SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

Σχετικά έγγραφα
On Generating Relations of Some Triple. Hypergeometric Functions

Orthogonal polynomials

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

A study on generalized absolute summability factors for a triangular matrix

On Inclusion Relation of Absolute Summability

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Bessel function for complex variable

Oscillatory integrals

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation

INTEGRAL INEQUALITY REGARDING r-convex AND

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Ψηφιακή Επεξεργασία Εικόνας

The Neutrix Product of the Distributions r. x λ

1. For each of the following power series, find the interval of convergence and the radius of convergence:

2 Composition. Invertible Mappings

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Certain Sequences Involving Product of k-bessel Function

Presentation of complex number in Cartesian and polar coordinate system

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

IIT JEE (2013) (Trigonomtery 1) Solutions

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Homework for 1/27 Due 2/5

arxiv: v1 [math.nt] 17 Sep 2016

C.S. 430 Assignment 6, Sample Solutions

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Solve the difference equation

Degenerate Perturbation Theory

Congruence Classes of Invertible Matrices of Order 3 over F 2

Symbolic Computation of Exact Solutions of Two Nonlinear Lattice Equations

HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR GENERALIZED FUNCTIONS

SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

1. Matrix Algebra and Linear Economic Models

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Identities of Generalized Fibonacci-Like Sequence

Fractional Colorings and Zykov Products of graphs

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

Antonis Tsolomitis Laboratory of Digital Typography and Mathematical Software Department of Mathematics University of the Aegean

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Finite Field Problems: Solutions

CRASH COURSE IN PRECALCULUS

Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Homomorphism in Intuitionistic Fuzzy Automata


CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

Some definite integrals connected with Gauss s sums

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

EE512: Error Control Coding

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

The Heisenberg Uncertainty Principle

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Every set of first-order formulas is equivalent to an independent set

I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ.

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Uniform Convergence of Fourier Series Michael Taylor

A Note on Intuitionistic Fuzzy. Equivalence Relation

Math221: HW# 1 solutions

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

4.6 Autoregressive Moving Average Model ARMA(1,1)

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Homework 4.1 Solutions Math 5110/6830

Section 8.3 Trigonometric Equations

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

B.A. (PROGRAMME) 1 YEAR

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Solutions_3. 1 Exercise Exercise January 26, 2017

Tridiagonal matrices. Gérard MEURANT. October, 2008

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

PhysicsAndMathsTutor.com

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

w o = R 1 p. (1) R = p =. = 1

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

ST5224: Advanced Statistical Theory II

Cyclic or elementary abelian Covers of K 4

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Statistical Inference I Locally most powerful tests

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

On a four-dimensional hyperbolic manifold with finite volume

Solutions: Homework 3

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

A General Note on δ-quasi Monotone and Increasing Sequence

SPECIAL FUNCTIONS and POLYNOMIALS

Transcript:

Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords: Astrct I this study, we defie geerliztio of Lucs sequece {p }. The we oti Biet formul of sequece {p }. Also, we ivestigte reltioships etwee geerlized Fiocci d Lucs sequeces. Exteded Biet Formuls, Geerlized Fiocci d Lucs Sequeces 000 AMS Clssifictio: 11B39,11B37 1. Itroductio For, the Fiocci d Lucs umers re defied y followig recurrece reltios d F 0 0, F 1 1, F F 1 + F L 0, L 1 1, L L 1 + L. Ad Fiocci d Lucs umers Biet formuls re kow s, F τ γ τ γ d L τ + γ where 0 d τ, γ re roots of x x 1 0. These sequeces hve ee geerlized i my wys. For exmple, i [1], the uthor geerlized the sequeces {F } d {L } s follows, W AW 1 + BW 1, W 0, W 1 for, where,, A d B re ritrry itegers. Nigde Uiversity, Mthemtics Deprtmet 5141 Nigde Turkey. E-Mil: irmk@igde.edu.tr Nigde Uiversity, Mthemtics Deprtmet 5141 Nigde Turkey. E-Mil: murtlp@igde.edu.tr

33 N. Irmk, M. Alp I [] d [3], the uthors itroduced d studied ew kid geerlized Fiocci sequece d its properties tht depeds o two rel prmeters s defied elow, for > 1 { q 1 + q if is eve, q 0 0, q 1 1 q q 1 + q if is odd. Its exteded Biet s formul ws give y 1 ξ α β q, where α + +4, β +4 d ξ :. Note tht α d β re roots of the qudrtic equtio x x 0 d ξ 0 whe is eve, ξ 1 whe is odd. Also, uthors geerlized some idetities s follows; Cssii Idetity 1 ξ ξ q 1q +1 ξ 1 ξ q 1 Ctl s Idetity ξ r 1 ξ r q rq +r ξ 1 ξ q ξr 1 ξr 1 +1 r q r d Ocge s Idetity ξm+m ξm+m q mq +1 ξm+m ξm+m q m+1q 1 ξm q m Additiol Idetities ξm+m ξm+m q mq +1 + ξm+m ξm+m q m 1q ξm+m q m+ ξkm ξkm+k q mq k m+1 + ξkm+k ξkm q m 1q k m ξk q k 1 ξ+k ξ+k q +k+1 + ξ k 1 ξ k q k q +1q k+1 For more detils, we refer to []. Also, i [7], uthor gve the Geli-Cesro idetity s ξ 1 1 ξ q 4 q q 1q +1q + 1 +1 ξ q 1 + I [6], uthor defied k periodic secod order lier recurrece s; 0q 1 + 0q if 0 mod k 1q 1 + 1q if 0 mod k 1.1 q.. k 1 q 1 + k 1 q if 0 mod k d ivestigted the comitoril iterprettio of the coefficiets A k d B k pperig i the recurrece reltio q A k q k +B k q k. Ad i [8], we foud 1.1 s exclipt formul for ritrry coefficiet d ritrry iitil coditios. The geerlized Fiocci d Lucs sequeces hve word comitoril iterprettio d they re closely relted to cotiued expsio of qudrtic irrtiols see i []. There re lots of comitoril idetities etwee Fiocci d Lucs umers. For exmple, F L F F mf F m+k F k 1 k F m+k F k F F mf m+1 + F m 1F m L L mf m+1 + L m 1F m F ml + F L m F m+

Some Idetities for Geerlized Fiocci d Lucs Sequeces 333 L F +1 + F 1 5F L +1 + L 1 For more idetities, they c e foud i [4]. pge 87-93. Up to ow, uthors gve some idetities which re oly cotis Fiocci geerliztios. I this study, we defie geerlized Lucs sequeces d give exteded Biet s formul for geerlized Lucs sequeces. Moreover we ivestigte some properties which re ivolvig geerlized Fiocci d Lucs umers.. Mi Results.1. Defiitio. For y two opozitive rel umers d, the geerlized Lucs sequece {p } is defied s follows; { p 1 + p if is eve, p 0, p 1 1, p p 1 + p if is odd. We ote tht, these ew geerliztios is i the fct of fmily sequeces where ech ew choise of d produces distict sequeces. For exmple, whe we tke 1 i {q }, the sequece produce Fiocci umers. Whe tkig 1 i {p }, it produces Lucs umers. Whe we tke i {p }, it produces Pell-Lucs umers. We derive some idetities ivolvig the geerlized Fiocci d Lucs sequeces. From the defiitios of α d β, we ote tht α + 1 β + 1 1, α+β, αβ, α + 1 α, β α + 1 α. Now we give the geerlized Biet formul for the geerlized Lucs sequeces {p } :.. Theorem. For > 1, p 1 ξ α + β + 1 α β where α + +4, β +4 d ξ :. Proof. I order to prove the theorem, we use followig equtio give i [] : ξ Q Dq + C q 1 where { Q 1 + Q if is eve, Q Q 1 + Q if is odd, Q 0 C d Q 1 D re iitil coditios of the sequece {Q }. Whe C d D 1, we oti ξ p q + q 1 1 ξ α β ξ 1 ξ 1 α 1 β 1 + 1 α β α 1 β 1 1 ξ + 1 ξ

334 1 ξ 1 ξ 1 ξ N. Irmk, M. Alp α 1 + α 1 β 1 + β 1 α α β α + β + 1 β α β + 1, + 1 α β s climed. Whe we tke 1, we oti Biet formul for Lucs sequeces. 3. Severl Idetities Ivolvig the Geerlized Fiocci Ad Lucs Numers I this sectio, we derive severl idetities ivolvig the geerlized Fiocci d Lucs umers. We strt with the followig result: 3.1. Theorem. For 0 p q ξ q + 1 q. Proof. By usig the Biet formuls of {q } d {p }, we hve 1 ξ α + β p q + 1 α β α β 1 ξ α β α β + 1 ξ 1 ξ α β 1 ξ α β + 1 ξ q + 1 q. Thus the proof is complete. Whe 1, we oti the well kow result for the usul Fiocci d Lucs umers : L F F. 3.. Theorem. For 0 q +1 + q 1 ξ p 1 q.

Some Idetities for Geerlized Fiocci d Lucs Sequeces 335 Proof. I order to prove the clim, we gi use the exteded Biet formuls of the sequeces {q } d {p } : q +1 + q 1 1 ξ+1 α +1 β +1 + 1 ξ 1 α 1 β 1 +1 1 1 ξ 1 α +1 β +1 + α 1 β 1 1 1 ξ 1 1 1 ξ 1 α + β 1 1 ξ 1 1 α β 1 ξ p 1 q, α α β + 1 α β + β α β s climed. Whe 1 i Theorem 3, we oti the well kow the formul: F +1 + F 1 L. 3.3. Theorem. For 0, ξ p +1 + p 1 q + 1 p 1 q. Proof. Cosider p +1 + p 1 1 ξ+1 α +1 + β +1 + 1 α+1 β +1 +1 + 1 ξ 1 α 1 + β 1 + 1 α 1 β 1 1 1 ξ 1 1 α 1 α β + 1 β β α + 1 α 1 ξ 1 1 α β 1 α β ξ ξ 1 1 ξ + 1 ξ ξ 1 1 ξ ξ ξ 1 1 β α β + 1 α + β 1 ξ α β α + β α β + 1 α β

336 N. Irmk, M. Alp ξ q + 1 p 1 q. Whe we tke 1, we oti L +1 + L 1 5F. 3.4. Theorem. For m, 0 ξm q mp + q p m q m+ + 1 q q m. Proof. Usig the Biet formuls, d the idetity follows esily from defiitio ξ m + ξ m + ξ ξ m ξ. The cosider 1 ξm α m β m 1 ξ α + β q mp + q p m m + 1 α β 1 ξ α β 1 ξm α m + β m + + 1 αm β m m ξm ξ α m+ β m+ + m 1 ξ α β 1 ξm α m β m + 1 m ξm 1 ξm+ α m+ β m+ m+ 1 ξ α β 1 ξm α m β m + 1 m ξm q m+ 1 q q m. Whe we tke 1, we oti F m+ F ml + F L m. 3.5. Theorem. For, m 0, ξ ξm p mq m+1 + ξm p m 1q m p. Proof. If we use the Biet formuls of geerlized Fiocci d Lucs sequeces d y usig the idetity ξ m + ξ m + ξ ξ m ξ, we oti tht ξ ξm ξm p mq m+1 + p m 1q m 1 ξ α m+1 β m+1 α m + β m + 1 αm β m + 1 ξ α m β m 1 α m 1 + β m 1 + 1 αm 1 β m 1

s climed. 1 ξ 1 ξ Some Idetities for Geerlized Fiocci d Lucs Sequeces α α + α α + β β β + α + 1 + 1 α β p, α α + α + β β + β Whe 1 i Theorem ove, we deduce the followig well kow formul: L L mf m+1 + L m 1F m. 337 3.6. Theorem. For 0 Proof. Cosider 1 p+1 + 1 + p p +1 1 ξ 1 ξ+1 +1 So the proof is complete. 1 q +1 + 1 q q +1 p p +1. α + β +1 + 1 α β α +1 + β +1 α +1 + β +1 + 1 α+1 β +1 + 1 + 1 + 1 1 ξ+1 α +1 β +1 +1 + 1 ξ+ξ+1 + +1 1 p+1 + 1 + α β α +1 β +1 α +1 β +1 1 q +1 + 1 q q +1. Whe 1 i Theorem ove, we oti well kow idetity: L L +1 L +1 + 1 I the followig theorem, we list Biomil sums with {p } sequece. Ad we proved oe of them. The other oe c e prove i the sme wy. 3.7. Theorem. The sequece {p } stisfies the followig idetities. k0 k ξk k pk p k0 k ξk+r k +ξrξk p k+r p +r. Proof. Usig Biet formul of {p }, ξk+r k +ξrξk p k+r k k0 1 ξk+r k+r ξk+r k +ξrξk k k0 α k+r + β k+r 1 αk+r β k+r

338 N. Irmk, M. Alp α k+r + β k+r k k0 + 1 αk+r β k+r r 1 ξ α +r + β +r + 1 α+r β +r +r p +r. Whe we tke 1, we oti k0 Lk L k d k0 k Lk+r L +r. Refereces [1] Hordm, A. F. A geerlized Fiocci Sequece, Amer. Mth. Mothly, 68, 455 459, 1961. [] Edso, M. d Yyeie, O. A ew geerliztio of Fiocci sequeces d exteded Biet s Formul, Iteger 9, #A48, 639 654, 009. [3] Yyeie, O. A ote o geerlized Fiocci sequeces, Applied. Mth. Comp. 17 1, 5603 5611, 011. [4] Koshy, T. Fiocci Ad Lucs Numers with Applictios, Wiley, New York, 001. [5] Vjd, S. Fiocci & Lucs Numers d the Golde Sectio, Theory d Applictios, Ellis Horwood Ltd., Chishester, 1989. [6] Cooper, C. A idetity for period k secod order lier recurrece systems, Cog. Numer. 00, 95 106, 010. [7] Shi, M. The Geli-Cesro idetity i some coditiol Sequeces, Hcettepe Jourl of Mthemtics d Sttistics, 40, 855 861, 011. [8] Irmk, N. d Szly, L. O k periodic Biry Recurrece, A. Mth. Iform. 40, 5 35, 01.