Σηµειώσεις για το πρόγραµµα Mathematica

Σχετικά έγγραφα
Σηµειώσεις για το πρόγραµµα Mathematica

ΕΥΣΤΑΘΕΙΑ ΙΑΤΟΙΧΙΣΜΟΥ ΠΛΟΙΟΥ ΚΑΙ ΥΠΟΒΑΘΡΟ ΚΑΝΟΝΙΣΜΩΝ. Σηµειώσεις για το πρόγραµµα Mathematica

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης

Εισαγωγή στο Mathematica

4.1 Πράξεις με Πολυωνυμικές Εκφράσεις... 66

Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο

Πρώτη επαφή με το μαθηματικό πακέτο Mathematica

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο

f x και τέσσερα ζευγάρια σημείων

88x Ø 0, y Ø 0<, 8x Ø 0, y Ø 32<, 8x Ø 12, y Ø 8<, 8x Ø 28, y Ø 0<<

_Toc ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΓΙΝΟΜΕΝΑ ΣΤΟ MATHEMATICA ΑΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΣΤΟ MATHEMATICA. 3

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

1. Εισαγωγή στο Sage.

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1

9.2 Μελετώντας τρισδιάστατα γραφικά στο επίπεδο Oi sunartήseiv Contour Plot kai DensityPlot

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

ΕΡΓΑΣΤΗΡΙΟ ΙV. ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος

Παρουσίαση του Mathematica

Ενότητα: «Επίλυση προβληµάτων στα Μαθηµατικά Mathematica Παραδείγµατα»

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων.

Εργαστήριο 4. Άóêçóç 1. Άóêçóç 2. Χημικοί. Plot Sec x, x, 2 π, 2π. p1 Plot Abs 1 Abs x, x, 3, 3. 1 In[3]:= f x_ : 2 π. p2 Plot f x, x, 3,


ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

τα βιβλία των επιτυχιών

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής.

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x)

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς.

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Εργασία η ιουργία γραφικών αραστάσεων ε την

ΠΩΣ; Το «σωσίβιό» σου στον ωκεανό της Γ Λυκείου! ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ ΑΝΑΝΕΩΜΕΝΗ ΣΥΜΠΕΠΛΗΡΩΜΕΝΗ ΕΚΔΟΣΗ!

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1

ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός

Γραμμικά συστήματα. - όπου Α είναι ένας (m x n) πίνακας, ο οποίος περιέχει. - όπου Β είναι ένας (m x 1) πίνακας που περιέχει τους

= x. = x1. math60.nb

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. ρ ρμ

O ƒ ΔÀÃπ ø À ø Ì Ï ÚˆÌ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο. ε την COMPUTATION MEETS KNOWLEDGE

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές-μαθηματικά

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.

Κεφάλαιο 5ο: Επίλυση εξισώσεων και συστηµάτων

f (x) 2e 5(x 1) 0, άρα η f

Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος

Διαφορικός λογισµός. y(x + Δx) y(x) dy dx = lim Δy

Κεφάλαιο 11 Πραγµατικές Τετραγωνικές Μορφές

Επίλυση Γραµµικών Συστηµάτων

Επικ. Καθ. Ν. Καραµπετάκης, Τµήµα. Τµήµα Μαθηµατικών, Α.Π.Θ. Λίστες και πίνακες

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

Εισαγωγή στις Ελλειπτικές Καµπύλες

Βασικά στοιχεία στο Matlab

1. Βλέπε σχολικό βιβλίο «Μαθηματικά θετικής και τεχνολογικής Κατεύθυνσης», σελίδα

ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Μαθηµατικοί Υπολογισµοί στην R

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

- 1 2π. - z2 2. ii = True

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 13/04/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Υπολογιστική άλγεβρα Ενότητα 4: Πολυώνυμα τετάρτου και μεγαλύτερου βαθμού

και αναζητούμε τις λύσεις του:

1 ης εργασίας ΕΟ Υποδειγματική λύση

ΣΗΜΕΙΩΣΕΙΣ. x A αντιστοιχίζεται (συσχετίζεται) με ένα μόνο. = ονομάζεται εξίσωση της

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

Από την Άλγεβρα των Υπολογισµών στα Υπολογιστικά Συστήµατα Άλγεβρας.

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 6

Πίνακας Περιεχομένων

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών (B)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :

Τι είναι Γραμμική Άλγεβρα;

{(x, y) R 2 : f (x, y) = 0}

ΛΥΜΕΝΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΟ 2 ο ΚΕΦΑΛΑΙΟ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

Transcript:

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Σηµειώσεις για το πρόγραµµα Mathematica Νίκος Θεµελής Νοέµβριος 008 Σκοπός του φυλλαδίου είναι να παρέχει βασικές γνώσεις για την χρήση του λογισµικού Mathematica µε την βοήθεια απλών παραδειγµάτων. Ουσιαστικά πρόκειται για µια εισαγωγή σε κάποιες από τις δυνατότητες που προσφέρει το λογισµικό σε περιοχές που ενδιαφέρουν ένα µηχανικό. Πρέπει να σηµειωθεί ότι οι εντολές παρουσιάζονται στα παραδείγµατα στη σχετικά πιο απλά µορφή τους, ωστόσο υπάρχουν διάφορες επιλογές για την καθεµία από αυτές που σχετίζονται είτε µε την εµφάνιση των αποτελεσµάτων είτε µε τους υπολογισµούς και για αυτό ο αναγνώστης ενθαρρύνεται να χρησιµοποιήσει το help του λογισµικού. Το Mathematica είναι ένα µαθηµατικό πακέτο µε πολλές δυνατότητες σε σχεδόν όλους τους τοµείς των µαθηµατικών (Άλγεβρα, Θεωρία συνόλων, Ανάλυση, διαφορικές εξισώσεις, Στατιστική κ.α.). Η υπολογιστική µηχανή του Mathematica είναι ο πυρήνας (kernel), ενώ η σύνδεση µεταξύ του χρήστη και του πυρήνα γίνεται µέσω του front end (περιβάλλον εργασίας) και του Mathematica notebook. Εισαγωγή στο Mathematica Το Mathematica µπορεί να χρησιµοποιηθεί και ως απλή αριθµοµηχανή: + Παρδ. 5 Σηµειώνεται ότι µε έντονους χαρακτήρες δηλώνονται τα δεδοµένα που εισάγει ο χρήστης (input), ενώ µε τα δεδοµένα εξόδου (output) µε κανονικούς χαρακτήρες. Οι εντολές δίνονται πάντα µε το πρώτο γράµµα κεφαλαίο, ενώ χρησιµοποιούνται αγκύλες για το όρισµα συναρτήσεων.

Παρδ. 5 x^ x + ê. x 4 54?x Global`x Μπορούµε επίσης να αναπτύξουµε σε όρους ή να απλοποιήσουµε εκφράσεις µε τις εντολές Expand[expr] και Simplify[expr] αντίστοιχα. Παρδ. 6 Expand@Hx + yl ^D x + x y + xy + y Factor@%D Hx + yl Together@x + êhx L + x^ êhx 4L ^D 64 + x 4 x + 60 x x 4 + x 5 H 4 + xl H + xl Simplify@x^ x + D H + xl Υπολογισµός αθροισµάτων και γινοµένων Παρδ. 7 Sum@i^, 8i,,0<D 65 Product@ i, 8i,,6,0.5<D 7.986 0 7 Επαναληπτικές (loops) και λογικές διαδικασίες Παρδ. 8 Do@If@i > 0, Print@"Pos"D, Print@"Neg"DD, 8i,, <D Neg Neg Neg Pos Pos - -

Γραφικές παραστάσεις σε -διαστάσεις Ο αριθµός των σηµείων που χρησιµοποιούνται επηρεάζει σε κάποιες περιπτώσεις την ποιότητα της γραφ. παράστασης. Παρδ. g@x_, y_d : x ^ y ^ Exp@ Hx ^+ y ^LD PlotD@g@x, yd, 8x,, <, 8y,, <D PlotD@g@x, yd, 8x,, <, 8y,, <, PlotPoints 00D Επίλυση εξισώσεων Αλγεβρικές εξισώσεις Η γενική µορφή της εντολής είναι: Solve[equations, variables] - 5 -

Παρδ. 5 Plot@8Sin@xD, x^ <, 8x, π, π<d FindRoot@Sin@xD x^, 8x, <D FindRoot@Sin@xD x^, 8x, <D 8 6 4 - - - 8x.4096< 8x 0.667< Στην περίπτωση που υπάρχουν µιγαδικές λύσεις, θα πρέπει σαν αρχική τιµή να δοθεί αντίστοιχα ένας µιγαδικός αριθµός. Παρδ. 6 FindRoot@x^ + x + 0, 8x, 0<D FindRoot::jsing : Encountered a singular Jacobian at the point 8x< 8-0.5<. Try perturbing the initial pointhsl. à 8x 0.5< FindRoot@x^ + x + 0, 8x, I<D 8x 0.5 + 0.86605 < Υπολογισµός ορίου, παραγώγου, ελάχιστης τιµής και ολοκληρώµατος Παρδ. 7 Limit@H xl ^Tan@x π ê D, x D êπ Παράγωγοι διαφόρων τάξεων Παρδ. 8 f@x_d : x ^4 x ^+ 5 x ^; D@f@xD, xd D@f@xD, 8x, <D 0 x 6x + x + 7 x - 7 -

Παρδ. Integrate@ Exp@ Hx ^ + y^ld, 8x,,4<, 8y,,5<D NIntegrate@ Exp@ Hx ^ + y^ld, 8x,, 4<, 8y,, 5<D π HErf@D Erf@4DL HErf@D Erf@5DL 4 0.000577899 Στο παρακάτω παράδειγµα θα υπολογιστεί η επιφάνεια που περικλείεται ανάµεσα σε µια παραβολή και σε µια ευθεία. Παρδ. h@x_d : x ^ x + ; h@x_d : x + ; Plot@8h@xD, h@xd<, 8x,, <D points Solve@h@xD h@xd, xd; a points@@,, DD b points@@,, DD b h@xd y x a h@xd Integrate@Integrate@, 8y, h@xd, h@xd<d, 8x, a, b<d 5 4 - J 5 N J + 5 N 5 5 6 5 5 6 Επίλυση κανονικών διαφορικών εξισώσεων Αναλυτική επίλυση - 9 -

Αριθµητική επίλυση κανονικών διαφορικών εξισώσεων: Η γενική µορφή της αντίστοιχης εντολής είναι: NDSolve[equations, y, {x,xmin,xmax}] Παρδ. 7 eq y''@td Hy'@tDL^+ y@td 0; sol5 NDSolve@8eq, y@0d, y'@0d 0<, y, 8t, 0,50<D Sol sol5@@,, DD Sol@D Max@Table@Sol@tD, 8t, 0, 0, 0.<DD Plot@y@tDê. sol5, 8t, 0, 0<D Plot@Sol@tD, 8t, 0, 0<D Table@8t, Sol@tD<, 8t, 0, 0, <D êê TableForm 88y InterpolatingFunction@880., 50.<<, <>D<< InterpolatingFunction@880., 50.<<, <>D 0.0078708..0 0.8 0.6 0.4 0. 5 0 5 0.0 0.8 0.6 0.4 0. 5 0 5 0 ableform 0. 0.4748 0.0078708 0.65505 4 0.0076064 5 0.505 6 0.99780 7 0.444 8 0.06 9 0.64777 0 0.088 - -

Παρδ. 9 "Van der Pol Equation for various valus of µ" vanderpol@µ_d : NDSolveA9x @td + µ Ix@tD M x @td + x@td 0, x@0d, x @0D 0, x@td, 8t, 0,5<E; Remove@solgraphD; solgraph@µ_d : Module@8numsol<, numsol vanderpol@µd; Plot@x@tDê. numsol, 8t, 0,5<, PlotRange 8, <, DisplayFunction IdentityDD; muvals :, 6, 8, 4,,,,,,5,7,9>; graphs solgraph ê@ muvals; toshow Partition@graphs, D; Show@GraphicsGrid@toshowDD Van der Pol Equation for various valus of µ - 4 6 8 0 4-4 6 8 0 4-4 6 8 0 4 - - - - - - - 4 6 8 0 4-4 6 8 0 4-4 6 8 0 4 - - - - - - - 4 6 8 0 4-4 6 8 0 4-4 6 8 0 4 - - - - - - - 4 6 8 0 4-4 6 8 0 4-4 6 8 0 4 - - - - - - Παρεµβολή µιας καµπύλης σε ζεύγη σηµείων Σε αυτό το παράδειγµα θα υπολογιστούν οι συντελεστές ενός πολυωνύµου που παρεµβάλει µια λίστα σηµείων. Η µέθοδος που χρησιµοποιείται είναι των ελαχίστων τετραγώνων. - -

Βασικές πράξεις πινάκων Παρδ. m 880,, <, 8,, <, 8, 4, <<; MatrixForm@mD t Transpose@mD Inverse@mDêê MatrixForm 0 4 880,, <, 8,, 4<, 8,, << 4 5 7 4 7 7 7 7 7 7 Παρδ. ma 88, 4, 5<, 89, 0, <, 85,, <<; mb 880, 6, 9<, 86, 5, 7<, 8 0, 9, <<; ma + mb êê MatrixForm mb 4 ma êê MatrixForm Det@maD 0 4 5 5 0 5 0 9 0 5 5 0 8 04 Παρδ. a 88, <, 8, << CharacteristicPolynomial@a, λdêê Factor Eigenvalues@aD Eigenvectors@aD Eigensystem@aD 88, <, 8, << H + λlh5 + λl 8 5, < 88, <, 8, << 88 5, <, 88, <, 8, <<< - 5 -

Παρδ. 5 Εισαγωγή στο Mathematica Στο παρακάτω παράδειγµα ταξινοµείται το σηµείο ισορροπίας ( 0,0) του γραµµικού συστήµατος x ' 5x+ y y' 4x y. Υπολογισµός ιδιοτιµών και ιδιοδιανυσµάτων Clear@a, x, yd a J 5 4 N; Eigensystem@aD 88, <, 88, <, 8, <<< Αφού οι ιδιοτιµές είναι πραγµατικές και έχουν αντίθετο πρόσηµο το σηµείο ισορροπίας είναι saddle. Αναλυτική επίλυση του συστήµατος sol DSolve@8x'@tD 5 x@td + y@td, y'@td 4 x@td y@td<, 8x@tD, y@td<, td; sol sol@@,, DD sol sol@@,, DD t I + 4t M C@D + 4 t I + 4t M C@D t I + 4t M C@D t I + 4t M C@D ιάγραµµα ροής και τροχιές από διαφορετικές αρχικές συνθήκες toplot Flatten@Table@8sol, sol<ê. 8C@D > i, C@D > j<, 8i, 0.5, 0.5, 0.5<, 8j, 0.5, 0.5, 0.5<D, D; graphs ParametricPlot@Evaluate@toplotD, 8t,, <, PlotRange 88, <, 8, <<, AspectRatio, PlotStyle GrayLevel@0DD; p Plot@8 x, x ê <, 8x,, <, PlotStyle 88Red, Dashing@80.0<D, Thickness@0.0D<, 8Red, Dashing@80.0<D, Thickness@0.0D<<D; pvf HNeeds@"VectorFieldPlots`"D; VectorFieldPlots`VectorFieldPlot@85 x + y, 4 x y<, 8x,, <, 8y,, <, ScaleFunction H0.05 &L, Axes Automatic, PlotPoints 0DL; Show@pvf, p, graphs, PlotRange 88, <, 8, <<, AspectRatio, AxesOrigin 80, 0<, Axes AutomaticD - 7 -

Γραµµικοποιηµένο σύστηµα γύρω από τα σηµεία ισορροπίας και ταξινόµησή τους "Linearized system about each equilibrium jac ê. 8x, y <êê Eigenvalues jac ê. 8x, y < êêeigenvalues point" 8 +, < :, + > Για το πρώτο σηµείο οι ιδιοτιµές είναι µιγαδικές µε αρνητικό πραγµατικό µέρος, οπότε το (,) είναι ευσταθές (stable spiral). Για το δεύτερο σηµείο (-,) οι ιδιοτιµές είναι πραγµατικές και έχουν αντίθετο πρόσηµα άρα είναι saddle. ιάγραµµα ροής και τροχιές από διαφορετικές αρχικές συνθήκες pvf HNeeds@"VectorFieldPlots`"D; VectorFieldPlots`VectorFieldPlot@8f@x, yd, g@x, yd<, 8x, ê, ê <, 8y,, <, ScaleFunction H &L, Axes Automatic, AxesOrigin 80, 0<, PlotPoints 0DL; graph@8x0_, y0_<d : Module@8numsol<, numsol NDSolve@8x'@tD f@x@td, y@tdd, y '@td g@x@td, y@tdd, x@0d x0, y@0d y0<, 8x@tD, y@td<, 8t, 0, 5<D; ParametricPlot@8x@tD, y@td< ê. numsol, 8t, 0, 5<, PlotStyle RedDD initcond Table@8 ê, i<, 8i,,, ê 4<D; initcond Table@8i, <, 8i, ê, ê, ê 4<D; initconds initcond initcond; totgraph Map@graph, initcondsd; Show@pvf, totgraph, PlotRange 88 ê, ê <, 8, <<, AspectRatio, Axes Automatic, AxesOrigin 80, 0<D.0.5.0 0.5 -.5 -.0-0.5 0.5.0.5-0.5 -.0-9 -

a 0.6.0 0.5 - - -0.5 -.0 Παρδ. 9 ManipulateBPlotBx ax4, 8x,, <F, 8a,, <F 4 a - 0 8 6 4 - - - -