d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

Σχετικά έγγραφα
Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

An Inventory of Continuous Distributions

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

Probability and Random Processes (Part II)

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Lecture 12 Modulation and Sampling

Γ. Κορίλη, Μοντέλα Εξυπηρέτησης

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

P ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3, ,. ʳÌÊÊ. Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ. ² μ Ê ² Annals of Nuclear Energy

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

The canonical 2nd order transfer function is expressed as. (ω n

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

NPI Unshielded Power Inductors

Χρονοσειρές Μάθημα 3

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

SMD Transient Voltage Suppressors

Summary of the model specified

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

D-Wave D-Wave Systems Inc.

& Risk Management , A.T.E.I.

Financial Risk Management

Multi-dimensional Central Limit Theorem

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

4.6 Autoregressive Moving Average Model ARMA(1,1)

Statistical Inference I Locally most powerful tests


Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W

Multi-dimensional Central Limit Theorem

Durbin-Levinson recursive method

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

A summation formula ramified with hypergeometric function and involving recurrence relation

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Calculating the propagation delay of coaxial cable

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Inverse trigonometric functions & General Solution of Trigonometric Equations

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

Stabilization of stock price prediction by cross entropy optimization

The Student s t and F Distributions Page 1

Τέτοιες λειτουργίες γίνονται διαμέσου του

Alféa Extensa + and Extensa Duo +

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

3 Frequency Domain Representation of Continuous Signals and Systems

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Biostatistics for Health Sciences Review Sheet

Lecture 7: Overdispersion in Poisson regression

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

V S C V C -10. V t C dv c dt

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

6.3 Forecasting ARMA processes

Monolithic Crystal Filters (M.C.F.)

Mean-Variance Analysis

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

APPLICATIONS TECHNOLOGY. Leaded Discs N.03 N.06 N.09

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]


Hydraulic network simulator model

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

FORMULAS FOR STATISTICS 1

Pricing Asian option under mixed jump-fraction process

Ceramic PTC Thermistor Overload Protection

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Homework 8 Model Solution Section

MA6451-PROBABILITY & RANDOM PROCESS. UNIT-IV-CORRELATION AND SPECTRAL DENSITIES By K.VIJAYALAKSHMI Dept. of Applied mathematics

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

By R.L. Snyder (Revised March 24, 2005)

DuPont Suva 95 Refrigerant

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

DuPont Suva 95 Refrigerant

Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square

Markov chains model reduction

Solution Series 9. i=1 x i and i=1 x i.

Matrices and Determinants

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις:

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Polymer PTC Resettable Fuse: KMC Series

5.4 The Poisson Distribution.

Riemann Hypothesis: a GGC representation

Ηλεκτρονικοί Υπολογιστές IV

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Elements of Information Theory

Ceramic PTC Thermistor Overload Protection

Project: 296 File: Title: CMC-E-600 ICD Doc No: Rev 2. Revision Date: 15 September 2010

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Influence of Flow Rate on Nitrate Removal in Flow Process

Electronic Supporting Information


Approximation of the Lerch zeta-function

Προσομοίωση Μοντέλων Επιχειρησιακών Διαδικασιών

RSA3408A 24 GSM/EDGE

Transcript:

d d S = ()SI d d I = ()SI ()I d d R = ()I

d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r

d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)

d d P(n,) = (n 1, )P(n 1, ) + μ(n +1, )P(n +1, ) [ (n,) + μ(n,) ]P(n,) (n,) = ()n μ(n,) = μ()n

d d ()exp () [ M() ] g(z,) = ( ()z μ() )(z 1) z g(z,) dz d d d ( ) ()exp () M() = ( ()z μ() )( z 1) = ( () μ() ) + () ( [ ]) d = () = C () = ()d M() = μ()d

g(z,) = f V () z 1 W () V () g(z,) = f = z n z 1 [ V () W ()]z +V() +W () V() g(z,) = V () +W () W ()z ( [ ]) V () = exp () M() W () = ()V ()d n o p(,) =1 V () (n = ) p(n,) V () +W () ( ) = W () n 1 V ()V () V () +W () ( ) n +1 (n )

n 2 () = V () n() = V () V () V () 2W () +V () V() V () F = 2 n () n() 2W () +V() V () = V ()

1..5 y x

.2.1 y x

d d P(n,) = ()P(n 1, ) ()P(n,) P(n,) = ()n n! f ISI () = ()exp(()) exp( () ) (Rae Code) (Time Code) f ISI () = f ( )g()d f ( ) = () 1 exp() g() = = B(,) () 1 exp() 1 () = ()d Fano Facor =1(always) ( + ) + (Tsubo, [3]; Ikeda [4]) Ge good fi ISI in vivo Fracal-renewal process conradics synfire chain/ bursing fracional-gaussian-noise-driven Poisson process (fgndp)

Memory funcion ype Langevin equion d d A = ia ( s)a(s)ds + f () () f () f ()AA * 1 [6] H. Mori, Progr. Theor. Phys. 33 (1965) 423 Convoluion-less ype Langevin equaion d d A = i() ( )A() + g() () = (s)ds () = g()g * ()AA * 1 [7] M. Tokuyama and H. Mori, Progr. Theor. Phys. 55 (1976) 411.

d (i) Memory funcion ype Maser equaion [8] j [ ] d P(n,) = d K nj( )P( j,) K ( )P(n,) jn (ii) Non-saionary (Time-convoluion less) ype Maser equaion [9] d d P(n,) = j [ L ] ()P( j,) L ()P(n,) nj jn

w ISI () = exp ( ) Coefficien of Variabiliy (CV) CV = Var() E[] Local Coefficien of Variabiliy (LV) LV = 1 3( i i+1 ) 2 =1 m 1 ( i + i+1 ) 2 Fano FacorF Allan Facor (A) p(n,t) = (T)n n! exp( T) F(T) = Var[n] E[n] =1 A(T) = E[(n k +1 (T) n k (T))2 ] E[n k (T)] m1 i=1.. Index of clusering =1 Variance-o-mean raio = 2F(T) F(2T) =1

w ISI () = 1 () CV = 1 exp ( ) LV = 3 2 +1 Mixed Gamma disribuiondoubly Gamma process p ISI () = = d = w ISI (,;) f ()d 1 () ( + ) ()() exp( ) () 1 exp( ) 1 ( + ) + (in viro) (Ikeda [3]) (Bea funcion of The second kind) (Tsubo [4])

Number disribuion for Gamma Process is esimaed by p(n ;,T) = P(n,T /) P((n +1),T /) P(, x) = 1 () x 1 exp()d Mixed Gamma Disribuion semi-parameric model p(n F;,T) = b a p(n ;,T)dF() Incremen is no independen: i is desirable o avoid for analyzing sequences wih synfire chain/bursing

d d P(n,) = ()P(n 1, ) ()P(n,) P(n,) = ()n n! () = exp( () ) ()d E[n] = Var[n] = () F(T) =1 (always)

() () () E[n] = Var[n] = () W () =1 exp(()) exp( ) 1 exp( ) ( ) 1 exp 1 exp( ) ( ) 1+ 1 ln 1+ ( ) F(T) =1 (always) 1 (1 + ) 1 exp

f ISI () = ()exp () ( ) () = 1+ E[] = 1 Var[] = f ISI () = ( 1+ ) 1+ ( ) 2 ( 2 ) CV = Generalized Pareo disribuion Var[] E[] = 2 () = 1 f ISI () = 1 exp E[] = 1/ 1+ 1 Var[] = 2/ 1+ 2 1+ 1 2 >1 (always) Weibull disribuion CV = 1+ 2 1+ 1 1 2

d d P(n,) = [ ( )P(n 1,) ( )P(n,) ] d

d d ( ) P(n,) = () [ (n 1) + ]P(n 1, ) [ n + ]P(n,) Feller (1963) [1] () = 1 1+ 1 () = 1+, =1

p(n,) = n, n = p(n,) = ( exp(()) ) n + 1 1 exp(()) n ( ) n () = ()d

() () = ()d () = 1+ E[n] = exp(()) 1 [ ] Var[n] = exp(()) [ exp(()) 1] Fano Facor Allan Facor F(T) = exp( (T) )>1 A(T) = 2F(T) F(2T)

(i) (ii) () () = ()d exp( ) ( 1 exp( ) ) 1+ ln( 1+ ) F() = exp(()) exp 1 exp( ) (1 + ) ( ) (iii) 1 exp The second iem corresponds exacly he fracional power law In he Fano Facor

(In he limi of for he generalized Polya process) p(n,) = n,1 Soluion for, Geomeric Disribuion p(n,) = ( exp(()) )1 ( exp(()) ) n n =1 Mean and Variance E[n] = exp(()) [ ] Var[n] = exp(()) exp(()) 1 [ ] Fano Facor F(T) = exp( (T) )1> This is conradic he feaure of Fano Facor of experimens in he region of small T

p(n,) = exp( (1) )(1) n F() = L n ( ) L n (x) = Laguerre'sPolynomial E[n] = exp(()) + [ exp(()) 1] Var[n] = exp(()) [ 2 exp(()) 1]+ [ exp(()) 1] Fano Facor (of signal averaging) n p(n ) = n exp(()) [ 2 exp(()) 1]+ [ exp(()) 1] exp(()) + [ exp(()) 1] n! exp( )

wihin Pr(d P,n) = n P nd (1 P ) d d f (P r n,s n ) = Hence, one obains SDT disribuion 1 1 B(r n,s n ) P r 1 n (1 P ) s n 1 Pr(d n,r n,s n ) = Pr(d P,n) f (P r n,s n )dp = n B(n d + r,d + s ) n n d B(r n,s n )

6.8 spike duraion ime (SDT) disribuion Pr(d n,r n,s n ) = n B(n d + r,d + s ) n n d B(r n,s n ) (r n,s n ) = (1.2,3.2) (r n,s n ) = (2.3,.6) (r n,s n ) = (.5,.6)

(Omied here)

A(T) T A A value

From Lowen and Teich Fracal-Based Poin Processes (Weiley, NY, 25)

(iii) (ii) (i) cf. Table 6.4

() = f f ( 1 exp[ f ] )+ s log( 1+ s ) s FF() = exp( () ) Fas mode (conribue o decrease FF value) + Slow mode (conribue o fracional power law) s s =.5

LIBERMAN MC. Audiory-nerve response from cas raised in a low noise chamber. J. Acous. Soc. Am. 63(2):442-455, 1978. Spiral Ganglion neuron Type-I neuron (fas) Type-II neuron (slow) are no found in 1978 Idenified by negaive binomial disribuion + Poisson disribuion he negaive binomial disribuion Pr(n) Number n

() = 1+

T Ts

ISI disribuion Parameer of exponenial disribuion is subjeced o Gamma disribuion f () = e () e 1 d = Pareo disribuion B(,1) 1 +1 ( + ) Spike-couning disribuion Parameer of Poisson couning process is subjeced o Gamma disribuion Negaive binomial disribuion P(N() = n) = ( + n 1)! n!( 1)! + n +