Εισαγωγή στο Πεδίο Βαρύτητας
|
|
- Θέμις Μέλιοι
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 9: Προσδιορισμός Γεωειδούς με Ολοκληρωματικές, Στοχαστικές και Φασματικές Μεθόδους Η.Ν. Τζιαβός - Γ.Σ. Βέργος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reative ommos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος
4 ΑΠΘ/ΤΑΤΜ Τομέας Γεωδαισίας και Τοπογραφίας 4 ο Εξάμηνο Εισαγωγή στο πεδίο βαρύτητας Itroductio to gravity field Ακαδημαϊκή Χρονιά: Πρόγραμμα: Τετάρτη 9:00 3:00 Διδάσκοντες: Η.Ν. Τζιαβός, Γ.Σ. Βέργος Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
5 Ιστοσελίδες ΔΕΠ Τομέας Γεωδαισίας και Τοπογραφίας Η. Τζιαβός ή Γ. Βέργος Μαθήματα - εργασίες Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
6 Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
7 ΟΛΟΚΛΗΡΩΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΑΡΤΗΣΗ Stokes T R 4π σ ψ,α S ψ dσ S ψ P cosψ 5P cosψ 7 P 3 cosψ 3P 4 cosψ ψ si ψ 6si 5cosψ 3cosψ l ψ si si ψ Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
8 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΓΕΩΕΙΔΟΥΣ ΜΕ ΤΟ ΟΛΟΚΛΗΡΩΜΑ Stokes R 4πγ gs(ψ)dσ oλοκλήρωμα Stokes R 4πγ i obs S ( ψ)dφdλ i απλοποιημένη μορφή πρακτικές εφαρμογές Συνάρτηση Stokes S(ψ) si ψ 6 si ψ 5 cosψ 3cosψ l si ψ + si ψ S(ψ) si( / ) / για μικρές τιμές του ψ Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
9 ΣΧΕΣΕΙΣ Veig Meiesz ξ η 4 π π α 0 ψ 0 ψ, α S ψ cosα siα siψ dψdα ξ η σ S ψ cosα si α dσ S ψ ds ψ dψ cos si ψ/ ψ/ 8siψ ψ 6cos 3 3si ψ/ siψ 3siψ l ψ si si ψ Συνάρτηση S ψ si ψ/ ψ/ ψ Veig - Meiesz S ψ si ψ/ ψ/ ψ Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
10 Συναρτήσεις Stokes / Veig - Meiesz S ψ si ψ/ ψ/ ψ S ψ si Εικόνα ψ/ ψ/ ψ Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
11 Πρακτική εφαρμογή του τύπου του Stokes από τη σφαίρα στο επίπεδο R gs(ψ)dσ 4πγ S(ψ) si( / ) / r dσ dx dψ X πγ -X Y r -Y dxdy Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
12 Προσδιορισμός του γεωειδούς με το ολοκλήρωμα Stokes τρεις συνιστώσες Ν, Ν, Ν 3 Ν = Ν + Ν + Ν 3 Ν γεωδυναμικό μοντέλο * R max m cosmλ Sm simλ Pm(siφ) m 0 Ν από ανηγμένες τιμές βαρύτητας g R 4 ( g obs pot )S(ψ)dσ max * pot γ ( ) m cosmλ Sm simλ Pm(siφ) m 0 Ν 3 συνεισφορά ευρύτερης περιοχής R ( gobs pot) S(ψ) dσ 4 c Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
13 ΠΑΡΑΔΟΧΕΣ ΓΙΑ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΤΟΥ Stokes Το γεωειδές είναι μία ισοδυναμική επιφάνεια και το ελλειψοειδές μία σφαιροδυναμική (Wo=Uo) Οι ανωμαλίες βαρύτητας θεωρούνται ανηγμένες στην επιφάνεια του γεωειδούς Η μάζα του ΕΕΠ είναι ίση με τη μάζα της γης Το κέντρο του ΕΕΠ συμπίπτει με το κέντρο του συστήματος αναφοράς (Γης) Δεν υπάρχουν μάζες έξω από το γεωειδές, η αφαίρεσή τους έχει γίνει με τις αναγωγές των ανωμαλιών βαρύτητας στην επιφάνεια του σφαιρικού γεωειδούς Γη και ΕΕΠ περιστρέφονται με την ίδια γωνιακή ταχύτητα Η αποχή του γεωειδούς δίνεται σε σχέση με ένα ελλειψοειδές του οποίου η επιπλάτυνση είναι ίδια με εκείνη του ελλειψοειδούς που χρησιμοποιήθηκε για τις αναγωγές βαρύτητας Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
14 ΣΦΑΛΜΑΤΑ ΣΤΙΣ ΟΛΟΚΛΗΡΩΜΑΤΙΚΕΣ ΜΕΘΟΔΟΥΣ (Stokes) Σφάλματα του μαθηματικού μοντέλου Σφάλμα σφαιρικής προσέγγισης Επίδραση ατμοσφαιρικών μαζών Συνιστώσα μηδενικής τάξης Σφάλμα ολοκλήρωσης σν c Σφάλμα εκ μεταφοράς (commissio error) Σφάλματα του γεωδυναμικού μοντέλου σν 0 Σφάλμα παράλειψης (ανάπτυξη μέχρι max ) (omissio error) σ D Διακριτική ικανότητα 80 θ Σφάλματα των ανωμαλιών βαρύτητας σ P Σφάλμα προσδιορισμού Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
15 Επίδραση ατμοσφαιρικών μαζών στις Μέσο υψόμετρο κελύφους σε [m] ψ c Μέσο υψόμετρο 00 m 0 Ακτίνα ολοκλήρωσης ψ c 5 Διόρθωση 0.56 m Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
16 Προσδιορισμός βέλτιστης ακτίνας συλλογής Ελαχιστοποίηση σφαλμάτων σ tot ψ c σ c σ 0 σ D σ P σ tot ψ c miimum Απόσταση [km] σν c σν 0 σ D σ P σ tot Τιμές σφαλμάτων σε cm φ 50 ψ c Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
17 Ο ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISRETE FOURIER TRASFORM D h(x, y) Mx έ έ x k x, k 0,,,..., M x T x M y l y, l 0,,,..., y T y u m u, m 0,,,..., M u F u M T x v m v, 0,,,..., v F v T y Εικόνα Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
18 Ο ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISRETE FOURIER TRASFORM D H(m u, v) M k 0 l 0 h(k x,l y)e j (m uk x vl y) x y x y M k 0 l 0 h(k x,l y)e j (m uk x vl y) x y T x M T y H(m u, v) T x M T y M k 0 l 0 h(k x,l y)e j mk ( M l ) h(k x,l y) u v M k 0 l 0 H(m u, v)e j (m uk x vl y) T x T y M k 0 l 0 H(m u, v)e j mk ( M l ) Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
19 Ο ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISRETE FOURIER TRASFORM D h(k, l) H(m, ) H(m,) T x M T y M k 0 l 0 h(k x,l y)e j mk ( M l ) F[H(m, )] h(k x,l y) T x T y M k 0 l 0 H(m u, v)e j mk ( M l ) F [H(m, )] ό ύ ώ ό T x x, T y y F u u, F v v Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
20 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΓΕΩΕΙΔΟΥΣ ΜΕ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ FOURIER X πγ -X Y r -Y dxdy (x p,y p ) X Y πγ -X -Y (x,y) (x p - x) + (y p - y) / dxdy [ ] l (x,y) r (x,y) (x y ) -/ (x,y) πγ (x,y) l (x,y) (x,y) πγ F { ΔG(u;v) L (u;v)} ΔG(u,v) F{(x,y)} L (u,v) F{L (x,y)} (u v ) / (x,y) πγ F ΔG(u;v) (u + v ) -/ Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
21 ΠΡΟΣΔΙΟΡΙΣΜΟΣ Γεωειδές με το ολοκλήρωμα ΓΕΩΕΙΔΟΥΣ Stokes ΜΕ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ μέσω μετασχηματισμών Fourier FOURIER Εικόνα 3 ( x, y ) R πγ g dxdy r ΔG(u, v) F (x, y) r x P x y P y L (u, v) F l Ν (x, y) ( x, y ) R πγ (x, y) l Ν ( x, y) dxdy (x, y) F ΔG(u, v) L (u, v) l Ν r ( x, y) Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
22 ΣΤΟΧΑΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ σημειακή προσαρμογή χωρίς σφάλματα (exact collocatio) ελάχιστα τετράγωνα σημειακή προσαρμογή με σφάλματα (smoothig collocatio) σημειακή προσαρμογή με παραμέτρους (parametric least squares collocatio) Σημειακή προσαρμογή χωρίς σφάλματα Σημειακή προσαρμογή με σφάλματα Εικόνα 4 Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
23 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΧΩΡΙΣ ΣΦΑΛΜΑΤΑ Aπό ένα σύνολο μετρήσεων (παρατηρήσεων) s i, i=,,...,r, οι οποίες σχετίζονται με το διαταρακτικό δυναμικό τη γης T και οι οποίες μπορεί να εκφραστούν ως τιμές ορισμένων γραμμικών συνεχών συναρτησιακών του διαταρακτικού δυναμικού σύμφωνα με τη σχέση s i L i T ζητείται να βρεθεί μία προσέγγιση για το T, η, η οποία να ικανοποιεί τις μετρήσεις si και τη συνθήκη T mi Σημειώνεται ότι τα συναρτησιακά είναι ορισμένοι τελεστές, οι οποίοι μετατρέπουν συναρτήσεις σε πραγματικούς αριθμούς Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
24 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΧΩΡΙΣ ΣΦΑΛΜΑΤΑ T^P [ P P... Pr ]... r... r r r... rr - s s.... s r Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
25 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΧΩΡΙΣ ΣΦΑΛΜΑΤΑ Pi (T P, s i ) ij (si, sj) T^ P Ps - ss s ^' s k s's - ss s Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
26 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΧΩΡΙΣ ΣΦΑΛΜΑΤΑ ˆ ˆ ˆ ˆ k T ˆ k Ν T k k k E Ν σφάλμα πρόγνωσης Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
27 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΣΦΑΛΜΑΤΑ l i t i e i μέτρηση=σήμα +θόρυβος s T ss s ε T εε ε miimum συνθήκη ελαχιστοποίησης ll tt te et ee ll tt ee sˆ sl ll l sl tt ee l sˆ st tt ee l Ε ss ss st ll ts Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
28 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΣΦΑΛΜΑΤΑ sˆ sl ll l sl tt ee l sˆ st tt ee l Ε ss ss st ll ts Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
29 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΣΦΑΛΜΑΤΑ l i t i e i Στάδιο : Πίνακας παρατηρήσεων T l [... i ξ...ξ j η...η k ] Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
30 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΣΦΑΛΜΑΤΑ l i t i e i Στάδιο : Πίνακας συμμεταβλητοτήτων σημάτων tt i ξ ξ j η η k i ii ξ i ξ ji η i η ki ξ ξ i ξξ ξξ j η ξ η ξ k ξ j ξ i j ξξ j ξξ jj ηξ j η ξ k j η η i ξη ξη j ηη ηη k η k η ik ξη k ξη jk ηη k ηη kk Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
31 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΣΦΑΛΜΑΤΑ Στάδιο 3: Πίνακας συμμεταβλητοτήτων σφαλμάτων (συσχετισμένα σφάλματα) D...D i.... D i D ξ...d ii...dξ i.... D ξ j...d ξ j D η...dη i.... D η k...dη ki D ξ...dξ j.... D ξ i D ξξ...d ξ ij...dξξ j.... D ξξ j...dξξ jj D ηξ...dηξ j.... D ηξ k...dηξ kj D η...dη k.... D η i D ξη...d η ik...dξη k.... D ξη j...dξη jk D ηη...dηη k.... D ηη k...dηη kk Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
32 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΣΦΑΛΜΑΤΑ Στάδιο 3: Πίνακας συμμεταβλητοτήτων σφαλμάτων (ασυσχέτιστα σφάλματα) ee m m 0 m ξ m ξ 0 m η m η Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
33 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΣΦΑΛΜΑΤΑ Στάδιο 4: Υπολογισμός πίνακα b b = ( ss + ) - l Στάδιο 5: Υπολογισμός συμμεταβλητοτήτων ανάμεσα στα σημεία πρόγνωσης και τα σημεία των δεδομένων s' l [ g ] P... g Pi ξ P... ξ Pj η P... η Pk Στάδιο 6: Πρόγνωση υψομέτρων γεωειδούς ^ P s' l b m t = b t ( s' l ) t Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
34 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΣΦΑΛΜΑΤΑ k D g Στάδιο : Διάνυσμα παρατηρήσεων,..., T Διάνυσμα σημάτων πρόγνωσης ˆ k ˆ, ˆ,..., ˆ Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
35 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΣΦΑΛΜΑΤΑ Πίνακας συμμ. ανάμεσα στα σημεία των δεδομένων και τα σημεία πρόγνωσης k k... k Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
36 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΣΦΑΛΜΑΤΑ Πίνακας συμμ. ανάμεσα στα σημεία των δεδομένων Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
37 ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΣΦΑΛΜΑΤΑ Πίνακας συμμ. σφαλμάτων των δεδομένων D m.. m Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
38 ΙΔΙΟΤΗΤΕΣ ΣΗΜΕΙΑΚΗΣ ΠΡΟΣΑΡΜΟΓΗΣ Κατανομή δεδομένων τυχαία ή σε πλέγμα Πρόγνωση σε τυχαία σημαία ή σε πλέγμα Αποτέλεσμα ανεξάρτητο από τον αριθμό των σημείων πρόγνωσης Δεδομένα και προσδιοριζόμενα σήματα μπορεί να είναι ετερογενείς παρατηρήσεις Βέλτιστη λύση, ακριβέστερη από οποιαδήποτε άλλη γραμμική προσέγγιση Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
39 ΠΑΡΑΜΕΤΡΙΚΗ ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ l AX s l (rx) s (rx) (rx) πίνακας των μετρήσεων πίνακας των σημάτων πίνακας των θορύβων Χ (mx) πίνακας των παραμέτρων Α (rxm) γνωστός πίνακας, που εκφράζει τη σχέση μεταξύ μετρήσεων και παραμέτρων Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
40 ΠΑΡΑΜΕΤΡΙΚΗ ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ X^ ( ) A T A A T - l ^' s s' l - (l AX) E s's' ll s' l - ls' H A ( A ) T A A T H T H s'l - Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
41 ΠΑΡΑΜΕΤΡΙΚΗ ΣΗΜΕΙΑΚΗ ΠΡΟΣΑΡΜΟΓΗ αποτέλεσμα ανεξάρτητο από τον αριθμό των σημείων πρόγνωσης παρατηρήσεις και σήματα μπορεί να είναι ετερογενείς ποσότητες είναι η άκριβέστερη λύση από οποιαδήποτε άλλη γραμμική προσέγγιση Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
42 ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΜΜΕΤΑΒΛΗΤΟΤΗΤΑΣ K(P i,p j ) = π 8π λ=0 π θ=0 π α=0 T P' T Q' siθ dθ dλ dα M(T) 4π σ T dσ 0 (P i,p j ) = π 8π λ=0 π θ=0 π α=0 P' Q' siθ dθ dλ dα Εικόνα 5 (P,Q) M{ P' Q' } (d) M{ P' Q' } P'Q' Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
43 ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΜΜΕΤΑΒΛΗΤΟΤΗΤΑΣ K(P, Q) 0 R r r P B Q P (cos ) συντελεστές μεταβλητότητας διαταρακτικού δυναμικού s R B r P r Q R B σφαίρα του Bjerhammar s R B R K(P,Q) 0 R r r P B Q P (cos ) Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
44 ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΜΜΕΤΑΒΛΗΤΟΤΗΤΑΣ (P,Q) 0 c s P (cos ) c συντελεστές μεταβλητότητας ανωμαλιών βαρύτητας Συναρτήσεις συμμεταβλητότητας μέσων τιμών ανωμαλιών βαρύτητας (P,Q) 0 c s P (cos ) Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
45 ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΜΜΕΤΑΒΛΗΤΟΤΗΤΑΣ (ψ) - - A i A j i j i;j=;.. A i A j i,j=,.. Α i, A j εμβαδά διαμερισμάτων μέσων τιμών (ψ) - - i j i,j=,.. ισεμβαδικά διαμερίσματα ψ Δψ ψ ij ψ Δψ κλάσεις της συνάρτησης συμμεταβλητότητας Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
46 ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΜΜΕΤΑΒΛΗΤΟΤΗΤΑΣ μεταβλητότητα (variace) o i= i μήκος συσχέτισης (correlatio legth) (ξ) o συντελεστής καμπυλότητας (curvature parameter) χ κ ξ o Εικόνα 6 Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
47 Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04,ψ,r K r T,T T r r T - γ T K r r 4 r K r r K r r r K K r r K r r K r r Κ γ γ γ K, ΝΟΜΟΣ ΜΕΤΑΔΟΣΗΣ ΣΥΜΜΕΤΑΒΛΗΤΟΤΗΤΩΝ
48 ΝΟΜΟΣ ΜΕΤΑΔΟΣΗΣ ΣΥΜΜΕΤΑΒΛΗΤΟΤΗΤΩΝ Συνδυασμός σημειακής προσαρμογής και ολοκλ. μεθόδου Stokes περιοχή σ + σ εσωτ εξωτ * R max m cosmλ Sm simλ Pm(siφ) m 0 ψ εξ σ Ρ ψ εσ σ εσωτερική ζώνη σ Τ D (σ ) res res obs pot Εικόνα 7 g max * pot γ ( ) m cosmλ Sm simλ Pm(siφ) m 0 εξωτερική ζώνη σ R εξωτ gobs g 4πγ pot S(ψ)dσ Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
49 ΑΣΚΗΣΗ A R 4πG 3 i obs S i ψ dφdλ i ψ Εικόνα 8 i ψ Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
50 ΛΥΣΗ Εμβαδόν διαμερισμάτων πρώτου τομέα (τεταρτοκύκλια) = πr / 4 r 0.05 Τα εμβαδά των διαμερισμάτων των δύο άλλων τομέων ~ dφ dλ dφ dλ διαμερίσματα ου τομέα διαμερίσματα ου τομέα 6 διαμερίσματα 3ου τομέα ψ 0.05 S ψ ψ S ψ 3.75 ψ 0.5 S ψ Συνάρτηση Stokes A 3.78m Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
51 ΑΣΚΗΣΗ Δεδομένα - Ανωμαλίες ελευθέρου αέρα Σημείο φ λ H m gal Σημεία (σταθμοί) που θα γίνει πρόγνωση υψομέτρων γεωειδούς Σημείο φ λ H m Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
52 ΜΟΝΤΕΛΟ ΣΥΝΑΡΤΗΣΗΣ ΣΥΜΜΕΤΑΒΛΗΤΟΤΗΤΑΣ As L l A γ R s l t s L st s L- st t cosψ siφ siφ i j cosφ cosφ i j cos(λ i - λ j ) γ Σταθερές mgal A s R m / gal Δεδομένα l T Άγνωστες ποσότητες (υψόμετρα γεωειδούς) ˆ ˆ ˆ 3 4 ˆ ˆ T Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
53 Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος ll 0 0 gal l l l l ΜΟΝΤΕΛΟ ΜΕΤΑΒΛΗΤΟΤΗΤΩΝ-ΣΥΜΜΕΤΑΒΛΗΤΟΤΗΤΩΝ ΔΕΔΟΜΕΝΩΝ
54 b 0 ΥΠΟΛΟΓΙΣΜΟΙ 4 - ll l 0 0 b ˆ l ll ˆ ˆ ˆ ˆ Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος 03-04
55 Σημείωμα Χρήσης Έργων Τρίτων Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Εικόνες,, 3, 4, 5, 6, 7, 8: Αραμπέλος Δ και Τζιαβός ΗΝ (007) Εισαγωγή στο πεδίο βαρύτητας της Γης. Εκδόσεις Ζήτη, Θεσσαλονίκη. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος
56 Σημείωμα Αναφοράς opyright Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Ηλίας Τζιαβός Γεώργιος Βέργος. «Εισαγωγή στο Πεδίο Βαρύτητας. Προσδιορισμός Γεωειδούς με Ολοκληρωματικές, Στοχαστικές και Φασματικές Μεθόδους». Έκδοση:.0. Θεσσαλονίκη 04. Διαθέσιμο από τη δικτυακή διεύθυνση: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος
57 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης reative ommos Αναφορά - Παρόμοια Διανομή [] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [] Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος
58 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Τέλος ενότητας Επεξεργασία: Δαλάκης Νικόλαος Θεσσαλονίκη, 6/9/04 Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος
59 ΣΗΜΕΙΩΜΑΤΑ Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος
60 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εισαγωγή στο πεδίο βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος
Εισαγωγή στο Πεδίο Βαρύτητας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 0: Θέμα Εξαμήνου Η.Ν. Τζιαβός - Γ.Σ. Βέργος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης
Εισαγωγή στο Πεδίο Βαρύτητας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 6: Σφαιρικές Αρμονικές Συναρτήσεις & Αναπτύγματα Συνιστωσών του Πεδίου Βαρύτητας Η.Ν. Τζιαβός - Γ.Σ.
Εισαγωγή στο Πεδίο Βαρύτητας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 1: Εισαγωγή Η.Ν. Τζιαβός - Γ.Σ. Βέργος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης Το παρόν
Εισαγωγή στο Πεδίο Βαρύτητας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 3: Συστήματα Υψών Η.Ν. Τζιαβός - Γ.Σ. Βέργος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Εισαγωγή στο
Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative
Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Στατιστική περιγραφή τουπεδίουβαρύτητας
Στατιστική περιγραφή τουπεδίουβαρύτητας ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΕ ΙΟΥ ΒΑΡΥΤΗΤΑΣ Οι ανωµαλίες της βαρύτητας σε παγκόσµια κλίµακα θεωρούνται στατιστικά µεγέθη µε µέση τιµή µηδέν Τα στατιστικά χαρακτηριστικά
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή ( ο Μέρος) Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11η: Οργανισμοί της Εκκλησίας της Ελλάδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 10η: Απεσταλμένοι του Ρωμαίου Ποντίφικα και Ρωμαϊκή Κουρία Κυριάκος Κυριαζόπουλος
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 4: Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το
Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία IΙ Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας Γεώργιος Μίντσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8η: Ο νέος αντιρατσιστικός νόμος και ο ν.4301/2014 Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Εφαρμογές Σειρών Tylor Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons.
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # 17: Ταχύτητα Αντιδράσεων Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Λογισμός 4 Ενότητα 10
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10: Διαιρέσεις της μονάδας και επέκταση του ολοκληρώματος. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Σειρές Taylor, Maclaurin Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Οικονομετρία. Συστήματα συναληθευουσών εξισώσεων Μέθοδοι εκτίμησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης
Οικονομετρία Συστήματα συναληθευουσών εξισώσεων Μέθοδοι εκτίμησης Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση των μεθόδων που χρησιμοποιούνται
ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα : Ακολουθίες και Σειρές Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Commos. Για
Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Υπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Πεπερασμένες διαφορές: Παραδείγματα και ασκήσεις Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Λογισμός 4. Ενότητα 9: Παραδείγματα από άλλες αλλαγές. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Παραδείγματα από άλλες αλλαγές. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Ατομικά Δίκτυα Αρδεύσεων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2 : Διήθηση-Εξίσωση Kostiakov Ευαγγελίδης Χρήστος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Ιστορία της μετάφρασης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η μετάφραση των εβδομήκοντα, η εκπαίδευση των μεταφραστών κατά Κικέρωνα, η τέχνη της μετάφρασης από την αρχαιότητα μέχρι τα
ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6: 1η εργαστηριακή άσκηση και προσομοίωση με το SPICE Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και
Παράκτια Τεχνικά Έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΘΕΣΗ ΥΓΡΩΝ ΣΤΗ ΘΑΛΑΣΣΑ ΥΠΟΒΡΥΧΙΟΙ ΑΓΩΓΟΙ Ενότητα 5 η : Κατασκευαστικά παραδείγματα Γιάννης Ν. Κρεστενίτης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Λογισμός 4 Ενότητα 19
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Το Θεώρημα του Gauss. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 9: Μέτρηση Αγωγιμότητας Διαλυμάτων Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Γεωργική Εκπαίδευση Ενότητα 9
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Σχεδιασμός εκπαιδευτικών προγραμμάτων για τον αγροτικό χώρο Αφροδίτη Παπαδάκη-Κλαυδιανού Άδειες Χρήσης Το παρόν εκπαιδευτικό
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 11η: Σύγκριση Ρωσικής Ορθόδοξης Εκκλησίας και Καθολικής Εκκλησίας Κυριάκος Κυριαζόπουλος
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 6: Προσδιορισμός δ0 σε οκτάεδρα σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Επεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Βέλτιστα γραμμικά χρονικά αναλλοίωτα συστήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Βέλτιστα γραμμικά χρονικά αναλλοίωτα συστήματα
Οικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 3: Θεώρημα των Gauss Markov Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών
Οικονομετρία Εξειδίκευση του υποδείγματος Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 4: Τοποθέτηση d ηλεκτρονίων σε οκτάεδρα Σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν
Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Οικονομία των ΜΜΕ Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6η: Ελληνική νομολογία Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra
Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν
Οικονομετρία. Απλή Παλινδρόμηση. Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Απλή Παλινδρόμηση Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
Υπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Αναλυτική επίλυση του μαθηματικού ομοιώματος: Σύμμορφη Απεικόνιση Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής
Οικονομετρία. Πολλαπλή Παλινδρόμηση. Στατιστικός έλεγχος γραμμικού συνδυασμού συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Πολλαπλή Παλινδρόμηση Στατιστικός έλεγχος γραμμικού συνδυασμού συντελεστών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση της
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων
Προηγούµενα είδαµε...
Εισαγωγή στο γήινο πεδίο βαρύτητας (Αρχές της Φυσικής Γεωδαισίας) Προηγούµενα είδαµε... Η επίλυση της διαφορικής εξίσωσης Laplace για το ελκτικό δυναµικό της βαρύτητας για τις µάζες έξω από τη γήινη επιφάνεια
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Γραμμική, διπλή λογαριθμική, ημιλογαριθμική. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Εξειδίκευση του υποδείγματος Μορφή της συνάρτησης: Γραμμική, διπλή λογαριθμική, ημιλογαριθμική Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση
Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και ΜΜΕ Σχολή
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας Ενότητα 1: Αυτοαξιολόγηση μεταφραστών Κασάπη Ελένη Άδειες Χρήσης Το παρόν εκπαιδευτικό
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Αξιολόγηση και ανάλυση της μυϊκής δύναμης και ισχύος
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αξιολόγηση και ανάλυση της μυϊκής δύναμης και ισχύος Ενότητα 3: Εργαστηριακή πρακτική Τίτλος: Ισοκίνηση (Εργαστηριακό) Πατίκας Δ. Άδειες
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
ΦΥΣΙΚΗ. Ενότητα 1: Εισαγωγή στη Φυσική-Ακρίβεια & Σημαντικά Ψηφία- Βαθμωτά Μεγέθη-Διανυσματικά Μεγέθη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗ Ενότητα 1: Εισαγωγή στη -Ακρίβεια & Σημαντικά Ψηφία- Βαθμωτά Μεγέθη-Διανυσματικά Μεγέθη Παπαζάχος Κωνσταντίνος Καθηγητής Γεωφυσικής,
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 8: Ορθομοναδιαίοι μετασχηματισμοί Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Ορθομοναδιαίοι μετασχηματισμοί ισοδύναμη
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Οικονομετρία. Συστήματα συναληθευουσών εξισώσεων Το πρόβλημα της ταυτοποίησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης
Οικονομετρία Συστήματα συναληθευουσών εξισώσεων Το πρόβλημα της ταυτοποίησης Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση του προβλήματος
Χώρος και Διαδικασίες Αγωγής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Καινοτόμα εκπαιδευτικά περιβάλλοντα και αλλαγή της σχολικής κουλτούρας 1/2 Δημήτριος Γερμανός Άδειες Χρήσης Το παρόν εκπαιδευτικό
Οικονομετρία. Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης
Οικονομετρία Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση των εισαγωγικών εννοιών που
Λογισμός 4 Ενότητα 16
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16: Το επι-επιφάνειο ολοκλήρωμα. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον Ενότητα 3 : Βασικές Υδραυλικές και Μαθηματικές Έννοιες Ευαγγελίδης Χρήστος Τμήμα Αγρονόμων
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Ακρότατα Συνάρτησης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διπλωματική Ιστορία Ενότητα 2η:
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2η: Η εμφάνιση των εθνών-κρατών και οι συνέπειες στο διεθνές σύστημα Ιωάννης Στεφανίδης, Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι
Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενότητας 4 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Αποτυπώσεις Μνημείων και Αρχαιολογικών Χώρων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποτυπώσεις Μνημείων και Αρχαιολογικών Χώρων Ενότητα 4 : Η χρήση του G.P.S. Τοκμακίδης Κωνσταντίνος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Αντίστροφος μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Ενότητα 6: Ακρότατα συναρτησιακών διανυσματικών συναρτήσεων. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Ακρότατα συναρτησιακών διανυσματικών συναρτήσεων Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας
Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 12η: Αυτόνομες και ημιαυτόνομες εκκλησίες κ.ά. διατάξεις Κυριάκος Κυριαζόπουλος Άδειες
Παράκτια Ωκεανογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 8 η : Θραύση και αναρρίχηση κυματισμών-2 Θεοφάνης Β. Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Φ 619 Προβλήματα Βιοηθικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ο Πλάτων και ο Αριστοτέλης ως ιατροί. Οι ιατροφιλόσοφοι (Ιπποκράτης, Γαληνός, Κέλσος). Ελένη Καλοκαιρινού Φιλοσοφίας-Παιδαγωγικής
Λογισμός 4 Ενότητα 18
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Το Θεώρημα του Stokes. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μοντέρνα Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Συνάρτηση Μεταφοράς Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος
Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Δυναμικής Άκαμπτου Σώματος... 4 1.1 Ερώτηση 1... 4 1.2 Ερώτηση 2... 4 1.3 Ερώτηση
Χώρος και Διαδικασίες Αγωγής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η κοινωνική ποιότητα του χώρου Δημήτριος Γερμανός Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στο Πεδίο Βαρύτητας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 4: Διαταρακτικά Μεγέθη στο Πεδίο Βαρύτητας ΗΝ Τζιαβός - ΓΣ Βέργος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6: Ανάδραση Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες