Στατιστική περιγραφή τουπεδίουβαρύτητας

Σχετικά έγγραφα
Εισαγωγή στο Πεδίο Βαρύτητας

Μέθοδος Σηµειακής Προσαρµογής Least Squares Collocation

Μέθοδος Σηµειακής Προσαρµογής Least Squares Collocation

Προηγούµενα είδαµε...

προβλήµατος Το φίλτρο Kalman διαφέρει από τα συνηθισµένα προβλήµατα ΜΕΤ σε δύο χαρακτηριστικά: παραµέτρων αγνώστων

Μέθοδος Σηµειακής Προσαρµογής Least Squares Collocation

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

Εισαγωγή στο Πεδίο Βαρύτητας

Φίλτρα Kalman. Αναλυτικές μέθοδοι στη Γεωπληροφορική. ιατύπωση του βασικού προβλήματος. προβλήματος. μοντέλο. Πρωτεύων μοντέλο

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής

Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Αριθμητική Ανάλυση και Εφαρμογές

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Αριθμητική Ανάλυση και Εφαρμογές

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)

Αριθμητική Ανάλυση και Εφαρμογές

Διαχείριση Υδατικών Πόρων

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Εισαγωγή στο Πεδίο Βαρύτητας

ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

Αυτοματοποιημένη χαρτογραφία

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Μεθοδολογίες παρεµβολής σε DTM.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

Ευχαριστίες 1/11/2014. Μουστάκας Δ. Παναγιώτης

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Αναγνώριση Προτύπων Ι

Non Linear Equations (2)

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΥΨΟΜΕΤΡΙΚΩΝ ΔΙΚΤΥΩΝ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

ΚΕΦΑΛΑΙΟ 14 ΚΑΤΩ ΙΑΒΑΤΑ ΦΙΛΤΡΑ BESSEL-THOMSON

2.1 Αριθμητική επίλυση εξισώσεων

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

Στοχαστικά Σήµατα και Εφαρµογές

Αναγνώριση Προτύπων Ι

Εισαγωγή στα Προσαρµοστικά Συστήµατα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης)

Επίλυση Γραµµικών Συστηµάτων

7. ΜΗ ΓΡΑΜΜΙΚΑ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ

ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά

Εφαρμοσμένη Στατιστική

Εισόδημα Κατανάλωση

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17

Διάστημα εμπιστοσύνης της μέσης τιμής

() 1 = 17 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE Ορισµοί

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Στατιστική Συμπερασματολογία

Αριθμητική Ανάλυση και Εφαρμογές

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής

Εισαγωγή Αλγόριθµοι Αποτελέσµατα Επίλογος Ορισµός του Προβλήµατος Ευθυγράµµιση : Εύρεση ενός γεωµετρικού µετασχηµατισµού που ϕέρνει κοντά δύο τρισδιάσ

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Στατιστική Συμπερασματολογία

Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)

Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων

Εφαρμοσμένα Μαθηματικά

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Σύνδεση µε τα προηγούµενα

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

3.9 Πίνακας συνδιακύμανσης των παραμέτρων

Χ. Εμμανουηλίδης, 1

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή

Τα δίκτυα GPS 5.1 Γενικά περί των δικτύων GPS

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

ΓΕΩΔΑΙΣΙΑ 5η παρουσίαση

min f(x) x R n (1) x g (2)

7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Αριθµητική Ολοκλήρωση

Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Transcript:

Στατιστική περιγραφή τουπεδίουβαρύτητας

ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΕ ΙΟΥ ΒΑΡΥΤΗΤΑΣ Οι ανωµαλίες της βαρύτητας σε παγκόσµια κλίµακα θεωρούνται στατιστικά µεγέθη µε µέση τιµή µηδέν Τα στατιστικά χαρακτηριστικά των ανωµαλιών βαρύτητας είναι ανεξάρτητα από τη θέση και τη διεύθυνση Ανεξάρτητα από τη θέση: ιδιότητα της οµογένειας ανεξάρτητα από τη διεύθυνση: ιδιότητα της ισοτροπίας Η συνάρτηση συµµεταβλητότητας (ΣΣ) περιγράφει τα στατιστικά χαρακτηριστικά του πεδίου βαρύτητας (covarace fucto) Η ΣΣ περιγράφει τη στατιστική συµπεριφορά του πεδίου βαρύτητας που χαρακτηρίζεται από την τάση να έχουν οι τιµές της ανωµαλίας της βαρύτητας και j στα σηµεία Ρ και j το ίδιο περίπου µέτρο και το ίδιο περίπου πρόσηµο, όταν η απόσταση µεταξύ των σηµείων είναι µικρή Η τάση αυτή εξασθενίζει ή και αντιστρέφεται, όταν η απόσταση µεταξύ των σηµείων µεγαλώνει cov ( g, j, ψ ) Μ{ j} ψ Μ τελεστής του µέσου όρου και ψ σφαιρική απόσταση στη µοναδιαία σφαίρα (R)

ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΕ ΙΟΥ ΒΑΡΥΤΗΤΑΣ Για ψ0 έχουµε τη µεταβλητότητα σ ( ) M { } g Οι ιδιότητες οµογένειας και ισοτροπίας δεν ισχύουν στην πραγµατικότητα Σε τοπικές/περιφερειακές περιφερειακές εφαρµογές οι ΣΣ υπολογίζονται λαµβάνοντας υπόψη τα στατιστικά χαρακτηριστικά της περιοχής µελέτης Εµπειρικές συναρτήσεις συµµεταβλητότητας µεταβλητότητα εµπειρική συνάρτηση συµµεταβλητότητας για τον ελληνικό χώροαπό περίπου 7500 σηµειακές τιµές

ΑΝΑΛΥΤΙΚΕΣ ΕΚΦΡΑΣΕΙΣ ΓΙΑ ΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΜΜΕΤΑΒΛΗΤΟΤΗΤΑΣ cov Συνάρτηση συµµεταβλητότητας ανωµαλιών βαρύτητας ( ),, ψ σ ( ) ( cosψ ) j R rr j + συντελεστές µεταβλητότητας πεδίου βαρύτητας πολυώνυµα Legedre αρµονικές συναρτήσεις Νόµος µετάδοσης συµµεταβλητότητας (covarace propagato) Συναρτήσεις διασυµµεταβλητότητας (cross-covarace covarace fuctos) cov + ( ) ( ) R R σ N,, ψ j γ rr j ( cosψ )

ΠΡΟΓΝΩΣΗ ΣΤΟ ΠΕ ΙΟ ΒΑΡΥΤΗΤΑΣ Μαθηµατική έκφραση του προβλήµατος πρόγνωσης (,, ) g, F g ~ Γραµµική πρόγνωση (lear predcto) a + a + + a a Σφάλµα πρόγνωσης ε ~

ΜΕΣΟ ΤΕΤΡΑΓΩΝΙΚΟ ΣΦΑΛΜΑ ΠΡΟΓΝΩΣΗΣ Σφάλµα πρόγνωσης στο σηµείο Ρ ε ( g ) a g + aa Μέσος όρος σφάλµατος πρόγνωσης στο τετράγωνο M j j j { ε } M { } am { } + αa jm { j} Συµβολισµοί m j { } { ε, M }, M { } M{ } M, 0 j 0 + j j j m a aa j j

ΠΡΟΓΝΩΣΗ ΜΕ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ Προσδιορισµός συντελεστών α βέλτιστα αποτελέσµατα Η συνθήκη ελαχιστοποίησης συνεπάγεται m a + a (,,, ) j j a j j γραµµικό σύστηµα εξισώσεων µε αγνώστους αj Λύση συστήµατος a j j Πρόγνωση στο σηµείο Ρ ~ a j j j j j j

ΠΡΟΓΝΩΣΗ ΜΕ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ( ) g g g g,,, ~ j j j m 0 ( ) m,,, 0

ΓΕΝΙΚΕΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ- ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ Εύρεση δυναµικού από τα συναρτησιακά του l L (T) Έστω το πρόβληµα τηςεκτίµησης στο σηµείο Ρ του διαταρακτικού δυναµικού Τ(Ρ) από τα στοιχεία l του διανύσµατος l των µετρήσεων, που αποτελείται από τιµές της ανωµαλίας της Βαρύτητας, τιµές των συνιστωσών της απόκλισης της κατακορύφου ξ, η κλπ Οι ποσότητες αυτές είναι δυνατό να παρασταθούν ως συναρτησιακά (factoals) του διαταρακτικού δυναµικού Τ µε τις κατάλληλες σχέσεις T γ g + γ Q E Q T ξ Mγ Q T φ η N cosφ γ Q T λ

ΓΕΝΙΚΕΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ- ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ Εύρεση δυναµικού από τα συναρτησιακά του l L (T) Συναρτήσεις συµµεταβλητότητας µεταξύ τιµών του δυναµικού και τιµών των δεδοµένων (συναρτησιακών του δυναµικού) ( T ( ) l ) M { T ( ) l } cov, cov, j ( l l ) M { l l } j j Γενικά ( l, l ) L ( cov( T, l ) L ( L ( K( Q) )) cov j j j, Νόµος µετάδοσης της συµµεταβλητότητας

ΓΕΝΙΚΕΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ- ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ Εύρεση δυναµικού από τα συναρτησιακά του l L ( T) Συναρτήσεις συµµεταβλητότητας µεταξύ τιµών του δυναµικού και τιµών των δεδοµένων (συναρτησιακών του δυναµικού) ~ T ( ) (,,, ) l l l

ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ x AX + s + Εξίσωση Εξίσωση παρατήρησης x µέτρηση s σήµα θόρυβος ( µετρήσεις) ( σήµατα) ( θόρυβοι) X διάνυσµα m αγνώστων παραµέτρων Α πίνακας xm συνδέει τις παρατηρήσεις µε τις άγνωστες παραµέτρους

ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ~ T s x AX s ( ) Βέλτιστη εκτίµηση σηµάτων ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ + D πίνακας συµµεταβλητοτήτων σηµάτων D πίνακας συµµεταβλητοτήτων σφαλµάτων (πλήρης ή διαγώνιος συσχετισµένα ή ασυσχέτιστα σφάλµατα) ) ~ X ( T A A) T A x Βέλτιστη εκτίµηση αγνώστων παραµέτρων ΣΦΑΛΜΑΤΑ ΑΚΡΙΒΕΙΕΣ m + h E s s xx ss T s T ( A ) A T s s h T s AE xx A T h s ss µεταβλητότητα σήµατος s

ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ GEOOL (GEOdetc OLlocato) πρόγραµµα σηµειακής προσαρµογής σε Η/Υ (Fortra) Λογισµικό GRAVSOFT (επίλυση όλων των προβληµάτων που συνδέονται µε τη µέθοδο της σηµειακής προσαρµογής) Πλεονεκτήµατα σηµειακής προσαρµογής: Κατανοµή δεδοµένων τυχαία ή σε πλέγµα Πρόγνωση σε τυχαία σηµαία ή σε πλέγµα Αποτέλεσµα ανεξάρτητο από τον αριθµό των σηµείων πρόγνωσης εδοµένα και προσδιοριζόµενα σήµατα µπορεί να είναι ετερογενείς παρατηρήσεις Βέλτιστη λύση, ακριβέστερη από οποιαδήποτε άλλη γραµµική προσέγγιση Μειονέκτηµα σηµειακής προσαρµογής Απαιτείται επίλυση συστήµατος γραµµικών εξισώσεων µε αριθµό εξισώσεων ίσο µε µε τον αριθµό των αγνώστων Αντιµετώπιση του προβλήµατος Τεχνική «γρήγορης» σηµειακής προσαρµογής (fast collocato) Πεπερασµένες συναρτήσεις συµµεταβλητότητας (fte covarace fuctos) Θετικά ορισµένοι πίνακες, πίνακες µε πολλά µηδενικά (postve defte, sparse matrces)

ΣΥΝΤΕΛΕΣΤΕΣ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ Συντελεστές µεταβλητότητας ανωµαλιών βαρύτητας σ ( ) { g M g } 4π σ g dσ αρµονικοί όροι g Συντελεστές µεταβλητότητας ανωµαλιών βαρύτητας από συναρτήσεις συµµεταβλητότητας σ + π ( ) cov(, j, ψ ) ( cosψ ) ψ 0 sψ dψ Συντελεστές µεταβλητότητας από γεωδυναµικά µοντέλα σ GM a ( ) ( ) ( + S ) R R m 0 m m

ΣΥΝΤΕΛΕΣΤΕΣ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ Συντελεστές µεταβλητότητας υψοµέτρων του γεωειδούς σ ( N ) R ( ) γ σ ( ) Με ανάλογο τρόπο προκύπτουν συντελεστές µεταβλητότητας και για τις άλλες παραµέτρους του πεδίου βαρύτητας (αποκλίσεις κατακορύφου, διαταραχές βαρύτητας)

ΣΥΝΤΕΛΕΣΤΕΣ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ Μοντέλα συντελεστών µεταβλητότητας Μοντέλο Tscherg και Rapp c ( ) A( ) ( )( + B) + s Α συντελεστής ( ms ) B ακέραιος s< συντελεστής σύγκλισης Σφαιρική εµπειρική συνάρτηση συµµεταβλητότητας ( ) 5 Α 458 x0 ms B 4 s 099967

ΣΥΝΤΕΛΕΣΤΕΣ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ συντελεστές µεταβλητότητας από γεωδυναµικό µοντέλο (GM98A) συντελεστές µεταβλητότητας από µοντέλο Tscherg-Rapp Οι συντελεστές µεταβλητότητας περιγράφουν τη φασµατική συµπεριφορά του πεδίου των ανωµαλιών βαρύτητας σε µήκος κύµατος 360 0 / που αντιστοιχεί σε βαθµό του αναπτύγµατος του γεωδυναµικού εν είναι δυνατό να υπολογισθούν συντελεστές µεταβλητότητας µέχρι (ο βαθµός εξαρτάται πρακτικά από τη διακριτική ικανότητα των µετρήσεων)

ΣΥΝΤΕΛΕΣΤΕΣ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ ιαδικασία υπολογισµού συντελεστών µεταβλητότητας (µοντέλο Tscherg/Rapp) c Υπολογίζεται η εµπειρική συνάρτηση συµµεταβλητότητας από τα διαθέσιµα δεδοµένα Γίνεται προσαρµογή του µοντέλου των συντ µεταβλητότητας c, ώστε οι συναρτήσεις συµµεταβλητότητας να προσεγγίζουν βέλτιστα τις εµπειρικές συναρτήσεις (απαιτείται επαναληπτική διαδικασία) Με τις παραµέτρους του µοντέλου των συντελεστών µεταβλητότητας υπολογίζεται η αναλυτική συνάρτηση συµµεταβλητότητας ανάµεσα σε οποιαδήποτε µεγέθη (δεδοµένα ή ζητούµενα)

ΕΦΑΡΜΟΓΗ Πρόγνωση ανωµαλίας βαρύτητας

ΕΦΑΡΜΟΓΗ

ΕΦΑΡΜΟΓΗ Εµπειρική συνάρτηση συµµεταβλητότητας στην περιοχή µελέτης

ΕΦΑΡΜΟΓΗ Προσαρµογή των εµπειρικών τιµών σε ένα εκθετικό µοντέλο (ελάχιστα τετράγωνα) ( ψ ) ae βψ ψ [ sφ sφ + cosφ cosφ ( cos λ cos λ s λ s λ )], j arccos j j j + j Από την προσαρµογή προκύπτουν

ΕΦΑΡΜΟΓΗ Τύποι Τύποι προσαρµογής προσαρµογής y y c y c y b / / l l y b c a l exp

~ ΕΦΑΡΜΟΓΗ Αλγόριθµος πρόγνωσης T (, ) (, ) Για την πρόγνωση χρησιµοποιούνται 5 µετρήσεις που βρίσκονται στην πλησιέστερη απόσταση από το Ρ j Οι αποστάσεις για το διάνυσµα T ( g, ) Οι αποστάσεις για τον πίνακα πίνακα (, ) g g j

~ ΕΦΑΡΜΟΓΗ T (, ) (, ) j Με τις αποστάσεις και το αναλυτικό µοντέλο της συνάρτησης συµµεταβλητότητας σχηµατίζονται το διάνυσµα και ο πίνακας συµµεταβλητοτήτων T ( ) ( 3330 3359 3430 3349 3366), ( ), j 37370 30974 37370 30334 30785 37370 30097 34957 33907 37370 309647 309534 303994 30533 37370

Το διάνυσµα των µετρήσεων είναι ΕΦΑΡΜΟΓΗ g 5404 479 49043 4636 5 Ο αντίστροφος του πίνακα συµµεταβλητοτήτων είναι ( ), 736 043 6064 449 08 4864 360 5983 4899 779 06 755 039 770 79 Τελικά η πρόγνωση στο σηµείο Ρ είναι ~ 5 503x0 ms