Προσομοίωση Μοντέλων Επιχειρησιακών Διαδικασιών
|
|
- Ἠλύσια Ιωαννίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Προσομοίωση Μοντέλων Επιχειρησιακών Διαδικασιών Α. Τσαλγατίδου - Γ.-Δ. Κάπος Πρόγραμμα Μεταπτυχιακών Σπουδών Τεχνολογία Διοίκησης Επιχειρησιακών Διαδικασιών
2 Σκοπός Διαλέξεων Κίνητρα για προσομοίωση μοντέλων BP Σημασία προσομοίωσης BP Μέθοδοι προσομοίωσης Διαφοροποίηση μοντέλων BP - μοντέλων προσομοίωσης BP Διαδικασία παραγωγής μοντέλων προσομοίωσης (model-driven approach) Αξιοποίηση αποτελεσμάτων προσομοίωσης 2
3 Έννοιες & Όροι WFM Διαχείριση & εκτέλεση ροών εργασίας BPM (Management) Γενική προσέγγιση BP: modeling, redesign, execution, logging BPM (Modeling) Μοντελοποίηση BP BPS Προσομίωση BP BPMN - BPEL 3
4 Κίνητρα για Προσομοίωση Μοντέλων BP Κατανόηση διαδικασιών Παρακολούθηση της εκτέλεσης του BP Πόσες φορές γίνονται κάποια βήματα; Εντοπισμός προβλημάτων στα μοντέλα BP Πού υπάρχει μεγάλη καθυστέρηση; Υπάρχουν βήματα τα οποία δεν εκτελούνται ποτέ; Εκτίμηση απόδοσης Πόσο χρόνο απαιτεί η ολοκλήρωση της διαδικασίας; Πόσο χρόνο αναμονής έχουν ενεργά αιτήματα; Ποιο το utilization των resources 4
5 Κίνητρα για Προσομοίωση Μοντέλων BP Εκτίμηση κόστους Πόσο θα κοστίσει όλη η διαδικασία; Πληρώνω resources που δεν αξιοποιούνται; Να αξιοποιήσω περισσότερους οικονομικούς πόρους ή λιγότερους ακριβούς; Μελέτη παραλλαγών διαδικασιών Αν εισάγω/αφαιρέσω/αλλάξω αυτό το βήμα της διαδικασίας, ποιο θα είναι το αποτέλεσμα; Βελτιστοποίηση διαδικασιών Ως προς το χρόνο ολοκλήρωσης και το κόστος επεξεργασίας Εξέταση εναλλακτικών επιλογών 5
6 Κίνητρα για Προσομοίωση Μοντέλων BP Περιορισμός κινδύνων BPR Εντοπισμός επικίνδυνων αλλαγών στα BPs Ρεαλιστική εξέταση κόστους - ωφελειών Υψηλός βαθμός αξιοπιστίας εκτίμησης Αποτελέσματα που προσεγγίζουν την πραγματική λειτουργία, δηλαδή αξιοποιήσιμα Προσεκτική επιλογή παραμέτρων & μεθόδου Χαμηλό κόστος διερεύνησης Συγκριτικά με τις υποδομές για την επιχειρησιακή λειτουργία Χωρίς λειτουργικό κόστος ή επιπτώσεις στη φήμη 6
7 Σημασία Προσομοίωσης BP Διαμόρφωση μοντέλων προσομοίωσης BP Επιλογή περιβάλλοντος εκτέλεσης προσομοίωσης Πειραματική, ρεαλιστική εκτέλεση των μοντέλων προσομοίωσης BP Χωρίς παραγωγή επιχειρησιακού αποτελέσματος Αντιπροσωπευτική συμπεριφορά ως προς την απόδοση και τις επιλογές ροής 7
8 Σημασία Προσομοίωσης BP Αξιοποίηση εμπειρικών στοιχείων από υφιστάμενες BP, αλλά και προβλέψεων από μελέτες σχετικά με: Απόδοση βημάτων της διαδικασίας Κόστος πόρων - εκτέλεσης επιμέρους ενεργειών Συχνότητα εμφάνισης αιτήσεων/περιπτώσεων Επομένως, αποτελεί πρόσθετο κίνητρο για τυπική αντιμετώπιση των BP: Μοντελοποίηση BP Καταγραφή στοιχείων εκτέλεσης Διεξαγωγή σχετικών μελετών 8
9 Μέθοδοι Προσομοίωσης Διαφορετικοί τρόποι προσομοίωσης Είδος υποστηριζόμενων μοντέλων προσομοίωσης: στοχαστικά ή ντετερμινιστικά σταθερά ή δυναμικά συμπεριφορά συνεχής ή με διακριτά συμβάντα Τρόπος εκτέλεσης προσομοίωσης σειριακός ή παράλληλος/κατανεμημένος Θεωρητική θεμελείωση Τρόπος αναπαράστασης μοντέλων προσομοίωσης Υποστήριξη από εργαλεία Αντιμετώπιση διαφορετικών προβλημάτων 9
10 Μέθοδοι Προσομοίωσης Στις επιχειρησιακές διαδικασίες υπάρχουν Διακριτές μεταβάσεις από task σε task Εκτιμώμενος μέσος χρόνος επεξεργασίας task Συγκέντρωση αιτημάτων προς επεξεργασία σε ουρές Παραπέμπουν σε προσομοίωση με συμβάντα διακριτού χρόνου Απαιτείται η δημιουργία αντίστοιχου μοντέλου προσομοίωσης 10
11 Θέματα που αφορούν την Προσομοίωση, αλλά όχι τη BPMN Κατανομή πιθανοτήτων έναρξης BP Διαθεσιμότητα πόρων (άνθρωποι, μηχανές) Διάρκεια επεξεργασίας ενός βήματος BP: Κατανομή πιθανοτήτων Οι πόροι δεν αφιερώνονται 100% σε μία BP Στα σημεία επιλογής (gateways): Πιθανότητα να ακολουθηθεί κάθε κλάδος 11
12 Διαφορές μοντέλων BP - Μοντέλων Προσομοίωσης BP Τα μοντέλα ορισμού BP είναι: Εκφραστικά για να διευκολύνουν την ανάλυση Παραστατικά για το διαμοιρασμό της γνώσης Αντιπροσωπευτικά της διαδικασίας, σύμφωνα με τις προϋποθέσεις εκτέλεσης Εξαντλητικά στην περιγραφή δυνατών περιπτώσεων Τα μοντέλα προσομοίωσης BP είναι: Εκτελέσιμα ως προς συγκεκριμένες όψεις Αντιπροσωπευτικά της λειτουργίας της διαδικασίας, σύμφωνα με τις συνθήκες εκτέλεσης Εξαντλητικά στην εξέταση περιπτώσεων εκτέλεσης 12
13 Διαφορές BPMN - DES Στη BPMN δεν υπάρχει η έννοια της ουράς (queue) Στη BPMN δεν προβλέπεται η ανάθεση προτεραιοτήτων Στη BPMN δεν λαμβάνεται υπόψη ο χρόνος μεταξύ των βημάτων Στη BPMN δεν δίνεται η πιθανότητα κάθε κλάδου μετά από σημείο επιλογής 13
14 Διαδικασία Προσομοίωσης: Ερωτήματα Πώς περιγράφω τις BP μου; Ποιο περιβάλλον προσομοίωσης να επιλέξω; Πώς θα παράγονται τα εκτελέσιμα προγράμματα/μοντέλα προσομοίωσης BP; Πώς θα συμπληρώνονται τα μοντέλα BP με τις απαιτούμενες πληροφορίες; Πώς θα εξασφαλίζεται η αντιστοιχία; Τι αποτελέσματα θα προκύψουν; Πώς θα αξιοποηθούν; 14
15 Επιλογή Μεθοδολογίας & Περιβάλλοντος Προσομοίωσης Επιλογή μεθοδολογίας & περιβάλλοντος εκτέλεσης προσομίωσης Εύρος διαθέσιμων επιλογών για στοιχεία με τυχαία συμπεριφορά Θεωρητικό υπόβαθρο μεθοδολογίας προσομοίωσης Αναμενόμενη ποιότητα αποτελεσμάτων Γλώσσα ορισμού μοντέλων προσομοίωσης Υψηλού/χαμηλού επιπέδου Δηλωτική/διαδικαστική Διαθέσιμοι προσομοιωτές Απαιτήσεις (web, operating system, libs) Διαλειτουργικότητα 15
16 Περιγραφή Τυχαίας Συμπεριφοράς Επιλογή κατάλληλης κατανομής Fixed Normal (or Gaussian) Exponential Uniform Triangular Log-Normal Gamma Συνάρτηση πυκνότητας πιθανοτήτων (PDF) Καθορισμός παραμέτρων 16
17 Normal (or Gaussian) Distribution or Bell Curve μ: mean/expectation of the distribution (also median/ mode). σ: standard deviation σ 2 : variance Σημαντική στην στατιστική Χρησιμοποιείται συχνά για τυχαίες τιμές των οποίων η κατανομή δεν είναι γνωστή (φυσικές & κοινωνικές επιστήμες) 17
18 Exponential Distribution (or negative exponential distribution) λ: rate, or inverse scale Mean: λ 1 (=β): number of events per unit time Median: λ 1 ln(2) Ο χρόνος ανάμεσα σε δείγματα μίας διαδικασίας Poisson 18
19 Uniform (Rectangular) Distribution a: minimum b: maximum Mean: 1/2(a+b) Median: 1/2(a+b) U(a,b) Maximum entropy probability distribution for a random variate X 19
20 Triangular Distribution a: minimum b: maximum c: mode Mean: (a+b+c)/3 Υποκειμενική περιγραφή πληθυσμού με λίγα δείγματα (υψηλό κόστος συλλογής) Συχνά σε BP & προσομοίωση 20
21 Log-normal Distribution μ: mean: e μ+σ²/2 median: e μ mode: e μ-σ² σ: standard deviation Μέγιστη εντροπία κατανομής πιθανοτήτων τυχαίας μεταβλητής X, δεδομένων mean & variance του ln(χ) 21
22 Gamma Distribution Χρήσεις: δείγματα ασφαλιστικών απαιτήσεων δείγματα ποσότητας βροχόπτωσης διάφορες άλλες 22
23 Επιλογή Κατάλληλης Κατανομής Εξέταση μεταβλητής (χρόνου άφιξης/εκτέλεσης) της BP Περιορισμοί Ιστορικά στοιχεία Εξέταση διαθέσιμων κατανομών Περιορισμοί - Χαρακτηριστικά Εύρεση κατανομής με πλησιέστερα χαρακτηριστικά Υπάρχουν όρια; 23
24 Επιλογή Κατάλληλης Κατανομής Σταθερός χρόνος Fixed Τιμές γύρω από ένα μέσο Normal Γνωστός μέσος, αλλά χωρίς συγκέντρωση Exponential Σε όρια και με ομοιόμορφες πιθανότητες Uniform Με όρια και προτειμόμενη τιμή Triangular 24
25 Αξιοποίηση Αποτελεσμάτων Προσομοίωσης Καταγραφή στοιχείων εκτέλεσης MXML (Mining extensible Markup Language) Επεξεργασία στοιχείων εκτέλεσης Συνδυασμός στοιχείων Διαμόρφωση ολοκληρωμένου προφίλ απόδοσης Εντοπισμός προβληματικών σημείων Πρόταση βελτιωτικών τροποποιήσεων 25
26 Mining extensible Markup Language (MXML) 26
27 Mining extensible Markup Language (MXML) 27
28 Mining extensible Markup Language (MXML) <Source program="com.bimpsimulator"/> <Process id="in_ bpmn"> <ProcessInstance id="503"> <Data> <Attribute name="logtype">mxml.enactmentlog</attribute> </Data> <AuditTrailEntry> <WorkflowModelElement>Παραλαβή Αίτησης & Δικαιολογητικών </WorkflowModelElement> <EventType>assign</EventType> <Timestamp> T11:05: :00</Timestamp> </AuditTrailEntry> <AuditTrailEntry> <WorkflowModelElement>Παραλαβή Αίτησης & Δικαιολογητικών </WorkflowModelElement> <EventType>complete</EventType> <Timestamp> T11:05: :00</Timestamp> </AuditTrailEntry> 28
Προσομοίωση Μοντέλων Επιχειρησιακών Διαδικασιών
Προσομοίωση Μοντέλων Επιχειρησιακών Διαδικασιών Α. Τσαλγατίδου - Γ.-Δ. Κάπος Πρόγραμμα Μεταπτυχιακών Σπουδών Τεχνολογία Διοίκησης Επιχειρησιακών Διαδικασιών 2016-2017 Σκοπός Διαλέξεων Κίνητρα για προσομοίωση
Πρόγραμμα Μεταπτυχιακών Σπουδών. Τεχνολογία Διοίκησης Επιχειρησιακών Διαδικασιών. Προσομοίωση Μοντέλων Επιχειρησιακών Διαδικασιών
Πρόγραμμα Μεταπτυχιακών Σπουδών Τεχνολογία Διοίκησης Επιχειρησιακών Διαδικασιών Σημειώσεις για την ενότητα: Προσομοίωση Μοντέλων Επιχειρησιακών Διαδικασιών Έκδοση 1.0 Α. Τσαλγατίδου - Γ.-Δ. Κάπος ΑΘΗΝΑ,
ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ
Ανάλυση - Προσομοίωση ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ 1 Προσομοίωση Η προσομοίωση είναι μέθοδος μελέτης ενός συστήματος και εξοικείωσης με τα χαρακτηριστικά του με
Προσομοίωση BP με το Bizagi Modeler
Προσομοίωση BP με το Bizagi Modeler Α. Τσαλγατίδου - Γ.-Δ. Κάπος Πρόγραμμα Μεταπτυχιακών Σπουδών Τεχνολογία Διοίκησης Επιχειρησιακών Διαδικασιών 2017-2018 BPMN Simulation with Bizagi Modeler: 4 Levels
που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2.
(μονάδα παραγωγής ενέργειας) Έχουμε μια απομακρυσμένη μονάδα παραγωγής ενέργειας. Η ζήτηση σε ενέργεια καλύπτεται από διάφορες πηγές. Η ισχύς εξόδου της ανεμογεννήτριας εξαρτάται από την ταχύτητα ανέμου
ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ
ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά
HMY 799 1: Αναγνώριση Συστημάτων
HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve
Μάιος 02. Αναγνωστόπουλος - Παν. Αθηνών 1
Μάιος 02. Αναγνωστόπουλος - Παν. Αθηνών 1 Μάιος 02. Αναγνωστόπουλος - Παν. Αθηνών 2 Μάιος 02. Αναγνωστόπουλος - Παν. Αθηνών 3 Μάιος 02. Αναγνωστόπουλος - Παν. Αθηνών 4 Μάιος 02. Αναγνωστόπουλος - Παν.
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Εισαγωγή Συλλογή
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 5.1: Εισαγωγή 5.2: Πιθανότητες 5.3: Τυχαίες Μεταβλητές καθ. Βασίλης Μάγκλαρης
Πανεπιστήμιο Πελοποννήσου
Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο
3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
Εισαγωγή στην κανονική κατανομή και την χρήση της στην Υδρολογία Σ.Η.Καραλής
Βασική στατιστική Υδρολογία Εισαγωγή στην κανονική κατανομή και την χρήση της στην Υδρολογία Σ.Η.Καραλής 1. Ορολογία 2. Ιστογράμματα συχνοτήτων 3. Ιδιότητες κανονικής κατανομής 4. Πίνακες τυποποιημένης
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για
Προσομοίωση Βιομηχανικής Παραγωγής & Επιχειρήσεων
Προσομοίωση Βιομηχανικής Παραγωγής & Επιχειρήσεων Ζ Εξάμηνο 2Θ+2Ε jdim@staff.teicrete.gr ΠΡΟΣΟΜΟΙΩΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ: ΟΡΙΣΜΟΣ Wikipedia: Simulation is the imitation of the operation of a real-world process
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος
Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Κατανομές Πιθανότητας Ως τυχαία μεταβλητή ορίζεται το σύνολο των τιμών ενός χαρακτηριστικού
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης
HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)
ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών
ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων ΑΓΡΙΝΙΟ ΣΤΑΤΙΣΤΙΚΗ Φραγκίσκος Κουτελιέρης Αναπληρωτής
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Summary of the model specified
Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Διαχωριστικές συναρτήσεις Ταξινόμηση κανονικών
Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.
Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο
Μεταπτυχιακή Εργασία Διαχείριση Επιχειρησιακών Διαδικασιών με τη χρήση Τεχνολογίας BPMN
ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Μεταπτυχιακή Εργασία Διαχείριση Επιχειρησιακών Διαδικασιών με τη χρήση Τεχνολογίας BPMN Παντελοπούλου Χαρίκλεια ME 10068 Agenda Η Ανάγκη για Διαχείριση Επιχειρησιακών Διαδικασιών
Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2 + +
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο Υπολογισμός Πιθανοτήτων Εκθετική Κατανομή Παράδειγμα 1 Έστω ότι η μέση διάρκεια μιας υπεραστικής κλήσης είναι 2 λεπτά. Να βρεθεί η πιθανότητα των ενδεχομένων Ε 1 : μια κλήση
Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ
Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική
Στατιστική Ι-Θεωρητικές Κατανομές Ι
Στατιστική Ι-Θεωρητικές Κατανομές Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές Η Χρήση των Θεωρητικών
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα
Εφαρμογή προσομοίωσης Monte Carlo για την παραγωγή πλημμυρικών υδρογραφημάτων σε Μεσογειακές λεκάνες
Εφαρμογή προσομοίωσης Monte Carlo για την παραγωγή πλημμυρικών υδρογραφημάτων σε Μεσογειακές λεκάνες Μαστροθεόδωρος Θεόδωρος Εθνικό Μετσόβιο Πολυτεχνείο Δεκέμβριος 2013 Σκοπός και διάρθρωση Μελέτη μηχανισμών
Περιγραφική Ανάλυση ποσοτικών μεταβλητών
Περιγραφική Ανάλυση ποσοτικών μεταβλητών Στο data file Worldsales.sav (αρχείο υποθετικών πωλήσεων ανά ήπειρο και προϊόν) Analyze Descriptive Statistics Frequencies Επιλογή μεταβλητής Revenue Πατάμε στο
ΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ
ΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ ΜΑΜΜΑΣ ΚΩΝ/ΝΟΣ ΑΜ:331/2003032 ΝΟΕΜΒΡΙΟΣ 2010 Ευχαριστίες Σε αυτό το σημείο θα ήθελα να ευχαριστήσω όλους όσους με βοήθησαν να δημιουργήσω την παρούσα
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
1 x-μ - 2 σ. e σ 2π. f(x) =
Κανονική κατανομή Η πιο σημαντική κατανομή πιθανοτήτων της στατιστικής είναι η κανονική κατανομή. Η κανονική κατανομή είναι συνεχής κατανομή, σε αντίθεση με την διωνυμική που είναι διακριτή κατανομή. Τα
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 6 Κατανομές πιθανότητας και εκτίμηση παραμέτρων Κατανομές πιθανότητας και εκτίμηση παραμέτρων κανονικές τυχαίες μεταβλητές Εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Σε αντίθεση με την διακριτή τυχαία μεταβλητή, μία συνεχής τυχαία μεταβλητή παίρνει μη-αριθμήσιμο (συνεχές) πλήθος τιμών. Δεν μπορούμε να καταγράψουμε το σύνολο των τιμών
Εργαλείο Διαχείρισης Διαδικασιών ADONIS. Μάνος Χάλαρης
Εργαλείο Διαχείρισης Διαδικασιών ADONIS Μάνος Χάλαρης Διαχείριση Διαδικασιών Διαχείριση Διαδικασιών Οι Επιχειρησιακές Διαδικασίες βρίσκονται στο κέντρο κάθε οργανισμού. Οι Επιχειρησιακές Διαδικασίες έχουν
Bizagi Modeler: Συνοπτικός Οδηγός
Bizagi Modeler: Συνοπτικός Οδηγός Α. Τσαλγατίδου - Γ.-Δ. Κάπος Πρόγραμμα Μεταπτυχιακών Σπουδών Τεχνολογία Διοίκησης Επιχειρησιακών Διαδικασιών 2017-2018 Bizagi Modeler Εμπορική εφαρμογή για μοντελοποίηση
Προσομοίωση Συστημάτων
Προσομοίωση Συστημάτων Προσομοίωση και μοντέλα συστημάτων Άγγελος Ρούσκας Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Γενικός ορισμός συστήματος Ένα σύνολο στοιχείων/οντοτήτων που αλληλεπιδρούν μεταξύ
Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες
Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές
4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς
Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών Γιώργος Μαυρωτάς, Αν.Καθηγητής ΕΜΠ mavrotas@chemeng.ntua.gr ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΑΝΑΛΥΣΗ ΡΙΣΚΟΥ Άδεια Χρήσης Το παρόν εκπαιδευτικό
ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ
ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ Ανάλυση συχνότητας ενός υδρολογικού μεγέθους: Είναι η εύρεση της σχέσεως μεταξύ του υδρολογικού φαινομένου και της πιθανότητας εμφανίσεως του μεγέθους αυτού. Μεταβλητή:
ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών
ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
Θεωρητικές Κατανομές Πιθανότητας
Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ
Αξιολόγηση Επενδυτικών Σχεδίων
Αξιολόγηση Επενδυτικών Σχεδίων Ενότητα 4: Ανάλυση ευαισθησίας και πιθανολογική ανάλυση Δ. Δαμίγος Μ. Μενεγάκη Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΠΠΜ 512: Ανάλυση Κινδύνου για ΠΜΜΠ. Ακαδημαϊκό Έτος Εαρινό Εξάμηνο. 1 η Ενδιάμεση Εξέταση. 6:00-8:30 μ.μ. (150 λεπτά)
ΠΠΜ 51: Ανάλυση Κινδύνου για ΠΜΜΠ Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Δρ. Σ. Χριστοδούλου, Επικ. Καθηγητής Ακαδημαϊκό Έτος 005-006 Εαρινό Εξάμηνο
Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές. Διάλεξη
Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές Διάλεξη 13-3-2015 Υπολογισμός Σταθμικού Μέσου Αριθμητικού X weighted n 1 n 1 w i w X i i Παράδειγμα Υποψήφιος της Δ' Δέσμης πήρε στις εξετάσεις τους εξής
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...
Διαδικασίες Markov Υπενθύμιση
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Διαδικασίες Markov Υπενθύμιση Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ TE Αρχές Ψηφιακών Συστημάτων Επικοινωνίας και Προσομοίωση Εαρινό Εξάμηνο Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage:
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 15/3/2017 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ
P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)
Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Αριάδνη Αργυράκη ΣΤΑΔΙΑ ΕΚΤΕΛΕΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΓΕΩΧΗΜΙΚΩΝ ΕΡΕΥΝΩΝ 1.ΣΧΕΔΙΑΣΜΟΣ: - Καθορισμός στόχων έρευνας - Ιστορικό περιοχής 2 4.
Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.
Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά
Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΑΝΑΛΥΤΙΚΟ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΚΑΤΑΡΤΙΣΗΣ
8 ΑΝΘΡΩΠΙΝΑ ΔΙΚΤΥΑ ΕΡΕΥΝΗΤΙΚΗΣ ΚΑΙ 6/(ΠΛΟ)659/8-6-007 ΚΑΤΑΡΤΙΣΗΣ ( ή Α.) ΤΟΣ ΚΑΤΑΡΤΙΣΗΣ 0//007 7//007 4//007 //007 ΕΕ. Εισαγωγή στη χρήση ΤΠΕ στις Γνωριμία με βασικές τεχνολογίες Επιχειρήσεις και τους
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ & ΕΚΠΑΙΔΕΥΣΗ
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ & ΕΚΠΑΙΔΕΥΣΗ ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2008-2009 users.att.sch.gr/abouras Ορισμός Στατιστικής Ετυμολογία: στατίζω (ελληνική
Γεωγραφικά Πληροφοριακά Συστήµατα (Geographical Information Systems GIS)
Γεωγραφικά Πληροφοριακά Συστήµατα (Geographical Information Systems GIS) ρ. ΧΑΛΚΙΑΣ ΧΡΙΣΤΟΣ xalkias@hua.gr Χ. Χαλκιάς - Εισαγωγή στα GIS 1 Ορισµοί ΓΠΣ Ένα γεωγραφικό πληροφοριακό σύστηµα Geographic Information
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 6 η : Θεωρητικές Κατανομές Πιθανότητας για Συνεχή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον
Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:
ΕΤΥ: Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Χειμερινό Εξάμηνο 2014-15 Τελική Εξέταση 28/02/15 Διάρκεια Εξέτασης: 3 Ώρες Ονοματεπώνυμο: Αριθμός Μητρώου: Υπογραφή: Ερώτημα: 1 2 3 4 5 6 Σύνολο Μονάδες:
ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ
ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε
Παράδειγµα (Risky Business 1)
Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 3 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Συµπεράσµατα για την αβεβαιότητα Θέµατα
Ανάλυση ευαισθησίας Ανάλυση ρίσκου
Τεχνολογία, Καινοτομία & Επιχειρηματικότητα, 9 ο εξάμηνο Σχολή Χ-Μ Ανάλυση ευαισθησίας Ανάλυση ρίσκου Γιώργος Μαυρωτάς Αν. καθηγητής ΕΜΠ Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας Τομέας ΙΙ, Σχολή
Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό
Συνοπτικά περιεχόμενα
b Συνοπτικά περιεχόμενα 1 Τι είναι η στατιστική;... 25 2 Περιγραφικές τεχνικές... 37 3 Επιστήμη και τέχνη των διαγραμματικών παρουσιάσεων... 119 4 Αριθμητικές μέθοδοι της περιγραφικής στατιστικής... 141
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις
Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής
Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Γιάννης Γαροφαλάκης Αν. Καθηγητής ιατύπωση του προβλήματος (1) Τα συστήματα αναμονής (queueing systems), βρίσκονται
Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,
Σχεδίαση Περιβάλλοντος εργασίας ενός Οργανισμού και Σχεδίαση Χάρτη διαδικασιών ενός Οργανισμού και
ΜΕΘΟΔΟΛΟΓΙΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΔΙΑΔΙΚΑΣΙΩΝ ΔΗΜΟΣΙΩΝ ΥΠΗΡΕΣΙΩΝ Σχεδίαση Περιβάλλοντος εργασίας ενός Οργανισμού και Σχεδίαση Χάρτη διαδικασιών ενός Οργανισμού και ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014
Τμήμα Μηχανικών Παραγωγής και Διοίκησης Χειμερινό Διδάσκων: Καθηγητής Παντελής Ν. Μπότσαρης Εργαστήρια/Ασκήσεις: Δρ.
ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Τμήμα Μηχανικών Παραγωγής και Διοίκησης Χειμερινό 2016 2017 Διδάσκων: Καθηγητής Παντελής Ν. Μπότσαρης Εργαστήρια/Ασκήσεις: Δρ. Πέτρος Πιστοφίδης Εισαγωγή
Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες
Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Είπαμε ότι γενικά τα συστηματικά σφάλματα που υπεισέρχονται σε μια μέτρηση ενός φυσικού μεγέθους είναι γενικά δύσκολο να επισημανθούν και να διορθωθούν.
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: 7/07/207 Πρωί: Απόγευμα: Θεματική ενότητα: Αρχές Αναλογιστικής Προτυποποίησης, Κατασκευή και Αξιολόγηση Αναλογιστικών Προτύπων. Οι αναλογιστές μιας εταιρείας μοντελοποιούν την
Διερεύνηση προσομοίωσης πλημμύρας για το σχεδιασμό σε λεκάνες χειμαρρικής δίαιτας Εφαρμογή στη λεκάνη του Σαρανταπόταμου
Διερεύνηση προσομοίωσης πλημμύρας για το σχεδιασμό σε λεκάνες χειμαρρικής δίαιτας Εφαρμογή στη λεκάνη του Σαρανταπόταμου Ελένη Μαρία Μιχαηλίδη Εθνικό Μετσόβιο Πολυτεχνείο Στόχοι εργασίας Διερεύνηση μηχανισμού
ΛΟΓΙΣΜΙΚΟ ΠΡΟΣΟΜΟΙΩΣΗΣ ANYLOGIC
ΛΟΓΙΣΜΙΚΟ ΠΡΟΣΟΜΟΙΩΣΗΣ ANYLOGIC Χρησιμοποιούμε την δωρεάν έκδοση του λογισμικού προσομοίωσης Anylogic. Για εκπαιδευτική χρήση μπορείτε να «κατεβάσετε» και να εγκαταστήσετε στον υπολογιστή σας την Personal
Ανάλυση ευαισθησίας Ανάλυση ρίσκου. Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ
Ανάλυση ευαισθησίας Ανάλυση ρίσκου Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ. Πιθανοτική προσέγγιση υδρολογικών µεταβλητών
Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ Πιθανοτική προσέγγιση υδρολογικών µεταβλητών Νίκος Μαµάσης Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα 7 ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΓΜΑΤΟΣ Σχήµα στατιστικών επεξεργασιών
Εργαστήριο Διοίκησης Παραγωγής & Έργων. Εισαγωγή στην προσομοίωση διεργασιών χρησιμοποιώντας το λογισμικό Extend
Εργαστήριο Διοίκησης Παραγωγής & Έργων Εισαγωγή στην προσομοίωση διεργασιών χρησιμοποιώντας το λογισμικό Extend ΕΠΙΣΚΟΠΗΣΗ ΤΟΥ EXTEND Το Extend είναι ένα λογισμικό εικονικής προσομοίωσης που μπορεί να
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών Βασικά χαρακτηριστικά τυχαίας μεταβλητής: Μέση Τιμή (Me Vlue) Διακύμανση (Vrice) Γενικά χαρακτηριστικά: Ροπές μεταβλητών / Ροπογεννήτριες Χαρακτηριστικές συναρτήσεις
HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme. Επιλογή δείγματος. Κατερίνα Δημάκη
HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Επιλογή δείγματος Κατερίνα Δημάκη Αν. Καθηγήτρια Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 1 Τρόποι Συλλογής Δεδομένων Απογραφική
pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b
Πιθανότητες και Αρχές Στατιστικής (8η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 41 Περιεχόμενα
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13
ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...
Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής
Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,
3. Προσομοίωση ενός Συστήματος Αναμονής.
3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,
Δειγματοληψία στην εκπαιδευτική έρευνα. Είδη δειγματοληψίας
Δειγματοληψία στην εκπαιδευτική έρευνα Είδη δειγματοληψίας Γνωρίζουμε ότι: Με τη στατιστική τα δεδομένα γίνονται πληροφορίες Στατιστική Δεδομένα Πληροφορία Αλλά από πού προέρχονται τα δεδομένα; Πώς τα
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7 8 Μπεϋζιανή εκτίμηση συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Εκτίμηση ML για την κανονική κατανομή Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή
Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς
Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution: