Κ>2c, δηλαδή το κέρδος από την επιτυχή ολοκλήρωση της εργασίας είναι μεγαλύτερο από το διπλάσιο του κόστους συμμετοχής στην εργασία. Με αυτή την προϋπόθεση, βρίσκουμε τις ρίζες του τριωνύμου, ήτοι: p 1 = 2K-sqrt(Δ) / 4Κ p 2 = 2K+sqrt(Δ) / 4Κ οι οποίες, εφόσον είναι στο διάστημα [0,1], αποτελούν και τη ζητούμενη πιθανότητα της μικτής στρατηγικής. ΘΕΜΑ 3 ο (2,5 μονάδες) [Δυοπώλιο Stackelberg] Σε δυοπωλιακή αγορά, η εταιρεία Α επιλέγει πρώτη την ποσότητα Q A που θα παράγει, ενώ στη συνέχεια η εταιρεία Β, αφού πληροφορηθεί την ποσότητα Q A, αποφασίζει τη δική της ποσότητα παραγωγής Q B. Έστω ότι το κόστος ανά μονάδα προϊόντος είναι c και για τις δύο εταιρείες, ενώ η αντίστροφη καμπύλη ζήτησης είναι P=a-bQ, όπου Q=Q A +Q B. Υπολογίστε τις ποσότητες Q A * και Q B * που θα παράγουν οι δύο εταιρείες, υπολογίζοντας την ισορροπία Nash για αυτό το εκτεταμένο παιχνίδι. Υπολογίστε την τιμή πώλησης του προϊόντος και τα κέρδη των δύο εταιρειών. Έστω ότι η εταιρεία Α παρήγαγε ποσότητα Q A. Τότε, η εταιρεία Β θα επιλέξει την ποσότητα Q B έτσι ώστε να μεγιστοποιήσει το κέρδος της. Το κέρδος της εταιρείας Β είναι: Gain B = (P-c)*Q B =(a-bq-c)q B = (a-b(q A +Q B )-c)q B = aq B -bq A Q B -bq B 2 +bcq B Η παράγωγος ως προς Q B της παραπάνω ποσότητας είναι: a-bq A -2bQ B +bc η οποία μηδενίζεται για: Q B = (a-bq A +bc)/2b Γνωρίζοντας ωστόσο η εταιρεία Α την ποσότητα που θα παράγει η Β για οποιαδήποτε τιμή του Q A, θα επιλέξει το Q A έτσι ώστε να μεγιστοποιηθεί το κέρδος της Α. Το κέρδος της Α λοιπόν είναι: Gain A =(P-c)*Q A =(a-bq-c)q A = (a-b(q A +Q B )-c)q A = (a-b(q A +(a-bq A +bc)/2b)-c)q A

3 = aq A -bq A 2 -aq A /2+bQ A /2-bcQ A /2-cQ A Η παράγωγος ως προς Q A της παραπάνω ποσότητας είναι: a-2bq A -a/2+b/2-bc/2-c Η οποία μηδενίζεται για: Q A =(a/2+b/2-bc/2 c)/2b Αντικαθιστώντας παραπάνω βρίσκουμε τα κέρδη των δύο εταιρειών, τις ποσότητες παραγωγής και την τιμή πώλησης της μονάδας προϊόντος. ΘΕΜΑ 4 ο (2,5) Έστω το δυοπώλιο Bertrand, όπου δύο εταιρείες, 1 και 2, προσφέρουν την ίδια υπηρεσία. Κάθε εταιρεία ανακοινώνει μια τιμή, έστω p 1 και p 2 αντίστοιχα, και η εταιρεία που θα ανακοινώσει τη χαμηλότερη τιμή κερδίζει ολόκληρη την αγορά (σε περίπτωση ισοβαθμίας οι εταιρείες μοιράζονται την αγορά). Έστω ότι το παίγνιο επαναλαμβάνεται επ άπειρο, με συντελεστή προεξόφλησης δ, 0<δ<1. Οι δύο εταιρείες συμφωνούν να προσφέρουν την υπηρεσία σε μία κοινή τιμή, p*, τέτοια ώστε να μεγιστοποιείται το κέρδος τους (το οποίο και μοιράζονται). Ωστόσο, αν μια εταιρεία αθετήσει τη συμφωνία, η άλλη εταιρεία το αντιλαμβάνεται με καθυστέρηση μιας περιόδου, οπότε η όποια τιμωρία εφαρμόζεται τη μεθεπόμενη περίοδο από την αθέτηση της συμφωνίας. α) Βρείτε για ποιες τιμές του δ η συμφωνία είναι βιώσιμη. (1) β) Έστω ότι η αναγνώριση της αθέτησης της συμφωνίας καθυστερεί δύο περιόδους, με αποτέλεσμα η τιμωρία να επέρχεται την τρίτη περίοδο μετά την αθέτηση της συμφωνίας. Για ποιες τιμές του δ είναι βιώσιμη η συμφωνία σε αυτή την περίπτωση; (1 μονάδα) γ) Σχολιάστε τα αποτελέσματα που πήρατε στα δύο προηγούμενα ερωτήματα. Σε ποια περίπτωση η ελάχιστη τιμή του δ είναι μεγαλύτερη και γιατί; (0.5 μονάδες) Σημείωση: Για να απαντήσετε στο ερώτημα (γ) δεν είναι απαραίτητο να έχετε απαντήσει τα δύο προηγούμενα ερωτήματα. Δίνονται: 2 0, και , 794. α) Έστω π* το κέρδος που μοιράζονται οι δύο εταιρείες ανά γύρο του παιχνιδιού, όταν εμμένουν στην συμφωνηθείσα κοινή τιμή p* (δεν μας ενδιαφέρει ποια είναι η ακριβής τιμή του p* και του π*, μιας και δεν θα επηρεάσει το τελικό αποτέλεσμα). Έστω λοιπόν ότι μια εταιρεία αθετεί τη συμφωνία. Προφανώς η εταιρεία θα χαμηλώσει λίγο (απειροελάχιστα) την τιμή που προσφέρει την υπηρεσία, κερδίζοντας έτσι ολόκληρη την αγορά, χωρίς ουσιαστική μεταβολή στο συνολικό κέρδος. Αυτό θα συμβεί για δύο περιόδους. Από την τρίτη περίοδο (δύο περιόδους μετά την αθέτηση της συμφωνίας) και μετά, η άλλη εταιρεία θα τιμολογήσει την υπηρεσία στο κόστος, μηδενίζοντας έτσι το κέρδος και για τις δύο εταιρείες. Το βραχυπρόθεσμο κέρδος της εταιρείας που αθέτησε τη συμφωνία είναι π*+δπ*, ενώ στη συνέχεια το κέρδος θα είναι μηδέν και για τις δύο εταιρείες. Εάν δεν αθετούσε τη συμφωνία, η εταιρεία θα κέρδιζε π*/2 για πάντα, άρα το μακροπρόθεσμο κέρδος της θα ήταν π*/(2(1-δ)).

4 Για να είναι λοιπόν διατηρήσιμη η συμφωνία θα πρέπει να ισχύει: π*/(2(1-δ))>π*(1+δ) ή 1+δ<1/(2(1-δ)) ή (1+δ)(1-δ)<1/2 ή 1-δ 2 <1/2 ή δ 2 >1/2 ή δ> β) Με παρόμοιους υπολογισμούς, θα πρέπει να ισχύει: π*/(2(1-δ))>π*(1+δ+δ 2 ) ή 1+δ+δ 2 <1/(2(1-δ)) ή (1-δ)(1+δ+δ 2 )<1/2 ή 1+δ+δ 2 -δ-δ 2 -δ 3 <1/2 ή 1-δ 3 <1/2 ή δ 3 >1/2 ή δ>0,794. γ) Παρατηρούμε ότι για μεγαλύτερη περίοδο καθυστέρησης ενεργοποίησης της τιμωρίας αυξάνεται και η ελάχιστη τιμή του δ για την οποία η συμφωνία είναι βιώσιμη. Αυτό είναι αναμενόμενο μιας και όσο το βραχυπρόθεσμο όφελος αυξάνεται (μεγαλύτερη περίοδο καθυστέρησης ενεργοποίησης της τιμωρίας), τόσο μεγαλύτερη αξία θα πρέπει να έχει το μακροπρόθεσμο όφελος από την τήρηση της συμφωνίας (μεγάλες τιμές του δ) για να είναι η συμφωνία βιώσιμη. ΘΕΜΑ 5 ο (2,5) Έστω μια δημοπρασία δεύτερης τιμής με δύο υποψήφιους αγοραστές. Η αξία του αντικειμένου για κάθε έναν αγοραστή (άγνωστη στον άλλο αγοραστή και στον πωλητή) είναι μεταξύ 0 και 1, με ομοιόμορφη κατανομή πιθανότητας. Ο πωλητής θέτει μια ελάχιστη τιμή r (reserve price), 0 r 1, η οποία είναι γνωστή στους παίκτες. Εάν οι δύο προσφορές είναι μικρότερες από r, το αντικείμενο δεν πωλείται. Εάν μία μόνο προσφορά είναι μεγαλύτερη ή ίση από το r, το αντικείμενο πωλείται στην τιμή r στον παίκτη με τη μεγαλύτερη προσφορά. Εάν και οι δύο οι προσφορές είναι μεγαλύτερες από r, το αντικείμενο πωλείται στον παίκτη με τη μεγαλύτερη προσφορά αλλά στην τιμή που καθορίζεται από τη δεύτερη προσφορά. α) Βρείτε ένα σημείο ισορροπίας Nash με καθαρές στραγητικές για τους δύο παίκτες. (1,25) β) Με δεδομένη την κατανομή των προτιμήσεων των δύο παικτών, ποια τιμή για το r μεγιστοποιεί το αναμενόμενο κέρδος του πωλητή; (1,25) Σημείωση: Για δύο τυχαίες μεταβλητές Χ και Υ που παίρνουν ισοπίθανες τιμές στο διάστημα [a,b], η αναμενόμενη τιμή του min(x,υ) είναι a+(b-a)/3. α) Όπως και στην απλή δημοπρασία δεύτερης τιμής, έτσι και εδώ οι παίκτες έχουν κυρίαρχη στρατηγική να προσφέρουν την υποκειμενική για αυτούς αξία, ανεξαρτήτως αν αυτή είναι μεγαλύτερη από r ή όχι. Αν η υποκειμενική αξία είναι μικρότερη από r, έτσι και αλλιώς δεν πρόκειται να κερδίσουν τη δημοπρασία (οπότε δεν έχει διαφορά από το να μην παίξουν). Εάν η υποκειμενική τους αξία είναι μεγαλύτερη από r, εφόσον κερδίσουν δεν θα πληρώσουν όσα προσέφεραν αλλά το μέγιστο μεταξύ του r και της τιμής που προσέφερε ο έταιρος παίκτης. Εάν προσφέρουν μικρότερη τιμή από την υποκειμενική αξία, το μόνο το οποίο ρισκάρουν είναι να μην κερδίσουν τη δημοπρασία (και όχι να πληρώσουν λιγότερο). Ο συνδυασμός λοιπόν των δύο κυριάρχων στρατηγικών είναι το σημείο ισορροπίας Nash με καθαρές στρατηγικές. β) Θα υπολογίσουμε το αναμενόμενο κέρδος του διοργανωτή, με παράμετρο το r. Έχουμε τρεις περιπτώσεις: β1) Κανείς παίκτης δεν προσφέρει παραπάνω από r. Η πιθανότητα ο ένας παίκτης να προσφέρει λιγότερο από r είναι ίση με r. Η πιθανότητα και οι δύο παίκτες να προσφέρουν τιμές μικρότερες από r ισούται με r 2. Σε αυτή την περίπτωση ο διοργανωτής δεν κερδίζει τίποτα.

5 β2) Ο ένας εκ των δύο παικτών προσφέρει πάνω από r και ο άλλος κάτω από r. Η πιθανότητα να συμβεί αυτό είναι 2r(1-r). Σε αυτή την περίπτωση, ο πωλητής κερδίζει r, άρα η συμβολή στο αναμενόμενο κέρδος αυτής της περίπτωσης είναι 2r 2 (1-r). β3) Και οι δύο παίκτες προσφέρουν πάνω από r, κάτι που μπορεί να συμβεί με πιθανότητα (1-r) 2. Σε αυτή την περίπτωση ο νικητής πληρώνει όσα προσέφερε ο δεύτερος. Όλες οι τιμές είναι ισοπίθανες, άρα έχοντας δύο τιμές στο διάστημα [r,1], θέλουμε να βρούμε την αναμενόμενη τιμή της μικρότερης αυτών. Σύμφωνα με την υπόδειξη, αυτή ισούται με r+(1-r)/3. Άρα, η συνεισφορά στο αναμενόμενο όφελος του πωλητή από αυτή την περίπτωση είναι: (1-r) 2 [r+(1-r)/3] Άρα, το συνολικό αναμενόμενο όφελος του πωλητή (και από τις τρεις περιπτώσεις) είναι: π = 2r 2 (1-r) + (1-r) 2 [r+(1-r)/3] Αν το αναλύσουμε έχουμε: π = 2r 2-2r 3 + (1-2r+r 2 )[2r/3+1/3] = 2r 2-2r 3 + 2r/3 + 1/3-4r 2 /3-2r/3 + 2r 3 /3 + r 2 /3 = 1/3 + r 2-4r 3 /3 Η παράγωγος ως προς r είναι π' = 2r-4r 2, η οποία μηδενίζεται για r = 0 και r = ½. Η δεύτερη παράγωγος είναι π'' = 2-8r. Το σημείο r=0 αποτελεί τοπικό ελάχιστο, μιας και εκεί η δεύτερη παράγωγος έχει θετική τιμή ίση με 2. Το σημείο r=1/2 αποτελεί τοπικό μέγιστο, μιας και εκεί η δεύτερη παράγωγος έχει αρνητική τιμή ίση με -2. Για επαλήθευση σχεδιάζουμε και τη γραφική παράσταση της συνάρτησης π(r), όπως φαίνεται παρακάτω: Πράγματι λοιπόν, για r=0.5 έχουμε το μέγιστο της αναμενόμενης απολαβής για τον πωλητή, η οποία ισούται με μονάδες ωφέλους. Απαντήστε 4 από τα παραπάνω 5 θέματα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 1 Φεβρουαρίου 26 ιάρκεια εξέτασης: 3 ώρες (15:-18:) ΘΕΜΑ 1 ο (2.5) Κάθε ένας

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Τρίτη 15 Ιανουαρίου 2008 ιάρκεια εξέτασης: 3 ώρες (13:00-16:00) ΘΕΜΑ 1 ο (2,5

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 28 Ολιγοπώλιο Ολιγοπώλιο Ένα μονοπώλιο είναι ένας κλάδος που αποτελείται από μία μόνο εταιρεία. Ένα δυοπώλιο είναι ένας κλάδος

Διαβάστε περισσότερα

10/3/17. Κεφάλαιο 28 Ολιγοπώλιο. Μικροοικονομική. Ολιγοπώλιο. Ολιγοπώλιο. Ανταγωνισµός ποσότητας. Μια σύγχρονη προσέγγιση

10/3/17. Κεφάλαιο 28 Ολιγοπώλιο. Μικροοικονομική. Ολιγοπώλιο. Ολιγοπώλιο. Ανταγωνισµός ποσότητας. Μια σύγχρονη προσέγγιση 0/3/7 HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 8 Ολιγοπώλιο Ολιγοπώλιο Ένα μονοπώλιο είναι ένας κλάδος που αποτελείται από μία μόνο εταιρεία. Ένα δυοπώλιο είναι ένας κλάδος

Διαβάστε περισσότερα

Κεφάλαιο 28 Ολιγοπώλιο

Κεφάλαιο 28 Ολιγοπώλιο HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Εκδόσεις Κριτική Κεφάλαιο 28 Ολιγοπώλιο Ύλη για τη Μίκρο ΙΙ: κεφάλαιο 28.1 έως και 28.9 Κεφάλαιο 28 Ολιγοπώλιο Cournot Stackelberg Bertrand

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 3: Δυοπώλιο Cournot. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 3: Δυοπώλιο Cournot. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 3: Δυοπώλιο Cournot Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων Λήψη απόφασης σε πολυπρακτορικό περιβάλλον Θεωρία Παιγνίων Αβεβαιότητα παρουσία άλλου πράκτορα Μια άλλη πηγή αβεβαιότητας είναι η παρουσία άλλου πράκτορα στο περιβάλλον, ακόμα κι όταν ένας πράκτορας είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 8 Σεπτεµβρίου 005 ιάρκεια εξέτασης: 3 ώρες (:00-4:00 ΘΕΜΑ ο (.5 Το παράδοξο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. Α 1 Α 2 Α 3 Β 1 Β 2 Β 3 1, -1 0, 0-1, 0 0, 0 0, 6 10, -1 2, 0 10, -1-1, -1 Α 1 Α 2 Α 3 Β 1 Β

Διαβάστε περισσότερα

Α2 Β2 Γ2 2 Α1 1,0 5,-1-1,-2 9,-2 Β1 2,1-2,0 0,2 0,-1 Γ1 0,3 14,2 2,1 8,1 1 1,2 0,1 3,0-1,0

Α2 Β2 Γ2 2 Α1 1,0 5,-1-1,-2 9,-2 Β1 2,1-2,0 0,2 0,-1 Γ1 0,3 14,2 2,1 8,1 1 1,2 0,1 3,0-1,0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ιδάσκων: Ε. Πετράκης. Επαναληπτική Εξέταση: 15/09/99 Απαντήστε στα τρία από τα τέσσερα θέµατα. Όλα τα υποερωτήµατα βαθµολογούνται το ίδιο. 1. Θεωρήσατε ένα ολιγοπωλιακό κλάδο όπου τρεις

Διαβάστε περισσότερα

Μικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1

Μικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1 Μικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1 Σημεία ισορροπίας Nash: Yπάρχουν πάντα; Έχουν όλα τα παίγνια σημείο ισορροπίας; - Ναι, στην εξιδανικευμένη

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

Κριτικές στο Υπόδειγμα Cournot

Κριτικές στο Υπόδειγμα Cournot Κριτικές στο Υπόδειγμα Cournot -To υπόδειγμα Cournot έχει υποστεί τρία είδη κριτικής: () Το υπόδειγμα Cournot υποθέτει ότι κάθε επιχείρηση μεγιστοποιεί μόνο τα δικά της κέρδη και, επομένως, δε λαμβάνει

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Ασκήσεις. Ιωάννα Καντζάβελου. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1

Ασκήσεις. Ιωάννα Καντζάβελου. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1 Ασκήσεις Ιωάννα Καντζάβελου Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1 1. Επιλογή Διαδρομής 2. Παραλλαγή του Matching Pennies 3. Επίλυση Matching Pennies με Βέλτιστες Αποκρίσεις 4. Επίλυση BoS με Βέλτιστες

Διαβάστε περισσότερα

Δεύτερο πακέτο ασκήσεων

Δεύτερο πακέτο ασκήσεων ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Μικροοικονομική Θεωρία ΙΙ Εαρινό εξάμηνο Ακαδ. έτους 08-09 Αν. Παπανδρέου, Φ. Κουραντή, Ηρ. Κόλλιας Δεύτερο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 0 Μαϊου. Θα υπάρξει

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων

Διαβάστε περισσότερα

3. Παίγνια Αλληλουχίας

3. Παίγνια Αλληλουχίας 3. Παίγνια Αλληλουχίας Τα παίγνια αλληλουχίας πραγµατεύονται περιπτώσεις όπου οι κινήσεις των παικτών διαδέχονται η µια την άλλη, σε αντίθεση µε τα παίγνια όπου οι αποφάσεις των παικτών γίνονται ταυτόχρονα

Διαβάστε περισσότερα

ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΜΟΝΟΠΩΛΙΑΚΟΣ ΑΝΤΑΓΩΝΙΣΜΟΣ, ΟΛΙΓΟΠΩΛΙΑ, ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Κεφάλαιο 7 Ε. Σαρτζετάκης Μονοπωλιακός ανταγωνισμός Η μορφή αγοράς του μονοπωλιακού ανταγωνισμού περιέχει στοιχεία πλήρους ανταγωνισμού (ελεύθερη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 11: Σχεδίαση μηχανισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Λύσεις 2η σειράς ασκήσεων Προθεσμία παράδοσης: 18 Μαίου 2015 Πρόβλημα 1. (14

Διαβάστε περισσότερα

Συνδυαστικά Παίγνια. ιαµόρφωση Παιγνίων. Θέµατα σε Πάιγνια Μηδενικού Αθροίσµατος

Συνδυαστικά Παίγνια. ιαµόρφωση Παιγνίων. Θέµατα σε Πάιγνια Μηδενικού Αθροίσµατος Συνδυαστικά Παίγνια 1. Σε ένα παιγνίδι 2 παικτών µηδενικού αθροίσµατος οι παίκτες αναγγέλουν εναλλάξ ένα αριθµό µεταξύ {2,3,4}. Ο παίκτης που κάνει το άθροισµα των αριθµών που έχουν αναγγελθεί να φθάσει

Διαβάστε περισσότερα

Ολιγοπωλιακή Ισορροπία

Ολιγοπωλιακή Ισορροπία Ολιγοπωλιακή Ισορροπία - Χρησιμοποιούμε τις βασικές αρχές της θεωρίας παιγνίων για να εξετάσουμε τη στρατηγική αλληλεπίδραση των επιχειρήσεων σε ατελώς ανταγωνιστικές αγορές, εστιάζοντας την προσοχή μας

Διαβάστε περισσότερα

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x Γενικά Μαθηματικά Κεφάλαιο Εισαγωγή Αριθμοί Φυσικοί 0,,,3, Ακέραιοι 0,,, 3, Ρητοί,, 0 Πραγματικοί Αν, με, :: x, :: x, :: x, :: x, :: x, :: x, :: x, :: x Συνάρτηση Κάθε διαδικασία αντιστοίχησης η οποία

Διαβάστε περισσότερα

Μοντέλα των Cournotκαι Bertrand

Μοντέλα των Cournotκαι Bertrand Μοντέλα των Cournotκαι Bertrand Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τι θα πούμε Θα εξετάσουμε αναλυτικά το μοντέλο Cournot

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά (1) Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής

Διαβάστε περισσότερα

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 4: Μεικτές Στρατηγικές. Ε. Μαρκάκης. Επικ. Καθηγητής

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 4: Μεικτές Στρατηγικές. Ε. Μαρκάκης. Επικ. Καθηγητής Θεωρία Παιγνίων και Αποφάσεων Ενότητα 4: Μεικτές Στρατηγικές Ε. Μαρκάκης Επικ. Καθηγητής Μεικτές στρατηγικές σε παίγνια 2 Σημεία ισορροπίας: Ύπαρξη Δεν έχουν όλα τα παίγνια σημείο ισορροπίας Π.χ. Το Matching

Διαβάστε περισσότερα

Η ακόλουθη συνάρτηση συνδέει συνολικό κόστος TC και παραγόμενη ποσότητα Q: TC = Q + 3Q 2

Η ακόλουθη συνάρτηση συνδέει συνολικό κόστος TC και παραγόμενη ποσότητα Q: TC = Q + 3Q 2 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΟ13 ΑΣΚΗΣΗ 1 [Μέρος Α] Η ακόλουθη συνάρτηση συνδέει συνολικό κόστος TC και παραγόμενη ποσότητα : TC = 000 +10 + 3 (A)Γράψτε τις συναρτήσεις του Οριακού Κόστους (Marginal Cost

Διαβάστε περισσότερα

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Μέχρι τώρα, αντιμετωπίζουμε ένα μονοπώλιο ως μια εταιρεία η οποία

Διαβάστε περισσότερα

Διάλεξη 8. Ολιγοπώλιο VA 27

Διάλεξη 8. Ολιγοπώλιο VA 27 Διάλεξη 8 Ολιγοπώλιο VA 27 Ολιγοπώλιο Ένα μονοπώλιο είναι μια αγορά που αποτελείται από μια και μόνο επιχείρηση. Ένα δυοπώλιο είναι μια αγορά που αποτελείται από δυο επιχειρήσεις. Ένα ολιγοπώλιο είναι

Διαβάστε περισσότερα

10/3/17. Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά. Μικροοικονομική. Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Πολιτικές διάκρισης τιµών

10/3/17. Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά. Μικροοικονομική. Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Πολιτικές διάκρισης τιµών /3/7 HL R. VRIN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Μέχρι τώρα, αντιμετωπίζουμε ένα μονοπώλιο ως μια εταιρεία η

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α Ερώτηση θεωρίας α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; =. β) Για δύο συμπληρωματικά ενδεχόμενα Α και Α να αποδείξετε

Διαβάστε περισσότερα

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 )

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 ) Κεφάλαιο 7ο Μιλήσαµε στο προηγούµενο κεφάλαιο για το τι θα συµβεί αν οι επιχειρήσεις ανταγωνίζονται σε τιµές. Επιπλέον µιλήσαµε για το πως αποδεικνύεται το παράδοξο του Bertrand και καθώς επίσης και για

Διαβάστε περισσότερα

α έχει μοναδική λύση την x α

α έχει μοναδική λύση την x α ΚΕΦΑΛΑΙΟ 3 ο ΕΞΙΣΩΣΕΙΣ Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες είναι λάθος.. H εξίσωση ( α)( β) ( β)( γ) έχει τις ίδιες λύσεις με την εξίσωση α γ για οποιεσδήποτε τιμές των

Διαβάστε περισσότερα

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια;

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια; HA. VAIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι οι

Διαβάστε περισσότερα

ΕΡΓΑΣΙΕΣ 4 ου ΚΕΦΑΛΑΙΟΥ. 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής

ΕΡΓΑΣΙΕΣ 4 ου ΚΕΦΑΛΑΙΟΥ. 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής ΕΡΓΑΣΙΕΣ 4 ου ΚΕΦΑΛΑΙΟΥ 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής 1. Σύμφωνα με το νόμο της προσφοράς: α) Η προσφερόμενη ποσότητα ενός αγαθού αυξάνεται όταν μειώνεται η τιμή του στην αγορά β) Η προσφερόμενη

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

ΕΡΓΑΣΙΕΣ 4 ου ΚΕΦΑΛΑΙΟΥ. 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής

ΕΡΓΑΣΙΕΣ 4 ου ΚΕΦΑΛΑΙΟΥ. 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής ΕΡΓΑΣΙΕΣ 4 ου ΚΕΦΑΛΑΙΟΥ 1 η Ομάδα: Ερωτήσεις πολλαπλής επιλογής 1. Σύμφωνα με το νόμο της προσφοράς: α) Η προσφερόμενη ποσότητα ενός αγαθού αυξάνεται όταν μειώνεται η τιμή του στην αγορά β) Η προσφερόμενη

Διαβάστε περισσότερα

Κεφάλαιο 5 R (2, 3) R (3, 0)

Κεφάλαιο 5 R (2, 3) R (3, 0) Κεφάλαιο 5 Θα ξεκινήσουµε το κεφάλαιο αυτό βλέποντας ένα ακόµη παράδειγµα αναφορικά µε την ισορροπία που προκύπτει από την οπισθογενή επαγωγή (backwards induction) και την ισορροπία κατά Nash στην στρατηγική

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

ΔΕΟ 13 1 η Γραπτή Εργασία Ενδεικτική απάντηση. Επιμέλεια: Γιάννης Πουλόπουλος

ΔΕΟ 13 1 η Γραπτή Εργασία Ενδεικτική απάντηση. Επιμέλεια: Γιάννης Πουλόπουλος ΔΕΟ 13 1 η Γραπτή Εργασία 016-17 Ενδεικτική απάντηση Άσκηση 11 (0%) Μια επιχείρηση παράγει δύο προϊόντα Χ και Υ με την ίδια παραγωγική διαδικασία. Δεδομένου ότι η επιχείρηση διαθέτει περιορισμένους πόρους

Διαβάστε περισσότερα

Κατασκευάσει 0, , 0 Όχι 20, 10 30, 0

Κατασκευάσει 0, , 0 Όχι 20, 10 30, 0 ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων: Β1 Β2 Β3 Β4 Α1 100,50 60,60 30,70 0,80 Α2 60,60 50,70 60,60 0,60 Α3 50,50 40,40 70,30 0,20 Α4 0,0 0,0 50,0 1,1 B1 B2 B3 A1 10,4 1,5 98,4 A2 9,9 0,3

Διαβάστε περισσότερα

Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού

Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού Οµοιογενή Προϊόντα Ισορροπία Courot-Nash Έστω δυοπώλιο µε συνάρτηση ζήτησης: ( ) a b a, b > 0 () Βέβαια ισχύει ότι: + () Ακόµα υποθέτουµε ότι η τεχνολογία παραγωγής

Διαβάστε περισσότερα

Αγορές: Αγορά είναι οτιδήποτε φέρνει σε επικοινωνία αγοραστές και πωλητές. Η αγορά έχει δύο πλευρές: αγοραστές (Ζήτηση) και πωλητές (Προσφορά).

Αγορές: Αγορά είναι οτιδήποτε φέρνει σε επικοινωνία αγοραστές και πωλητές. Η αγορά έχει δύο πλευρές: αγοραστές (Ζήτηση) και πωλητές (Προσφορά). Ζήτηση και Προσφορά ΚΕΦΑΛΑΙΟ 3 Αγορές: Αγορά είναι οτιδήποτε φέρνει σε επικοινωνία αγοραστές και πωλητές. Η αγορά έχει δύο πλευρές: αγοραστές (Ζήτηση) και πωλητές (Προσφορά). Ανταγωνιστικές Αγορές: Είναιοιαγορές,

Διαβάστε περισσότερα

Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1

Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1 Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1 Βασική ιάκριση: Προϊόντα κάθετα διαφοροποιηµένα (κοινός δείκτης ποιότητας) Προϊόντα οριζόντια διαφοροποιηµένα (δεν υπάρχει κοινός δείκτης ποιότητας) Προϊόντα Χώρος

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 10. Λύση. π/ P1 =0 => P1+P2+4=0 => 4P1=1004+P2 => P1= 1004+P2 = R1(P2) 4 P2= 1004+P1 = R2(P1) 4

ΑΣΚΗΣΗ 10. Λύση. π/ P1 =0 => P1+P2+4=0 => 4P1=1004+P2 => P1= 1004+P2 = R1(P2) 4 P2= 1004+P1 = R2(P1) 4 ΑΣΚΗΣΗ 10 Στον κλάδο υπάρχουν δύο επιχειρήσεις που παράγουν ατελώς υποκατάστατα αγαθά. Οι καµπύλες ζήτησης των προϊόντων τους είναι q 1 = 1000 2p1 +p2 και q 2 = 1000 2p2 +p1. Οι δύο επιχειρήσεις έχουν

Διαβάστε περισσότερα

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι

Διαβάστε περισσότερα

Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Αν έχουμε m εξισώσεις (ισότητες) που περιγράφουν μαθηματικά

Διαβάστε περισσότερα

Διάλεξη 3. Εφαρμοσμένη Ανάλυση, VA 16, 23

Διάλεξη 3. Εφαρμοσμένη Ανάλυση, VA 16, 23 Διάλεξη 3 Εφαρμοσμένη Ανάλυση, VA 16, 23 Φόροι επί της ποσότητας Ένας φόρος επί της ποσότητας, που αντιστοιχεί σε t ανά μονάδα προϊόντος, είναι ένας φόρος t, ο οποίος πληρώνεται ανά μονάδα αγοραζόμενης

Διαβάστε περισσότερα

ΒΡΑΧΥΧΡΟΝΙΑ ΠΕΡΙΟΔΟΣ

ΒΡΑΧΥΧΡΟΝΙΑ ΠΕΡΙΟΔΟΣ ΒΡΑΧΥΧΡΟΝΙΑ ΠΕΡΙΟΔΟΣ 1. Έστω ένας κλάδος όπου nn επιχειρήσεις έχουν την ίδια τεχνολογία. Η συνάρτηση κόστους της κάθε μιας επιχείρησης είναι CC() = 100 + 2. Η συνάρτηση ζήτησης του κλάδου είναι QQ DD =

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Λύσεις 1ης σειράς ασκήσεων Προθεσμία παράδοσης: 22 Απριλίου 2015 Πρόβλημα 1.

Διαβάστε περισσότερα

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 ) Κατανομή συνάρτησης τυχαίας μεταβλητής =() Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ3 ( ) Κατανομή συνάρτησης τυχαίας μεταβλητής Έστω τ.μ. Χ με γνωστή κατανομή. Δηλαδή

Διαβάστε περισσότερα

Μικροοικονομική Ι. Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών

Μικροοικονομική Ι. Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Μικροοικονομική Ι Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως: http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΔΕΟ -: Άσκηση I. (α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α. Να βρείτε το πεδίο ορισμού της. x x x x β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο Δίνεται η συνάρτηση

Διαβάστε περισσότερα

( ) ΘΕΜΑ 1 κανονική κατανομή

( ) ΘΕΜΑ 1 κανονική κατανομή ΘΕΜΑ 1 κανονική κατανομή Υποθέτουμε ότι τα εβδομαδιαία έσοδα μιας επιχείρησης ακολουθούν την κανονική κατανομή με μέση τιμή 1000 και τυπική απόκλιση 15. α. Ποια η πιθανότητα i. η επιχείρηση να έχει έσοδα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017 2η σειρά ασκήσεων Προθεσμία παράδοσης: 16 Ιουνίου 2017 Πρόβλημα 1. (18 μονάδες)

Διαβάστε περισσότερα

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29 Διάλεξη 7 Θεωρία παιγνίων VA 28, 29 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν

Διαβάστε περισσότερα

Πληθωρισμός, Ανεργία και Αξιοπιστία της Νομισματικής Πολιτικής. Το Πρόβλημα του Πληθωρισμού σε ένα Υπόδειγμα με Υψηλή Ανεργία Ισορροπίας

Πληθωρισμός, Ανεργία και Αξιοπιστία της Νομισματικής Πολιτικής. Το Πρόβλημα του Πληθωρισμού σε ένα Υπόδειγμα με Υψηλή Ανεργία Ισορροπίας Πληθωρισμός, Ανεργία και Αξιοπιστία της Νομισματικής Πολιτικής Το Πρόβλημα του Πληθωρισμού σε ένα Υπόδειγμα με Υψηλή Ανεργία Ισορροπίας Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Πληθωρισμός,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:

Διαβάστε περισσότερα

Κεφάλαιο 8 ο Τ 3, 1-1, -1 Χ -1, -1 1, 3

Κεφάλαιο 8 ο Τ 3, 1-1, -1 Χ -1, -1 1, 3 Κεφάλαιο 8 ο Συνεχίζουµε µε τις µεικτές στρατηγικές. Θα δούµε τώρα ένα παράδειγµα στο οποίο υπάρχουνε ισορροπίες κατά Nash σε αµιγείς στρατηγικές αλλά πέρα από αυτό υπάρχει και µια ισορροπία κατά Nash

Διαβάστε περισσότερα

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ 1 ΚΦΑΛΑΙΟ 6 ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ Οι καµπύλες ζήτησης και προσφοράς είναι αναγκαίες για να προσδιορίσουν την τιµή στην αγορά. Η εξοµοίωσή τους καθορίζει την τιµή και τη ποσότητα ισορροπίας,

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 (θεωρία παιγνίων) Οι δύο μεγαλύτερες τράπεζες μιας χώρας, Α και Β, εκτιμούν ότι μια άλλη τράπεζα, η Γ, θα κλείσει στο προσεχές διάστημα και πρόκειται να προχωρήσουν σε διαφημιστικές εκστρατείες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Διάκριση Μαθηματικών Οικονομικές συναρτήσεις Ορισμοί Μαθηματικά στα οικονομικά φαινόμενα Βελτιστοποίηση κερδών Μέτρηση χρησιμότητας Οριακά μεγέθη Ελαστικότητα Πολλαπλασιαστής

Διαβάστε περισσότερα

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

159141,9 64 x n 1 n

159141,9 64 x n 1 n Πιθανότητες Στατιστική: Λύσεις θεμάτων. Φεβρουάριος 9. Σειρά Α Ζήτημα ο : Μία ομάδα φοιτητών μετρά 64 φορές μία απόσταση s που δεν γνωρίζουν. Τα αποτελέσματα των μετρήσεων εμφανίζονται στον διπλανό πίνακα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016 Λύσεις 2ης σειράς ασκήσεων Προθεσμία παράδοσης: 25 Ιουνίου 2016 Πρόβλημα 1.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 2: Έννοιες λύσεων σε παίγνια κανονικής μορφής. Ε. Μαρκάκης. Επικ. Καθηγητής

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 2: Έννοιες λύσεων σε παίγνια κανονικής μορφής. Ε. Μαρκάκης. Επικ. Καθηγητής Θεωρία Παιγνίων και Αποφάσεων Ενότητα 2: Έννοιες λύσεων σε παίγνια κανονικής μορφής Ε. Μαρκάκης Επικ. Καθηγητής Λύσεις παιγνίων 2 Επιλέγοντας στρατηγική... Δεδομένου ενός παιγνίου, τι στρατηγική πρέπει

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΟ 2 ο ΚΕΦΑΛΑΙΟ

ΛΥΜΕΝΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΟ 2 ο ΚΕΦΑΛΑΙΟ ΛΥΜΕΝΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΟ 2 ο ΚΕΦΑΛΑΙΟ 1. Έστω συνάρτηση ζήτησης με τύπο Q = 200 4P. Να βρείτε: α) Την ελαστικότητα ως προς την τιμή όταν η τιμή αυξάνεται από 10 σε 12. 1ος τρόπος Αν P 0 10 τότε Q 0 200 410

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Το συνολικό προϊόν παίρνει την μέγιστη τιμή

Διαβάστε περισσότερα

Πλεόνασμα του Καταναλωτή, Πλεόνασμα του Παραγωγού και η Αποτελεσματικότητα της Ανταγωνιστικής Αγοράς - Η αλληλεπίδραση της συνολικής ζήτησης και της

Πλεόνασμα του Καταναλωτή, Πλεόνασμα του Παραγωγού και η Αποτελεσματικότητα της Ανταγωνιστικής Αγοράς - Η αλληλεπίδραση της συνολικής ζήτησης και της Πλεόνασμα του Καταναλωτή, Πλεόνασμα του Παραγωγού και η Αποτελεσματικότητα της Ανταγωνιστικής Αγοράς - Η αλληλεπίδραση της συνολικής ζήτησης και της προσφοράς προσδιορίζει την τιμή και την ποσότητα ισορροπίας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου Θέμα Α. Αν x, x οι ρίζες της δευτεροβάθμιας εξίσωσης αx +βx+γ=, α να αποδείξετε ότι S P. (6 μονάδες) Β. Ελέγξατε αν κάθε μία από τις παρακάτω σχέσεις είναι σωστή

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

Διάλεξη 2. Ισορροπία VA κεφ. 16 Προσφορά του κλάδου VA κεφ. 23

Διάλεξη 2. Ισορροπία VA κεφ. 16 Προσφορά του κλάδου VA κεφ. 23 Διάλεξη 2 Ισορροπία VA κεφ. 16 Προσφορά του κλάδου VA κεφ. 23 Προσφορά ανταγωνιστικού κλάδου Πώς πρέπει να συνδυαστούν οι αποφάσεις προσφοράς των πολλών επιμέρους επιχειρήσεων ενός ανταγωνιστικού κλάδου

Διαβάστε περισσότερα

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Άσκηση στο μάθημα «Εισαγωγή στην Οικονομική Ανάλυση» Νίκος Θεοχαράκης

Διαβάστε περισσότερα

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x+ y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

Κεφ. 9 Ανάλυση αποφάσεων

Κεφ. 9 Ανάλυση αποφάσεων Κεφ. 9 Ανάλυση αποφάσεων Η θεωρία αποφάσεων έχει ως αντικείμενο την επιλογή της καλύτερης στρατηγικής. Τα αποτελέσματα κάθε στρατηγικής εξαρτώνται από παράγοντες, οι οποίοι μπορεί να είναι καταστάσεις

Διαβάστε περισσότερα

Έστω ότι έχουµε 2 µάρκες υπολογιστών: A (Apricot), B (Banana) [ ιαρκή Αγαθά].

Έστω ότι έχουµε 2 µάρκες υπολογιστών: A (Apricot), B (Banana) [ ιαρκή Αγαθά]. 2.2. ΥΟΠΩΛΙΟ ΙΑΦΟΡΕΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΜΕ ΕΤΕΡΟΓΕΝΕΙΣ ΚΑΤΑΝΑΛΩΤΕΣ Έστω ότι έχουµε 2 µάρκες υπολογιστών: (pricot), (anana) [ ιαρκή Αγαθά]. Υποθέτουµε µηδενικό κόστος παραγωγής και P, P, οι τιµές για το Α, αντίστοιχα.

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ( )

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ( ) ΘΕΜΑ Α Α1. α. Σωστό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΠΑΝΤΗΣΕΙΣ (14.06.2017) ΟΜΑΔΑ ΠΡΩΤΗ β. Λάθος γ. Λάθος δ. Λάθος ε. Σωστό Α2. Σωστή επιλογή (γ) Α3. Σωστή επιλογή (δ) ΘΕΜΑ Β Β1. Σχολικό Βιβλίο (σελ. 16-17)

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή:

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή: Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 2017-18 Λύσεις του πέμπτου φυλλαδίου ασκήσεων 1 Σε ένα πρόβλημα πολλαπλής επιλογής προτείνονται n απαντήσεις από τις οποίες μόνο μία είναι σωστή Αν η σωστή απάντηση κερδίζει

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes Ε 10,10 0,3 Λ 3,0 2,2

Notes. Notes. Notes. Notes Ε 10,10 0,3 Λ 3,0 2,2 Θεωρία παιγνίων: Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Δεκεμβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία παιγνίων: 3 Δεκεμβρίου 2012 1 / 21 -best responses Κυνήγι ελαφιού: Δυο κυνηγοί ταυτόχρονα

Διαβάστε περισσότερα

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 2 η Διάλεξη Παίγνια ελλιπούς πληροφόρησης Πληροφοριακά σύνολα Κανονική μορφή παιγνίου Ισοδύναμες στρατηγικές Παίγνια συνεργασίας και μη συνεργασίας Πεπερασμένα και

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Η εξίσωση α + βy = γ 1. Υπάρχουν προβλήματα που η επίλυση τους οδηγεί σε μια γραμμική εξίσωση με δύο αγνώστους, y και η οποία είναι της μορφής

Διαβάστε περισσότερα

Αποτροπή Εισόδου: Το Υπόδειγμα των Spence-Dixit

Αποτροπή Εισόδου: Το Υπόδειγμα των Spence-Dixit Αποτροπή Εισόδου: Το Υπόδειγμα των pence-dixit pence, Michael 977, Entry, apacity, Investment and Oligopolisting Pricing Dixit, Avinash 979, A Model of Duopoly uggesting a Theory of Entry Barriers - Στο

Διαβάστε περισσότερα

Βιομηχανική Οργάνωση ΙΙ: Θεωρίες Κρατικής Παρέμβασης & Ανταγωνισμού

Βιομηχανική Οργάνωση ΙΙ: Θεωρίες Κρατικής Παρέμβασης & Ανταγωνισμού Βιομηχανική Οργάνωση ΙΙ: Θεωρίες Κρατικής Παρέμβασης & Ανταγωνισμού Ενότητα 1: Νικόλαος Χαριτάκης Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Περιεχόμενα Ορισμοί Ισορροπία Nash

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ 2. ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τα παίγνια αποτελούν τη δεύτερη μορφή επιχειρησιακής έρευνας που θα εξετάζουμε. Πρόκειται για μία μέθοδο ανάλυσης προβλημάτων που έχουν σχέση με τον τρόπο λήψης αποφάσεων σε καταστάσεις

Διαβάστε περισσότερα