ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις

Σχετικά έγγραφα
Κάθε γνήσιο αντίτυπο φέρει τη σφραγίδα του εκδότη

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

1.7 Διατάξεις 1. Στην ελληνική βιβλιογραφία επικρατεί ο συμβολισμός. Permutations

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Υπολογιστικά & Διακριτά Μαθηματικά

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

Θεωρία Πιθανοτήτων & Στατιστική

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

Διακριτά Μαθηματικά Συνδυαστική

P(n, r) = n r. (n r)! n r. n+r 1

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ

Λύσεις 1ης Ομάδας Ασκήσεων

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Θεωρία Πιθανοτήτων και Στατιστική

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

#(A B) = (#A)(#B). = 2 6 = 1/3,

ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων)

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

Ορισμένες σελίδες του βιβλίου

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα

Στοχαστικές Στρατηγικές

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

Απαρίθμηση: Εισαγωγικά στοιχεία

Υπολογιστικά & Διακριτά Μαθηματικά

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Αριθμητική Ανάλυση και Εφαρμογές

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Πίνακες Γραμμικά Συστήματα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

Συνδυαστική Απαρίθμηση

Μαθηματικά στην Πολιτική Επιστήμη:

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του φυλλαδίου ασκήσεων επανάληψης. P (B) P (A B) = 3/4.

(1) 98! 25! = 4 100! 23! = 4

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ

(1) 98! 25! = 4 100! 23! = 4

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

1.1 Πείραμα Τύχης - δειγματικός χώρος

Συνδυαστική Ανάλυση. Υπολογισμός της πιθανότητας σε διακριτούς χώρους με ισοπίθανα αποτελέσματα:

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ

HY118-Διακριτά Μαθηματικά

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd stvrentzou@gmail.com

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

α n z n = 1 + 2z 2 + 5z 3 n=0

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ονομασία αριθμός ψηφίων αριθμοί έχουν 1 ψηφίο έχουν 2 ψηφία έχουν 3 ψηφία έχουν 4 ψηφία...

HY118-Διακριτά Μαθηματικά

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

ΣΥΣΤΗΜΑΤΑ. Για την επίλυση ενός γραμμικού συστήματος με την χρήση των οριζουσών βασική είναι η παρακάτω επισήμανση:

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Gutenberg

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

B A B A A 1 A 2 A N = A i, i=1. i=1

ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την

f(t) = (1 t)a + tb. f(n) =

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

Βιομαθηματικά BIO-156

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

Υπολογιστικά & Διακριτά Μαθηματικά

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

Transcript:

1 ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ 1 Συνδυαστική ανάλυση Η συνδυαστική ανάλυση είναι οι διάφοροι μέθοδοι και τύποι που χρησιμοποιούνται στη λύση προβλημάτων εκτίμησης του πλήθους των στοιχείων ενός πεπερασμένου συνόλου Κάθε στοιχείο του συνόλου παριστά μια από τις δυνατότητες με τις οποίες, κάτω από προϋποθέσεις, ένα ορισμένο έργο ή πείραμα μπορεί να ολοκληρωθεί Χρησιμοποιούμε το σύμβολο ν! (ν παραγοντικό) για ν φυσικό αριθμό, που ορίζεται ως εξής ν! = 1 1 3º ν Ορίζουμε ως 0! = 1 11 Μεταθέσεις Αν θεωρήσουμε τρία στοιχεία Α,Α,Α, 1 2 3 μπορούμε να τα τοποθετήσουμε σε ευθεία γραμμή με έξι τρόπους: ΑΑΑ 1 2 3, ΑΑΑ, 2 3 1 AAA 3 1 3, AAA 1 3 2, AAA 3 2 1, AAA 2 1 3 Οι έξι αυτοί τρόποι λέγονται μεταθέσεις των στοιχείων AAA 1 2 3 Αλλά πάνω σε κύκλο τα τρία στοιχεία τοποθετούνται κατά δύο τρόπους Μεταθέσεις των ν (διαφορετικών ή μερικών ίσων) στοιχείων A,A, 1 2 º,Aν λέγονται οι διάφοροι τρόποι που μπορούμε να τοποθετήσουμε τα ν αυτά στοιχεία σε ευθεία γραμμή ή σε κλειστή καμπύλη Α 2 Α 3 Α 1 Α 1 Α 3 Α 2

4 Κεφάλαιο 1 11α Απλές μεταθέσεις Το πλήθος των μεταθέσεων των ν διαφορετικών στοιχείων σε ευθεία γραμμή το λέμε απλές μεταθέσεις και δίνεται από τον τύπο Μν = ν! Πράγματι, δύο διαφορετικά στοιχεία Α 1 και Α 2 έχουν δύο δυνατές μεταθέσεις τις ΑΑ 1 2 και ΑΑ, 2 1 δηλαδή είναι Μν = 2 = 2! Αν Μ ν - 1 είναι οι απλές μεταθέσεις των ν- 1 στοιχείων, για κάθε μία απ αυτές, ένα νιοστό στοιχείο μπορεί να τοποθετηθεί σε σειρά μαζί με τα άλλα κατά ν διαφορετικούς τρόπους (μπροστά από το πρώτο στοιχείο, μεταξύ του πρώτου και του δεύτερου στοιχείου, κτλ ) Επομένως, είναι Μν = νμν-1 = ν (ν- 1)! = ν! απλές μεταθέσεις Πχ επτά άνθρωποι είναι δυνατό να περιμένουν μπροστά σε μια θυρίδα με 7! = 5040 τρόπους 11β Κυκλικές μεταθέσεις Το πλήθος των μεταθέσεων ν διαφορετικών στοιχείων πάνω σε περιφέρεια κύκλου το λέμε κυκλικές μεταθέσεις των ν στοιχείων και δίνεται από τον τύπο Κ ν = (ν- 1)! Προφανώς, πάνω σε περιφέρεια κύκλου υπάρχουν ένας τρόπος τοποθέτησης δύο στοιχείων Κ2 = 1 και δύο τρόποι τοποθέτησης τριών στοιχείων Κ3 = 2 Αν Κν - 1 είναι οι κυκλικές μεταθέσεις των ν- 1 διαφορετικών στοιχείων, σε κάθε μία απ αυτές ένα νιοστό στοιχείο μπορεί να τοποθετηθεί κατά ν- 1 διάφορους τρόπους πάνω στην περιφέρεια του κύκλου, μαζί με τ άλλα στοιχεία, δηλαδή σ ένα από τα ν- 1 τόξου που χωρίζουν την περιφέρεια τα ν- 1 υ- πάρχοντα στοιχεία Άρα, είναι Κ ν = (ν- 1)Κ ν-1 = (ν-1)(ν- 2)! = (ν- 1)! Πχ επτά άνθρωποι μπορούν να καθήσουν σ ένα στρογγυλό τραπέζι κατά (7-1)! = 6! = 720 τρόπους 11γ Μεταθέσεις με επανάληψη Το πλήθος των μεταθέσεων των ν στοιχείων, από τα οποία k 1 είναι όμοια μεταξύ τους, k 2 είναι όμοια μεταξύ τους, º,km είναι όμοια μεταξύ τους (προφανώς είναι k1 + k2 +º+ km = ν), το λέμε μεταθέσεις με επανάληψη των ν στοιχείων, και δίνεται από τον τύπο k,k, 1 2 º,k ν! m Μ ν = k!k! º k! 1 2 m

Στοιχεία Άλγεβρας 5 Πράγματι, είναι M = k!, M = k!, º,M = k! οπότε έχουμε k1 1 k2 2 km m k,k,,k ν k k k ν º º = 1 2 m M Μ Μ Μ M 1 2 m Πχ το πλήθος των εξαψήφιων αριθμών που έχουν τα ίδια ψηφία με τον α- ριθμό 235653 είναι 2,2 6! 720 Μ6 = = = 180, 2!2! 4 αφού στον αριθμό έχουμε δύο φορές το 3 και δύο φορές το 5 12 Συνδυασμοί Διώνυμο του Νεύτωνα Θεωρούμε τέσσερα διαφορετικά στοιχεία A, 1 A, 2 A, 3 A 4 και ζητάμε να βρούμε όλους τους τρόπους με τους οποίους μπορούμε να πάρουμε τρία διαφορετικά στοιχεία απ αυτά, χωρίς όμως να ενδιαφέρει η σειρά με την οποία παίρνουμε τα τρία αυτά στοιχεία Οι τρόποι είναι τέσσερις: AAA 1 2 3, AAA 1 2 4, AAA 1 3 4, AAA 2 3 4 ενώ πχ ο συνδυασμός AAA 1 2 3 έχει άλλες πέντε μεταθέσεις AAA 2 3 1, AAA 3 1 2, AAA 1 3 \2, AAA 3 2 1, AAA 2 1 3, αφού δεν ενδιαφέρει η σειρά με την οποία παίρνουμε τα τρία στοιχεία σε κάθε συνδυασμό Με ανάλογο τρόπο προκύπτουν οι συνδυασμοί Α,Α, 1 2 º,Αν στοιχείων 12α Απλοί συνδυασμοί Απλοί συνδυασμοί των ν διαφορετικών στοιχείων ανά μ(μ ν) λέγονται οι διάφοροι τρόποι που μπορούμε να πάρουμε μ διαφορετικά στοιχεία από τα ν στοιχεία που δόθηκαν, χωρίς να ενδιαφέρει η σειρά με την οποία είναι τοποθετημένα σε σειρά τα μ στοιχεία σε κάθε συνδυασμό Το πλήθος των απλών συνδυασμών των ν στοιχείων ανά μ συμβολίζεται όπως αποδεικνύεται στη συνέχεια Êνˆ μ, και ισούται με Êνˆ ν! = μ μ!(ν - μ)!,

6 Κεφάλαιο 1 Êνˆ Παίρνουμε έναν από τους συνδυασμούς μ Από τα ν στοιχεία μένουν τότε τα υπόλοιπα ν- μ 0 στοιχεία Τα ν- μ στοιχεία μπορούν να μετατεθούν κατά Μ ν- μ = (ν- μ)! τρόπους Κάθε τέτοια μετάθεση, μαζί με το συνδυασμό που πήραμε, δημιουργεί μια δυνατή μετάθεση των ν στοιχείων Δεν έχουν όμως εξαντληθεί όλες οι μεταθέσεις των ν στοιχείων Για να γίνει αυτό πρέπει να πάρουμε υπόψη πως και τα μ στοιχεία του συνδυασμού που πήραμε μπορούν να μετατεθούν κατά Μµ = μ! τρόπους Έχουμε λοιπόν Προφανώς Êνˆ Êνˆ ν! Μν- μμμ Μν μ = fi = μ μ!(ν - μ)! Êνˆ = 1 ν και ορίζουμε Êνˆ = 1 0, αφού 0! = 1 Πχ το πλήθος των εξαμελών επιτροπών, που είναι δυνατό να σχηματισθούν από μια ομάδα 15 ατόμων, είναι i) Ê15ˆ 15! = = 4455 6 6!9! Αποδεικνύονται εύκολα οι παρακάτω ιδιότητες: Êνˆ Ê ν ˆ = μ ν- μ, ii) Êνˆ Ê ν ˆ Êν+ 1ˆ + = μ μ+ 1 μ+ 1, ν ν μ ν iii) Ê ˆ - Ê ˆ = μ+ 1 μ 1 μ + 12β Συνδυασμοί με επανάληψη Όταν επιτρέπεται στους συνδυασμούς των ν στοιχείων ανά μ, ένα δοσμένο στοιχείο από τα ν, να επαναλαμβάνεται μία ή δύο ή μέχρι το πολύ μ φορές, τότε έχουμε συνδυασμούς με επανάληψη Αποδεικνύεται ότι, το πλήθος των συνδυασμών με επανάληψη των ν στοιχείων ανά μ, δίνεται από τον τύπο

Στοιχεία Άλγεβρας 7 Êν+ μ-1 ˆ (ν+ μ-1)! μ = μ!(ν - 1)! Πχ το πλήθος των όρων ομογενούς πολυωνύμου ως προς x,y,z πέμπτου βαθμού, δηλαδή οι όροι του είναι της μορφής είναι κλ μ κ λ μ A x y z, με κ + λ+ μ = 5, Ê3+ 5-1ˆ Ê7ˆ 7! 21 5 = = = 5 5!2! 12γ Διώνυμο του Νεύτωνα Αν α, β είναι πραγματικοί ή μιγαδικοί αριθμοί και ν ŒÍ, ισχύει ο τύπος του διωνύμου του Νεύτωνα ν ν Êνˆ ν-k k  (α+ β) = α β = k k= 0 Êνˆ ν Êνˆ ν- 1 Ê ν ˆ ν+ 1-k k-1 Êνˆ ν-k k Êνˆ ν = α + α β +º+ α β + α β +º+ β 0 1 k - 1 k ν (1) Προφανώς ο τύπος ισχύει για ν = 1 'Εστω ότι ισχύει για ν, θα δείξουμε πως ισχύει και για ν+ 1, δηλαδή ν+ 1 Êν+ 1ˆ ν+ 1 Êν+ 1ˆ ν (α+ β) = α + α β+º 0 1 Êν+ 1ˆ Êν+ 1ˆ º+ α β +º+ β k v+ 1 Πολλαπλασιάζουμε τα μέλη της (1) επί α+ β και παίρνουμε ν + 1 - k k ν + 1 ÈÊνˆ Ê ν ˆ (α+ β) = α +º+ Í + α β +º+ β k k - 1 Î αλλά οι συντελεστές του όρου ίσοι, επειδή ισχύει ν+ 1 ν+ 1 ν+ 1- k k ν+ 1 α ν+ 1-k β Êνˆ Ê ν ˆ Êν+ 1ˆ + = k k - 1 k k (2), (3) στους δύο τύπους (2) και (3) είναι

8 Κεφάλαιο 1 Αποδεικνύεται, ανάλογα, ότι ισχύει ο τύπος ν ν k Êνˆ ν-k k (α- β) = Â (-1) α β k (4) k= 0 Εφαρμογή Το πλήθος των υποσυνόλων δοσμένου συνόλου, με ν στοιχεία, είναι Êνˆ Êνˆ Êνˆ Êνˆ ν + +º+ +º+ = 2 0 1 k ν Αρκεί να θέσουμε α = β = 1 στον τύπο (1) Επίσης έχουμε αρκεί να θέσουμε α Êνˆ Êνˆ k Êνˆ νêνˆ - +º+ (- 1) +º+ (- 1) = 0 0 1 k ν, = β στον τύπο (4) Παραδείγματα 1 Να βρεθεί το πλήθος των διαγωνίων ενός κυρτού πολυγώνου με n 4 πλευρές Οι συνδυασμοί των n πλευρών ανά δύο, μείον τις πλευρές n του κυρτού πολυγώνου, δίνουν το πλήθος των διαγωνίων Άρα, το πλήθος των διαγωνίων είναι Ê n ˆ n! (n 3)n n n - 2 - = - = 2!(n - 2)! 2 Πχ για n= 4 έχουμε 2 διαγωνίους 2 Να βρεθεί ο συντελεστής του 6 x στα διώνυμα 8 7 (x+ 5), (3x+ 2) Ο τύπος του διωνύμου του Νεύτωνα είναι Επομένως έχουμε: ν ν Êνˆ ν-k k (α+ β) = Â α β k k= 0

Στοιχεία Άλγεβρας 9 α) στο διώνυμο 8 (x+ 5) ο ζητούμενος συντελεστής βρίσκεται από τον όρο οπότε είναι β) στο διώνυμο όρο 2Ê8ˆ 2 8! 5 = 5 = 700 2 2!6! Ê8ˆ x 8-2 5 2 2, 7 (3x+ 2) ο ζητούμενος συντελεστής βρίσκεται από τον 7 (3x) 7-1 2 Ê ˆ 1, οπότε είναι 6 Ê7ˆ 6 2 3 = 14 3 = 14 729 = 10206 1 3 Να δειχθεί η ταυτότητα (m n) Ên+ mˆ ÊnˆÊmˆ ÊnˆÊmˆ ÊnˆÊmˆ = 1 + + +º+ m 1 1 2 2 m m Από το διώνυμο του Νεύτωνα έχουμε n Ênˆ Ênˆ Ê n ˆ m-1 (1+ x) = + x+º+ x +º 0 1 m- 1 και Ênˆ Ê n ˆ Ênˆ º+ x + x +º+ x m m+ 1 n m m+ 1 n Êmˆ Êmˆ Ê m ˆ Êmˆ (1+ x) = + x+º+ x + x 0 1 m- 1 m m m-1 m (1) (2) Πολλαπλασιάζουμε κατά μέλη τις σχέσεις (1) και (2), και παίρνουμε n+ m ÈÊnˆÊmˆ ÊnˆÊ m ˆ ÊnˆÊ m ˆ ÊnˆÊmˆ m (1+ x) = 1+º+ Í + x 0 m 1 + +º+ + m 1 2 m- 2 m 0 Î - Αλλά ισχύει n mˆ x n+ m Ê ˆÊ º+ n m

10 Κεφάλαιο 1 Ê m ˆ Êmˆ = m- k k, οπότε ο m στός συντελεστής της δύναμης είναι ο συνδυασμός Ên+ mˆ m και προκύπτει η ζητούμενη ισότητα m x στο ανάπτυγμα n m (1+ x) + 13 Διατάξεις Αν έχουμε τρία διαφορετικά στοιχεία A,A,A 1 2 3 ενός συνόλου οι διατάξεις τους ανά δύο είναι A1A 2, A1A 3, A2A 3, A2A 1, Α3Α 1, Α3Α 2 Η διάταξη γενικότερα καθορίζεται από τις δύο αρχές: i) καθορίζεται ποιό στοιχείο προηγείται (άρα και ποιό έπεται), ii) αν το στοιχείο Α 1 προηγείται του Α 2, και το Α 2 προηγείται του Α 3, τότε το Α 1 προηγείται του Α 3 13α Απλές διατάξεις Απλές διατάξεις των ν διαφορετικών στοιχείων ν ανά μ(μ ν) λέγονται οι μεταθέσεις των συνδυασμών των ν στοιχείων ανά μ, δηλαδή το πλήθος των διατάξεων είναι ν Êνˆ ν! Δμ= μ! ν(ν 1) (ν μ 1) μ = = - º - + (ν- μ)! Πχ οι τριψήφιοι αριθμοί που μπορούν να σχηματισθούν, με τρία διαφορετικά ψηφία, από τους αριθμούς 1, 2, 3, 4, 5 είναι 13β Διατάξεις με επανάληψη 5 5! Δ3= = 3 4 5 = 60 2! Το πλήθος των διατάξεων με επανάληψη των ν στοιχείων ανά μ ( μ οποιοσδήποτε, μ ν ή μ > ν) δίνονται από τον τύπο

Στοιχεία Άλγεβρας 11 µ ν Πχ το πλήθος των τριψήφιων αριθμών στους οποίους δεν υπάρχει το μηδέν, άρα έχει στοιχεία με επανάληψη από τους αριθμούς 1, 2, 3, 4, 5, 6, 7, 8, 9, είναι 3 9 = 729 14 Εφαρμογή στις Πιθανότητες Υποθέτουμε ότι ένα νόμισμα είναι ομογενές και ότι έχει απόλυτη συμμετρία, ώστε σε ρίψη του νομίσματος να μην ευνοείται καμία από τις όψεις του: A «γράμματα» ή Β «πρόσωπο» Όταν ρίξουμε ένα τέτοιο νόμισμα, τότε οι δύο όψεις του Α και Β, είναι εξίσου «πιθανές» να εμφανισθούν Γι αυτό λέμε ότι η «πιθανότητα» να εμφανισθεί η όψη Α (ή Β ) είναι 1 2, όπου οι δυνατές περιπτώσεις είναι 2 (εμφάνιση της όψης Α, εμφάνιση της όψης Β ) και η ευνοϊκή περίπτωση για να εμφανισθεί η όψη Α (ή B) είναι μία, σε μία ρίψη του νομίσματος ΟΡΙΣΜΟΣ 1: Πιθανότητα P(E) ενός ενδεχομένου Ε λέγεται ο λόγος του αριθμού που παριστάνει τις ευνοϊκές περιπτώσεις να συμβεί το ενδεχόμενο Ε προς τον αριθμό που παριστάνει όλες τις δυνατές περιπτώσεις, όταν όλες οι δυνατές περιπτώσεις, ευνοϊκές ή δυσμενείς, είναι εξίσου πιθανές Προφανώς ισχύει 0 Ρ(Ε) 1, με P( E ) = 0 όταν το ενδεχόμενο Ε δεν είναι δυνατό να συμβεί και με P( E ) = 1 όταν το ενδεχόμενο συμβαίνει πάντα, είναι δηλαδή «βέβαιο» ενδεχόμενο Πχ αν ρίξουμε ένα νόμισμα (με δύο όψεις Α και Β ) τρεις φορές, τότε η 1 πιθανότητα να έχουμε και στις τρεις ρίψεις την ίδια όψη Α (ή Β) είναι 8, επειδή η ευνοϊκή περίπτωση είναι μία και όλες οι δυνατές περιπτώσεις είναι 2 = 8 3 (διατάξεις με επανάληψη) Γενικότερα, η πιθανότητα να εμφανισθεί (ανεξάρτητα από τη σειρά εμφάνισης) k φορές η όψη Α και n- k φορές η όψη Β, σε n ρίψεις του νομίσματος (ή που είναι το ίδιο: k φορές η όψη Β και n- k φορές η όψη Α ), ισούται με k n-k n-k k 1 Ênˆ P( A B ) = P( A B ) = n 2 k

12 Κεφάλαιο 1 ΟΡΙΣΜΟΣ 2: Δύο ενδεχόμενα E 1 και E 2 λέγονται ανεξάρτητα, όταν η πραγματοποίηση του ενός δεν επηρεάζει την πραγματοποίηση του άλλου Σ αυτήν την περίπτωση έχουμε P(E1E 2 ) = P(E 1)P(E 2 ) Πχ ένα ζάρι έχει έξι πλευρές, άρα έξι ενδεχόμενα εμφάνισης σε μία ρίψη Αν λοιπόν ρίξουμε δύο ζάρια η πιθανότητα το ένα να δείξει 2 και το άλλο 5 είναι 1 1 1 P( E 1)P( E 2 ) = = 6 6 36 ΟΡΙΣΜΟΣ 3: Η πιθανότητα πραγματοποίησης ενός ενδεχομένου Ε 2, αφού έχει πραγματοποιηθεί κάποιο άλλο ενδεχόμενο Ε 1, λέγεται δεσμευμένη πιθανότητα και γράφεται P( E 2 / E 1) Αν Ν είναι όλες οι δυνατές περιπτώσεις και του ενδεχομένου Ε, τότε έχουμε Πράγματι, έχουμε P( E1E 2 ) P( E 2 / E 1) = P( E ) EE 1 2 E1 EE 1 2 1 2 1 2 1 E 1 1 E οι ευνοϊκές περιπτώσεις P( E E ) = = = P( E )P( E / E ) Πχ αν από ένα κιβώτιο, το οποίο έχει 4 λευκές και 3 μαύρες σφαίρες, πάρουμε διαδοχικά δύο σφαίρες και δούμε πως το πρώτο είναι λευκό, η πιθανότητα να είναι και το δεύτερο λευκό είναι Παραδείγματα 4 3 2 P(E1E 2 ) = P(E 1)P(E 2 /E 1) = = 7 6 7 1 Η πιθανότητα ενός παίκτη του ΠΡΟ ΠΟ, να κερδίσει 13-άρι όταν παίζει 16 στήλες είναι 16, 13 3 όπου 3 13 είναι όλες οι δυνατές περιπτώσεις στηλών

Στοιχεία Άλγεβρας 13 Αν ο παίκτης παίζει 6 «στάνταρ» που επαληθεύονται, τότε η πιθανότητα να κερδίσει 13-άρι, με 16 στήλες, είναι 16/3 7 Στο παιχνίδι του Τζόκερ όλοι οι δυνατοί συνδυασμοί των 5 αριθμών από τους 45 του πρώτου πεδίου είναι Ê45ˆ 45! 41 42 43 44 45 41 7 43 11 9 1221759 5 = = = =, 5!40! 5! ενώ του δεύτερου πεδίου, από τους 20 αριθμούς να βγεί το Τζόκερ, είναι Ê20ˆ = 20 1 Άρα, η πιθανότητα, η μία στήλη του Τζόκερ να κερδίσει είναι 1 1 1 = = Ê45ˆ Ê20 ˆ ( 1221759 ) 20 24 435180 5 1 2 Μια κάλπη περιέχει 4 σφαίρες λευκές και 3 σφαίρες μαύρες Εξάγουμε 3 σφαίρες Ποιά η πιθανότητα: α) να βγάλουμε 3 σφαίρες λευκές; β) 1 σφαίρα λευκή και 2 μαύρες; Όλες οι δυνατές περιπτώσεις, όταν εξάγουμε 3 σφαίρες από τις 4+ 3= 7 σφαίρες της κάλπης, χωρίς να ενδιαφέρει η σειρά που βγαίνουν, είναι οι συνδυασμοί Ê7ˆ 7! = = 35 3 3!4! α) Οι ευνοϊκές περιπτώσεις είναι 4 άρα η πιθανότητα είναι 35 β) Οι ευνοϊκές περιπτώσεις είναι Ê4ˆ = 4 3, Ê4ˆÊ3ˆ = 4 3 = 12 1 2,

14 Κεφάλαιο 1 άρα η πιθανότητα είναι 12 35 15 Αρχή της απαρίθμησης Δενδροδιάγραμμα Όταν ζητάμε ν απαριθμήσουμε τα στοιχεία ενός συνόλου σε n-άδες (α 1,α 2,α 3, º,α n ), με την πρώτη συνιστώσα α 1 να έχει k 1 δυνατότητες (δηλαδή το α 1 γίνεται κατά k 1 διαφορετικούς τρόπους), η δεύτερη συνιστώσα α 2 να έχει k 2 δυνατότητες, τότε κατά την αρχή της απαρίθμησης το πλήθος αυτών των n-άδων είναι k1 k2 k3 º kn Η απαρίθμηση γίνεται σε n διαδοχικά στάδια Μια αναλυτική μελέτη της αρχής της απαρίθμησης γίνεται στο βιβλίο: Χ ΜΩΫΣΙΑΔΗ, «Συνδυαστική Απαρίθμηση», Εκδόσεις Ζήτη, Θεσσαλονίκη, 2002 Παράδειγμα 1 Πόσους τετραψήφιους αριθμούς, περιττούς και μικρότερους του 5000 μπορούμε να σχηματίσουμε με τα ψηφία 0, 2, 4, 5, 6, 9 όταν η επανάληψη των στοιχείων δεν επιτρέπεται Τα τέσσερα ψηφία δεν μπορούν αν εκλεγούν ανεξάρτητα με τη σειρά 1 ο, 2 ο, 3 ο, 4 ο Πράγματι, αν στα τρία πρώτα ψηφία εκλεγεί ένα 5 ή ένα 9 τότε το 4 o ψηφίο έχει δύο δυνατότητες (οι περιττοί αριθμοί 5, 9) Αν όμως τα ψηφία εκλεγούν με τη σειρά 1 ο, 4 ο, 2 ο, 3 ο τότε η εκλογή κάποιων ψηφίων στα πρώτα στάδια δεν επηρεάζει τα επόμενα Έτσι, σύμφωνα με την αρχή της απαρίθμησης, βρίσκουμε: 1 o ψηφίο: 2 δυνατότητες, (οι αριθμοί 2, 4), 4 o ψηφίο: 2 δυνατότητες, (οι αριθμοί 5, 9), 2 o ψηφίο: 4 δυνατότητες, 3 o ψηφίο: 3 δυνατότητες, δηλαδή, μπορούν να σχηματισθούν 2 2 4 3= 48 τετραψήφιοι περιττοί αριθμοί χωρίς επανάληψη φηφίων Παράδειγμα 2 Πόσες πινακίδες αυτοκινήτων σχηματίζονται με πρώτα στοιχεία δύο διαφορετικά γράμματα του ελληνικού αλφαβήτου (εκτός του γράμματος όμικρον) και