Γεωµετρία Γενικής Παιδείας Β Λυκείου 2001

Σχετικά έγγραφα
Γεωµετρία Γενικής Παιδείας Β Λυκείου 2001

2 η δεκάδα θεµάτων επανάληψης

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ερωτήσεις πολλαπλής επιλογής. 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι

(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Ασκήσεις - Πυθαγόρειο Θεώρηµα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

5 η δεκάδα θεµάτων επανάληψης

A >1. ΘΕΜΑ 1ο. α 2 <β 2 +γ 2, αν και µόνον αν

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 6/ 11/ 2016

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΚΕΦΑΛΑΙΟ:9 ο

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014)

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. β γ α β. α γ β δ. Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1. Προηγούµενες και απαραίτητες γνώσεις

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Αντιστοιχίστε κάθε µέγεθος της στήλης Α µε την τιµή του στην στήλη Β

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999

4 η εκάδα θεµάτων επανάληψης

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999

1.4 ΟΜΟΙΟΘΕΣΙΑ ΑΣΚΗΣΕΙΣ. 2. Το οµοιόθετο γωνίας : Είναι γωνία ίση µε την αρχική

Ασκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις (3) (4)

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

γεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου ( 1 γωνίες Β ευθεία (2 ) οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 )

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

1.2 ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

Απέναντι πλευρές παράλληλες

4 η εκάδα θεµάτων επανάληψης

ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

= π 3 και a = 2, β =2 2. a, β

1=45. β) Να υπολογίσετε τη γωνία φ.

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

Ερωτήσεις ανάπτυξης. β) Το Ε ΑΒΓ = 3Ε ΒΟΓ = 3 ΒΓ ΟΗ = = 2. Η κεντρική γωνία ω του κανονικού ν-γώνου δίδεται από τον τύπο:

Γεωμετρία Β Λυκείου. Τράπεζα Θεμάτων 18-22/1/2015

Μαθηματικά προσανατολισμού Β Λυκείου

µ =. µονάδες 12+13=25

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Ερωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. ** 6. **

3.2. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

10.5. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης. ΑΒΓ =λ. ύο τρίγωνα ΑΒΓ και Α Β Γ έχουν υ β = υ β και =. β ποιος είναι ο λόγος β

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

α <β +γ τότε είναι οξυγώνιο.

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15)

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

1 η εκάδα θεµάτων επανάληψης

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

(Μονάδες 8) γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 10)

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

1 Εγγεγραµµένα σχήµατα

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.

β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7)

Transcript:

Γεωµετρία Γενικής Παιδείας Β Λυκείου Ζήτηµα ο Α. Να αποδείξετε ότι, σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσά του, ισούται µε το γινόµενο των προβολών των κάθετων πλευρών στην υποτείνουσα. Μονάδες 6,5 Α. Να γράψετε στο τετράδιό σας τα γράµµατα της Στήλης Α και δίπλα σε κάθε γράµµα τον αριθµό της Στήλης Β, έτσι ώστε να προκύπτει ισότητα. Έστω ορθογώνιο τρίγωνο ΑΒΓ o ( 9 ) και Α το ύψος που αντιστοιχεί στην υποτείνουσα. A^ Στήλη Α Στήλη Β α. ΑΒ. ΑΒ +ΒΓ β. ΑΓ. γ. AB ΑΓ. Β Γ Γ Β 4. ΒΓ Β 5. ΒΓ ΑΒ 6. ΑΒ ΒΓ Μονάδες 6 Β. Να γράψετε στο τετράδιό σας το γράµµα που αντιστοιχεί στη σωστή απάντηση για καθένα από τα ερωτήµατα Β και Β. ίνεται ένα ορθογώνιο τρίγωνο ΑΒΓ o ( 9 ) µε ύψος Α, για το οποίο έχουµε Β και ΒΓ. A^ Β. Το µήκος του ευθύγραµµου τµήµατος Α είναι: α. β. γ. δ. Μονάδες 6,5 Β. Το µήκος της πλευράς ΑΒ είναι: α. β. γ. δ. 5 Μονάδες 6

Απάντηση: Γ Α Β Α. Θεώρηµα 9.4, σελίδα σχολικού βιβλίου. Α. α 4 β 5 γ Β. Από το ορθογώνιο τρίγωνο ΑΒΓ έχουµε ότι: κι επειδή: προκύπτει ότι: οπότε: Α Β Γ Β και Γ ΒΓ - Β - Α Α Άρα η σωστή απάντηση είναι η (γ). Β. Ισχύει επίσης ότι: κι επειδή: προκύπτει ότι: οπότε: ΑΒ Β ΒΓ Β και ΒΓ ΑΒ ΑΒ Άρα η σωστή απάντηση είναι η (α). Ζήτηµα ο Τα µήκη των πλευρών ενός τριγώνου ΑΒΓ είναι ΑΒ 6, ΒΓ και ΓΑ 8. α. Να αποδείξετε ότι το τρίγωνο αυτό είναι αµβλυγώνιο. β. Να υπολογίσετε το µήκος της διαµέσου ΑΜ. Μονάδες 7 Μονάδες 9

γ. Να υπολογίσετε το µήκος της προβολής της διαµέσου ΑΜ στην πλευρά ΒΓ. Απάντηση: Μονάδες 9 A 6 8 B H M Γ α. ίναι: πότε: ΑΒ 6 6 ΒΓ 44 ΑΓ 8 64 και ΑΒ +ΑΓ 6 + 64 ΒΓ > ΑΒ + ΑΓ ποµένως το τρίγωνο ΑΒΓ είναι αµβλυγώνιο στο Α. β. Από το πρώτο θεώρηµα των διαµέσων έχουµε: ΑΒ +ΑΓ ΑΜ + BΓ Αντικαθιστούµε ΑΒ 6, ΒΓ και ΑΓ 8 και βρίσκουµε: 6 + 8 ΑΜ + 6 + 64 ΑΜ + 7 ΑΜ 8 ΑΜ 4 ΑΜ 4 γ. Aν ΑΗ είναι το ύψος του τριγώνου από το Α, τότε η προβολή της διαµέσου AM στη ΒΓ είναι το τµήµα ΗΜ. Σύµφωνα µε το δεύτερο θεώρηµα των διαµέσων έχουµε: ΑΓ - ΑΒ ΒΓ ΗΜ Αντικαθιστούµε ΑΒ 6, ΒΓ και ΑΓ 8 και βρίσκουµε: 8 6 ΗΜ 64-6 4 ΗΜ 8 4 ΗΜ 8 7 ΗΜ 4 6

Ζήτηµα ο Θεωρούµε τρεις διαδοχικές γωνίες έτσι ώστε: ^ xoy ^ yoz ^ zox xoy ^ yoz ^ 5 Στις ηµιευθείες Ox, Oy, Oz παίρνουµε τα σηµεία Α, Β, Γ αντίστοιχα έτσι ώστε Α, Β4 και Γ6. α. Να υπολογίσετε το εµβαδό ΓΑ του τριγώνου ΓΑ. β. Να υπολογίσετε το λόγο των εµβαδών: AΒ OBΓ Μονάδες Μονάδες Απάντηση: Β Ψ 4 Ζ Γ 6 5 5 Α Χ ίναι: X OZ 6 (XOΨ + ΨΖ) 6 (5 + 5 ) 6 6 α. Το εµβαδόν του τριγώνου ΓΑ υπολογίζεται σύµφωνα µε τον τύπο ΓΑ OA OΓ ηµ( ΧΖ ˆ ) 6 ηµ6 6 β. ίναι: ˆ E OAB OA OB ηµ( ΧΨ) 4 ηµ5 4 ηµ(8 - ) 4 ηµ 4 ΒΓ OΒ OΓ ηµ( ΨΖ ˆ ) 4 6 ηµ5 6 Άρα ΑΒ 6 ΒΓ 4

εύτερος τρόπος για το ερώτηµα β πειδή τα τρίγωνα ΑΒ και ΒΓ έχουν: προκύπτει ότι: ΒΓ A OB BOΓ 5 Α Β Α Β Γ Γ 6 ΑΒ Ζήτηµα 4ο ίνεται ηµικύκλιο κέντρου και διαµέτρου ΑΒ R. Στην προέκταση του ΑΒ προς το Β, θεωρούµε ένα σηµείο Γ, τέτοιο ώστε ΒΓ R. Από το Γ φέρνουµε το εφαπτόµενο τµήµα Γ του ηµικυκλίου. Η εφαπτοµένη του ηµικυκλίου στο σηµείο Α τέµνει την προέκταση του τµήµατος Γ στο σηµείο. α. Να αποδείξετε ότι: β. Να αποδείξετε ότι ΓΑ ΓΓ Γ. Γ R. Μονάδες 5 Μονάδες γ. Να υπολογίσετε το τµήµα Γ συναρτήσει του R. Μονάδες 5 δ. Να υπολογίσετε το άθροισµα των εµβαδών των µικτόγραµµων τριγώνων ΒΓ και Α συναρτήσει του R. Απάντηση: Μονάδες 5 Α R Β R Γ α. Ισχύει ότι: ίναι: Eποµένως: Γ ΓΒ ΓΑ ΓΒ R και ΓA ΓΒ + ΒΑ R + R 4R Γ R 4R 8R Γ 8R R 8 R 5

β. πειδή οι Γ και Α εφάπτονται του ηµικυκλίου συνεπάγεται ότι: Γ και Α ΑΓ οπότε τα τρίγωνα Γ και ΓΑ είναι ορθογώνια στο και Α αντιστοίχως. Ακόµα, έχουν κοινή την γωνία Γ, εποµένως είναι όµοια. ηλαδή: οπότε: E Γ Α Γ ΑΓ Γ Γ Γ ΓΑ Γ Γ Γ γ. Σύµφωνα µε το Πυθαγόρειο Θεώρηµα στο ορθογώνιο τρίγωνο Γ έχουµε: Γ Γ - (R) - R 9R - R 8R Γ R Σύµφωνα µε το συµπέρασµα του προηγουµένου ερωτήµατος (β) έχουµε: ΓΑ Γ Γ Γ και µε αντικατάσταση των: ΓΑ 4R, Γ R και Γ R βρίσκουµε: 4R R Γ R R Γ Γ R 6R R δ. Το ζητούµενο άθροισµα των εµβαδών των µικτογράµµων τριγώνων ΒΓ και Α ισούται µε την διαφορά του εµβαδού του ηµικυκλίου µε διάµετρο ΑΒ από το εµβαδό του τριγώνου ΑΓ. Έτσι έχουµε: ΑΒ E ΑΓ Α π Όµως από το ορθογώνιο τρίγωνο ΑΓ έχουµε: Α Γ - ΑΓ ( ) R - (4R) 8R 6R R ποµένως: Α R R E 4R R π R π - πr R 6

εύτερος τρόπος για τα ερωτήµατα 4β, 4γ και 4δ Τα τµήµατα Α και είναι ίσα επειδή τα και Α είναι εφαπτόµενα του κύκλου. Έτσι αν θέσουµε Α x από το ορθογώνιο τρίγωνο ΑΓ έχουµε: Έτσι: Γ Α +ΑΓ ( + Γ) Α + ΑΓ (x + R) x + (4R) x + 8R + 4 xr x + 6R 4 xr 8R x R 4β. ΓΑ Γ 4R R R Γ Γ (Γ + ) Γ ( R + R) R R R R ΓΑ Γ Γ Γ 4γ. 4δ Γ Γ + R + R R Το ζητούµενο άθροισµα των εµβαδών των µικτογράµµων τριγώνων ΒΓ και Α ισούται µε την διαφορά του εµβαδού του ηµικυκλίου µε διάµετρο ΑΒ από το εµβαδό του τριγώνου ΑΓ. Έτσι έχουµε: E ΑΓ Α π ΑΒ πr 4R R R R π πr 7