Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines"

Transcript

1 Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα

2 3. Εισαγωγή στη πολυωνυμική παρεμβολή Έστω ότι από μετρήσεις ή/και υπολογισμούς δίδονται οι τιμές < < < i < < f με i =,,...,. και οι αντίστοιχες διακριτές τιμές ( ) i Σημειώνεται ότι ενώ τα + ζευγάρια τιμών ( ) αναλυτική μορφή της συνάρτησης f ( ) είναι άγνωστη. f = f είναι γνωστά η i i i Ο σκοπός της αριθμητικής πολυωνυμικής παρεμβολής είναι η εύρεση συνάρτησης g f f f. g( ) έτσι ώστε ( ) ( ) = και που θα προσεγγίζει την άγνωστη ( ) i i i Για + ζευγάρια τιμών η συνάρτηση ( ) βαθμού της μορφής ( ) P ( ) f ( ) = f με i =,,...,. i i i g επιλέγεται να είναι ένα πολυώνυμο P = a + a + + a+ a και επομένως θα πρέπει Επομένως θα πρέπει να ισχύουν οι εξής σχέσεις:

3 ( ) ( ) P = a + a + + a + a = f P = a + a + + a + a = f ( ) P = a + a + + a + a = f i i i i i ( ) P = a + a + + a + a = f ή a f a f = a i i i i fi a f Επομένως, οι συντελεστές του πολυώνυμου P ( ) παραπάνω συστήματος που είναι στη μορφή Xa = f. Αποδεικνύεται ότι: det X ( )( ) ( )( ) ( ) ( ) προκύπτουν από τη λύση του = = ( ) i< i 3

4 Επομένως, ο πίνακας X είναι αντιστρέψιμος και η λύση του συστήματος είναι P!! μοναδική όπως και το πολυώνυμο παρεμβολής ( ) Έχοντας την αναλυτική μορφή του πολυωνύμου P ( ) η τιμή της συνάρτησης f ( ) [, ]. υπολογίζεται προσεγγιστικά Είναι γνωστό ότι για μεγάλο αριθμό δεδομένων, κάτι που είναι συνηθισμένο, η επίλυση του συστήματος Xa = f είναι αριθμητικά επίπονη λόγω του δείκτη κατάστασης του πίνακα X. Αναζητούμε τεχνικές που να εξάγουν το πολυώνυμο παρεμβολής P ( ) P ( ) f έτσι ώστε i = i χωρίς να είναι αναγκαία η επίλυση γραμμικού συστήματος (π.χ. παρεμβολές Newto και Lagrage). 4

5 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Newto Το ζητούμενο πολυώνυμο παρεμβολής P ( ) γράφεται στη μορφή ( ) = + ( ) + ( )( ) + + ( )( ) ( ) P b b b b Οι άγνωστοι συντελεστές b i, i =,,...,, προκύπτουν ως εξής: = : P ( ) = b = f = : P ( ) = b + b( ) = f = : ( ) ( ) ( )( ) i P = b + b + b = f = : ( ) ( ) ( )( ) ( )( ) ( ) P = b + b + b + + b = f i i i i i i i i i i = : ( ) ( ) ( )( ) ( )( ) ( ) P = b + b + b + + b = f 5

6 Σχετικά εύκολα αποδεικνύεται ότι b = f b b f f = + f = + + f ( )( ) ( )( ) ( )( ) f b f f f = ( ) ( ) ( ) ( )( ) ( ) ( ) 6

7 Παράδειγμα: Δίδονται τα δεδομένα f = f ( ) =, f = f ( ) =, f f ( ) βρεθεί με τη μέθοδο Newto το πολυώνυμο παρεμβολής ης τάξης ( ) = = 4 και να P = a + a+ a. b = = f b f f = + = + = 4 b = + + = + ( ) + = ( )( ) ( )( ) ( )( ) Επομένως: P( ) = b + b( ) + b( )( ) = + ( ) + ( )( ) P ( ) = + + 7

8 3.. Παρεμβολή Lagrage Το ζητούμενο πολυώνυμο παρεμβολής P ( ) ( ) ( ) P = L f, όπου L i i i= i ( ) ( ) ( i )( i+ ) ( ) ( ) ( )( ) ( ) γράφεται στη μορφή ( ) i ( ) = = i i i i i+ i i = Όταν i ( ) ( )( ) ( ) ( ) ( )( ) ( ) i i i i i+ i = η ποσότητα Li( ) = Li( i) = =. i i i i i+ i Όταν i η ποσότητα τότε το θα είναι ίσο με ένα από τα, < < < < < και επομένως L ( ) =. i i+ i 8

9 Επομένως ( ) L = για i i = και ( ) L = για i. P ( ) = L ( ) f = L ( ) f + L ( ) f + + L ( ) f + + L ( ) f i i i i i= Με βάση τα παραπάνω ισχύει ότι: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) P = L f + L f + + L f + + L f = f i i P = L f + L f + + L f + + L f = f i i ( ) ( ) ( ) ( ) ( ) P = L f + L f + + L f + + L f = f i i i i i i i i ( ) ( ) ( ) ( ) ( ) P = L f + L f + + L f + + L f = f i i i Επομένως το προκύπτον πολυώνυμο P ( ) ικανοποιεί τις σχέσεις που ( ) P = f. i i 9

10 Παράδειγμα: Δίδονται τα δεδομένα f = f ( ) =, f = f ( ) =, f f ( ) = = 4 και να βρεθεί με τη μέθοδο Lagrage το πολυώνυμο παρεμβολής ης τάξης P = L f + L f + L f. ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) L ( ) = = = ( )( ) ( )( ) ( )( ) ( )( ) L ( ) = = = ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) L ( ) = = = ( ) P f f f ( ) = ( )( ) ( ) + ( ) ( ) P = + +

11 Έστω Παράδειγμα: Επιλέξτε αυθαίρετα µία συνάρτηση ( ) i, f( i). Στη συνέχεια, µε βάση τα επιλεγμένα ζευγάρια τιμών, βρείτε το πολυώνυμο παρεμβολής, 3 ης τάξης, εφαρμόζοντας παρεμβολή α) Lagrage και β) Newto. f 3 ( ) f και τέσσερα { } = + και τα αντίστοιχα ζεύγη τιμών {, 5 },{,7 },{ 5,9 },{ 9,46} α) Παρεμβολή Lagrage P( ) = f( ) L ( ) + f( ) L ( ) + f( ) L ( ) + f( ) L ( ) L L ( ) = ( ) = 3 3 ( )( )( 3) ( )( )( ) 3 ( )( )( 3) ( )( )( ) 3 P f ( ) = ( ) 3,, L ( ) = L ( ) = 3. ( )( )( 3) ( )( )( ) 3 ( )( )( ) ( )( )( ) β) Παρεμβολή Newto: Θα δώσει ακριβώς το ίδιο αποτέλεσμα.

12 Γραφική παράσταση της f( ) με τα σημεία παρεμβολής και του πολυωνύμου P( ) που 3 προέκυψε με τις παρεμβολές Lagrage και Newto. Σημειώνεται ότι στη περίπτωση αυτή λόγω της μοναδικότητας του πολυωνύμου παρεμβολής f ( ) P( ). 3

13 3.3 Μέθοδος κυβικών splies Αρχικά η μέθοδος περιγράφεται για την ειδική περίπτωση των 4 ( = 3) σημείων και στη συνέχεια γενικεύεται για + σημεία. Έστω τα δεδομένα: (,f ),(,f ),(,f ),( 3,f 3) Σε κάθε διάστημα, +, = 3,,, βρίσκουμε ένα πολυώνυμο παρεμβολής 3ης τάξης: S = a + b + c+ d, =,, (συνολικά άγνωστοι) έτσι ώστε να ισχύουν τα εξής: ( ) 3 Συνθήκη Α: S ( ) = f, S ( ) = f = S ( ), S ( ) = f = S ( ), ( ) Συνθήκη Β: S ( ) = S ( ), S ( ) = S ( ) Συνθήκη Γ: S ( ) = S ( ), S ( ) = S ( ) Θέτουμε αυθαίρετα (για να κλείσουμε το σύστημα): S ( ) =, S ( ) = 3 S = f 3 3 3

14 Ορίζουμε τις ποσότητες y = S ( ), y = S ( ) = S ( ), y = S ( ) = S ( ), y = S ( ) και h =, h =, h = 3, f = f f, f = f f, f = f3 f Αφού τα πολυώνυμα S ( ) είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S ( ) ης τάξης και επιλέγουμε να τα γράψουμε στη μορφή: S y y 3 3 θα είναι πολυώνυμα 3 ( ) = +, S ( ) = y + y, S ( ) = y + y h h h h 3 h h Με τη συγκεκριμένη επιλογή ικανοποιείται αυτόματα η συνθήκη Γ. y 3 y 3 S = + + c + d, =,,. 6h 6h + Ολοκληρώνουμε δύο φορές: ( ) ( + ) ( ) Βρίσκουμε τους άγνωστους συντελεστές c και d ικανοποιώντας τη συνθήκη Α. 4

15 y y S c d ( ) ( ) 3 ( ) 3 = + + +, S ( ) = f ( ) 6h 6h y y S c d S = f 3 3 ( ) = ( ) + ( ) + +, S ( ) = f ( ) 6h 6h y y S c d S = f 3 3 ( ) = ( ) + ( ) + +, S ( ) = f ( ) 3 6h 6h S = f 3 3 Αντικαθιστούμε τους συντελεστές c και d και προκύπτει: y 3 y 3 f yh f yh S = h 6h h 6 h 6 ( ) ( ) ( ) ( ) ( ) y y f yh f yh S 6h 6h h 6 h ( ) = ( ) + ( ) + ( ) + ( ) y y f yh f yh S 3 3 6h 6h h 6 h 6 ( ) ( ) 3 3 ( ) = + + ( ) + ( ) 5

16 Η συνθήκη Β δεν έχει ακόμη εφαρμοστεί. Επομένως παραγωγίζουμε τα ( ) ( ) ( ) S,S,S : y y f h S y y ( ) ( ) ( ) = + + ( ) h h h 6 y y f h S y y ( ) = ( ) + ( ) + ( ) h h h 6 y y f h S y y ( ) ( ) 3 ( ) = + + ( ) 3 3 h h h 6 Εφαρμόζεται η συνθήκη Β, δηλαδή S ( ) = S ( ), S ( ) S ( ) Προκύπτουν τα y και f 6 h ( h + h) y + hy = = : f h f f hy + h+ h y = 6 h h ( ) y τα οποία αντικαθιστούμε στις εκφράσεις για τα ( ) ( ) ( ) S,S,S. 6

17 Παράδειγμα: Να εφαρμοστεί η μέθοδος των κυβικών splies, στον παρακάτω πίνακα.5 f '.5 : δεδομένων ώστε να εκτιμηθούν οι τιμές των f ( ) και ( ) i f ( ) i Οι όροι h είναι: h = =., h = =., h = 3 =. Οι όροι Δf είναι: f = f f =.3365, f = f f =.96, f = f3 f =.48 f f ( h + h) h y h h Τριδιαγώνιο σύστημα ( y = y 3 = ): 6 h ( h h ) y + f f h h.4. y = y.488 = y = 5.39 και y =

18 Τα πολυώνυμα τα οποία αντιστοιχούν στα τρία υποδιαστήματα είναι: 3 ( ) = + + S ( ) = + S ( ) = + + S Για τον υπολογισμό της τιμής στο.5 αντιστοιχεί στο διάστημα [.,.3]. Τότε S (.5) =.36 και ( ) = επιλεγούμε το πολυώνυμο S ( ) S.5 =.984., το οποίο 8

19 Γραφική απεικόνιση των πολυωνύμων παρεμβολής με κυβικές Splies. 9

20 Γενίκευση: Έστω ότι έχουμε τα δεδομένα ( ) ένα πολυώνυμο παρεμβολής 3 ης τάξης ( ) Συνθήκη Α: ( ) S f Συνθήκη Β: S ( ) S ( ) Συνθήκη Γ: S ( ) S ( ),f με =,,,...,. Για κάθε διάστημα, + βρίσκουμε S, =,..., έτσι ώστε να ισχύουν τα παρακάτω: = =,,..., =, S ( ) f S( ) =, =,..., =, =,..., Ορίζουμε τις ποσότητες y S ( ) =, ( ) S f = =, =,..., ; h = +, f = f + f, =,..., Αφού τα πολυώνυμα S ( ) είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S ( ) ης τάξης και επιλέγουμε να τα γράψουμε στη μορφή θα είναι πολυώνυμα

21 S y y ( ) + = + +, =,..., h h Με τη συγκεκριμένη επιλογή ικανοποιείται αυτόματα η συνθήκη Γ. Ολοκληρώνουμε δύο φορές και βρίσκουμε ( ) y 3 y + 3 S ( ) = ( + ) + ( ) + c+ d 6h 6h S = f Εφαρμόζοντας τη συνθήκη Α δηλαδή S( ) = f και ( ) f h c y y h 6 S = f βρίσκουμε = ( + ) και d = ( y + y + ) f f h h 6

22 Αντικαθιστούμε τους συντελεστές c και d : y y f y h f yh S 6h 6h h 6 h ( ) ( ) 3 + ( ) + = ( ) + ( + ) Επομένως η μορφή των S ( ) που έχουν προκύψει έως τώρα ικανοποιεί τις συνθήκες Α και Γ. Βρίσκουμε τις ποσότητες y που παραμένουν ακόμα άγνωστες έτσι ώστε να ικανοποιείται και η συνθήκη Β. Παραγωγίζουμε μία φορά και έχουμε y y f h S y y h h h 6 + ( ) ( ) = + + ( ) + ( + ) Για να εφαρμόσουμε τη συνθήκη Β γράφουμε και την αντίστοιχη έκφραση y y f h S y y ( ) ( ) ( ) = + + ( ) h h h 6

23 Εξισώνουμε τις δύο εκφράσεις και μετά από κάποια επεξεργασία έχουμε το σύστημα f h f h yh + y y = yh + y y ( + ) ( ) h 3 h 3 που το ξαναγράφουμε στη μορφή τριδιαγωνίου συστήματος f f h y h h y hy = h h ( ) Για να κλείσει το σύστημα θέτουμε S ( ) S ( ) = =. Από την επίλυση του συστήματος προκύπτουν τα y, =,..., τα οποία αντικαθίστανται στις εκφράσεις S ( ), =,..., και προκύπτουν τα ζητούμενα πολυώνυμα παρεμβολής 3 ου βαθμού. 3

24 3.4 Μέθοδος ελαχίστων τετραγώνων Έστω ότι έχουμε τα δεδομένα ( ) όπου m( ) m,f με i,,..., i m i =. Ορίζουμε τις διαφορές d = f P ( ) i i m i P = a + a a το ζητούμενο πολυώνυμο παρεμβολής που προκύπτει ελαχιστοποιώντας την ποσότητα ( ) m ( ) ( ) i i m i i i m i S = d = f P = f a a... a i= i= i= Αυτό επιτυγχάνεται θέτοντας τις παραγώγους του S ως προς τους συντελεστές a m ίσες με το μηδέν και επιλύοντας το προκύπτον γραμμικό σύστημα. S m m = ( fi a a i... ami )( ) = ( ) a i= S = m ( f i a a i... ami )( i) = ( ) a i= S a + a a = f i m i i i= i= m a a i... ami i fii i= i= = m m = ( fi a a i... ami )( i ) = ( ) = a m i= a a... a f m m m i m i i i i i= i= 4

25 Το σύστημα των m + εξισώσεων ξαναγράφεται στη μορφή 3 m + i + i + i i m = i i= i= i= i= i= a a a a a f 3 m+ a i + i a+ i a i am = i fi i= i= i= i= i= 3 4 m+ i a + i a+ i a i am = i fi i= i= i= i= i=... m m+ m+ m m i a + i a+ i a i am = i fi i= i= i= i= i= Η μέθοδος συνήθως εφαρμόζεται για m <<. 5

26 Επίσης εναλλακτικά το σύστημα γράφεται στη μορφή Aa = F ή m i i... i a fi i= i= i= i= 3 m+ i i i... i a f i i i= i= i= i= i= = m m+ m+ m i i i... i am m i fi i= i= i= i= i= Αποδεικνύεται ότι η ορίζουσα του πίνακα των συντελεστών A είναι διάφορη του μηδενός και επομένως η λύση του συστήματος είναι μοναδική. 6

27 Απόδειξη μοναδικής λύσης για σύστημα εξισώσεων: ( A ) det = = = + = i i i i i i i i i= i= i= i= i= i= i= i= i i i i ( i i ) = + = + = + = i= i= i= i= i= i= i= ( ) = i Για περισσότερες από εξισώσεις απαιτείται η μελέτη του γενικού προβλήματος ύπαρξης και μοναδικότητας λύσης του λεγόμενου Γραμμικού Προβλήματος Ελαχίστων Τετραγώνων [Ακριβής και Δουγαλής, Κεφ.5, Παράγραφος 5.3]. 7

28 Επίσης, με βάση την θεωρία εύρεσης ελαχίστου μεγίστου συναρτήσεων πολλών μεταβλητών αποδεικνύεται ότι θέτοντας της πρώτες παραγώγους S / a i = ελαχιστοποιείται η συνάρτηση S. Απαιτείται ο υπολογισμός του εσσιανού πίνακα με στοιχεία τις μερικές παραγώγους S, i, =,...,. a i a S Εύκολα προκύπτει ότι = A i όπου A a i a i τα αντίστοιχα στοιχεία του πίνακα A. Επομένως, ο εσσιανός πίνακας είναι πραγματικός και συμμετρικός. Στη συνέχεια αποδεικνύεται ότι όλες οι ιδιοτιμές του εσσιανού πίνακα είναι θετικές και επομένως, ο εσσιανός πίνακας είναι θετικά ορισμένος. Άρα, σύμφωνα με σχετικό θεώρημα αφού ο εσσιανός πίνακας είναι θετικά ορισμένος, πράγματι θέτοντας S / a i = ελαχιστοποιείται η συνάρτηση S. 8

29 3 Παράδειγμα: Με βάση τη συνάρτηση f( ) = επιλέξτε δέκα ζευγάρια σημείων ( i, f( i) ) και εφαρμόστε παρεμβολή µε τη μέθοδο των ελαχίστων τετραγώνων μηδενικής, πρώτης και δεύτερης τάξης. Επιλέγονται τα εξής ζεύγη τιμών: {-, -4}, {, -5}, {.5, }, {.3,.66}, {3., 38.5}, {4.5, 34.5}, {5.8, 37.5}, {6., 38.4}, {7.9, 85.45}, {8.4,.33} 9

30 α) Πολυώνυμο μηδενικού βαθμού: P( ) = a, a fi i= =, P( ) = y Γραφική παράσταση του πολυωνύμου ου βαθμού (μπλε γραμμή) με ελάχιστα τετράγωνα. 3

31 β) Πολυώνυμο πρώτου βαθμού: P( ) = a + a a + a = f i i i= i= i + i = i i i= i= i= a a f y P ( ) = Γραφική παράσταση του πολυωνύμου ου βαθμού (μπλε γραμμή) με ελάχιστα τετράγωνα. 3

32 γ) Πολυώνυμο δεύτερου βαθμού: P( ) = a + a+ a a + a i + a i = fi i= i= i= 3 a i + a i + a i = f i i i= i= i= i= 3 4 a i + a i + a i = i fi i= i= i= i= a a a = a a a = a a + 9.5a = a = a = a = ( ) = P 3

33 y Γραφική παράσταση του πολυωνύμου ου βαθμού (μπλε γραμμή) με ελάχιστα τετράγωνα. 33

34 Παράδειγμα: Να εφαρμοσθεί η μέθοδος των ελάχιστων τετραγώνων στον πίνακα δεδομένων: i f ( ) i Επιλέγοντας πολυώνυμο ου βαθμού προκύπτει το σύστημα + i + i = i i= i= i= a a a f 3 i + i + i = i i i= i= i= i= a a a f 3 4 i + i + i = i i i= i= i= i= a a a f Επιλύεται το σύστημα και προκύπτουν οι συντελεστές a, a, a. Το πολυώνυμο παρεμβολής είναι P ( ) =

35 Επιλέγοντας πολυώνυμο 3 ου βαθμού προκύπτει το σύστημα 3 + i + i + i 3 = i i= i= i= i= a a a a f 3 4 a i + i a+ i a + i a3 = i fi i= i= i= i= i= i a + i a+ i a + i a3 = i fi i= i= i= i= i= i a + i a+ i a + i a3 = i fi i= i= i= i= i= Η συνάρτηση παρεμβολής είναι ( ) 3 P3 =

36 Παρεμβολή ελαχίστων τετραγώνων με πολυώνυμο ου (αριστερά) και 3 ου (δεξιά) βαθμού. 36

37 Εφαρμογή της μεθόδου ελαχίστων τετραγώνων σε διαστάσεις: Παράδειγμα: Δίδεται ο πίνακας δεδομένων: y Ζητείται το πολυώνυμο παρεμβολής y= a+ a + a με τη μέθοδο των ελαχίστων τετραγώνων. Ελαχιστοποιείται η ποσότητα ( ) S= d = f a a a i i i i i= i= 37

38 Πρέπει να επιλυθεί το γραμμικό σύστημα: S = S = S a a a = Μετά τη εύρεση των παραγώγων το σύστημα ξαναγράφεται στη μορφή i i yi i= i= i= a i i i i a = y i i i= i= i= i= a i i i i iyi i= i= i= i= a a = a 54 Επιλύεται το σύστημα και προκύπτουν οι άγνωστοι συντελεστές: a = 7, a 85 =, a =

39 85 7 y(, ) = Παρεμβολή ελαχίστων τετραγώνων με πολυώνυμο ου βαθμού σε δύο διαστάσεις. 39

40 Παράδειγμα: Παρεμβολή ελαχίστων τετραγώνων με εκθετικές συναρτήσεις βάσεις Με βάση τον παρακάτω πίνακα δεδομένων βρείτε με τη μέθοδο των ελαχίστων τετραγώνων f = c + ce τους συντελεστές της συνάρτησης παρεμβολής ( ) i 3 5 y 4 4 i ( i i ) 5 5 ( y i i c ce )( ) i= c i= S= y c ce S = = 5 S = i i ( y i c ce )( e ) = c i= 5 i ( ) ( i ) 5 5 c + e c = y i= i= i i i ( e ) c + ( e ) c = ( ye i ) i= i= i= 5c c = c c = c c = 3.5 =.33 Γενίκευση: ( ) m m = (αποδεικνύεται ότι η επιλογή των = f ce c είναι μοναδική). 4

41 Παράδειγμα: Τυπικά αποτελέσματα αριθμητικής παρεμβολής της συνάρτησης διάστημα [, 4]. 3 + f( ) = si 3 + e στο Newto ad Lagrage Cubic splies Least square methods 4

42 3.5 Παρεμβολή με ορθογώνια πολυώνυμα Εφαρμόζεται η μεθοδολογία των ελαχίστων τετραγώνων όπου οι συναρτήσεις βάσης είναι ορθογώνια πολυώνυμα (όχι μονώνυμα) και ΔΕΝ απαιτείται επίλυση αλγεβρικού συστήματος. Έστω ότι προσεγγίζεται µία συνάρτηση f( ) [ ab, ] μορφής: m ( ) Φ ( ) f c = µε ένα γραμμικό συνδυασμό της όπου οι συναρτήσεις βάσεις Φ ( ) είναι ορθογώνια πολυώνυμα στο [, ] b w( ) Φ ( ) Φ k( ) d =, k a b και ( ) ( ) ( ) ab, δηλαδή w Φ Φ k d = dk, = k a 4

43 Legedre P ( ): ορθογώνια στο διάστημα [,] με συνάρτηση βαρύτητας w( ) =. P ( ) =, P ( ) ( ) ( ) P P d m =, m =, P ( ) ( 3 ) =, P ( ) = P ( ) P ( ) και ( ) ( ) P P d m =, = m + Laguerre L ( ): ορθογώνια στο διάστημα [, ) με συνάρτηση βαρύτητας w( ) e L ( ) =, ( ) L ( ) ( ) e L Lm d =, m =. = +, L ( ) = +, L ( ) = ( ) L ( ) ( ) L ( ) 4 και ( ) ( ) ( ) Γ + e L Lm d =, = m! Σημείωση: οι συναρτήσεις Gamma με ακέραιες τιμές ορίζονται ως εξής: Γ ( ) t + = t e dt =! 43

44 Chebyshev T ( ): ορθογώνια στο διάστημα [,] με συνάρτηση βαρύτητας w( ) / T ( ) =, ( ) T =, T ( ) =, T ( ) = T ( ) T ( ) ( ) ( ) m T T d =, m m T T d π =, = m ( ) ( ) m T T d = π, = m= και ( ) ( ) Hermite H ( ): ορθογώνια στο διάστημα (, ) με συνάρτηση βαρύτητας ( ) H ( ) =, ( ) H ( ) ( ) e H H m d =, m =, H ( ) =, H ( ) = H ( ) ( ) H ( ) 4 και ( ) ( ) =. w = e. e H H m d = π!, = m 44

45 Ορίζεται τα υπόλοιπα r( ) f ( ) cφ ( ) m =, m = <<. Στη συνέχεια ελαχιστοποιείται η ποσότητα S = w( ) r ( ) d όπου ( ) συναρτήσεις βαρύτητας. Αναγκαίες συνθήκες για την ελαχιστοποίηση του S είναι b b m S = w( ) r ( ) d = w( ) f ( ) c Φ ( ) d = ck ck c a k a = b a w οι αντίστοιχες b = w( ) f ( ) c Φ ( ) d ( ) ( ) Φ ( ) Φk( ) a ck = m οι οποίες οδηγούν στο γραμμικό σύστημα b m = w f c d =, k m a = 45

46 b a m ( ) Φ ( ) Φ ( ) = ( ) Φ ( ) ( ) = k k a b w c d w f d, k m m ή b c w( ) Φ ( ) Φk( ) d = w( ) Φk( ) f ( ) d, k m = a a Το σύστημα είναι στη μορφή A b = b και επιλύεται για τους άγνωστους συντελεστές c. b Φ Φ k =, k a Εφαρμόζοντας τις σχέσεις ορθογωνιότητας w( ) ( ) ( ) d ανάγεται σε διαγώνιο πίνακα και οι συντελεστές προκύπτουν από τις σχέσεις, ο πίνακας A 46

47 c k b ( ) Φ ( ) ( ) w k f d b a = = w b ( ) k ( ) f ( ) d d Φ = k a w d a ( ) Φ ( ) Φ ( ) k k i k i i d k wφ ( ) f ( ), k m i= Παράδειγμα: Προσεγγίζεται με ορθογώνια πολυώνυμα Legedre στο διάστημα [,] η 3 + συνάρτηση f( ) = si 3 + e Έστω = + r( ) f ( ) c P ( ) c P( ) f( ) c P( ) c P( ) =, m= << ( ) ( ) ( ) ( ) όπου ( ) S = w f c P c P d w =. 47

48 Αναγκαίες συνθήκες για την ελαχιστοποίηση του S είναι S c S = = c r ( ) d f ( ) cp( ) cp( ) d S = = = c c c = c f ( ) cp( ) cp( ) d ( ) ( ) ( ) ( ) ( ) + ( ) ( ) = ( ) ( ) c P c P P d f P d = f c P c P P d= ( ) ( ) + ( ) ( ) = ( ) ( ) c = f ( ) d wf i ( i) c P P d c P P d f P d i= 48

49 r ( ) d f ( ) cp( ) cp( ) d S = = = c c c = c f ( ) cp( ) cp( ) d ( ) ( ) ( ) ( ) = f c P c P P d= ( ) + ( ) ( ) = ( ) ( ) c P c P P d f P d ( ) ( ) + ( ) ( ) = ( ) ( ) c P P d c P P d f P d 3 = c w f( ) i= i i i Αριθμητικά αποτελέσματα παίρνουμε εφαρμόζοντας αριθμητική ολοκλήρωση Gauss- Legedre. 49

50 Αποτελέσματα αριθμητικής παρεμβολής με ορθογώνια πολυώνυμα Legedre 3 + με = 7 και m = 4 της συνάρτησης f( ) = si στο διάστημα [,] : 3 + e f c P c P c P c P c P 4 3 ( ) = ( ) + ( ) + ( ) + 3 3( ) + 4 4( ) =

51 Ασκήσεις:. Έστω η συνάρτηση f ( ) = + 5. Με βάση τα σημεία =, = /3, = /3 και 3 S = S =. εφαρμόστε κυβικές splies και βρείτε τα πολυώνυμα Si ( ),,, i = με την υπόθεση ότι ( ) ( ) = και τις αντίστοιχες τιμές ( ) 3 f, i =,,,3 i. Μια εναλλακτική στρατηγική στη μέθοδο των κυβικών splies είναι να χρησιμοποιούνται στα πρώτα δύο υποδιαστήματα και στα δύο τελευταία υποδιαστήματα μόνο από ένα πολυώνυμο 3 ης τάξης. Με βάση αυτή τη προσέγγιση διατυπώστε την ελαφρά τροποποιημένη μαθηματική επεξεργασία ώστε να προκύψει το σύστημα των εξισώσεων για τον υπολογισμό των άγνωστων συντελεστών των πολυωνύμων 3 ης τάξης. 3. Έστω τα δεδομένα (, ),...,(, ) y ( ) = af ( ) + bg ( ) όπου f ( ) και ( ) y y. Διατυπώστε τη μέθοδο των ελαχίστων τετραγώνων για την εύρεση της συνάρτησης παρεμβολής g είναι γνωστές συναρτήσεις. 4. Ένα εικονικό πείραμα παράγει τα εξής τέσσερα ζεύγη δεδομένων y Να εκτιμηθεί η τιμή της y στο σημείο = με i) παρεμβολή Lagrage και ii) παρεμβολή κυβικών splies. 5

52 π π =,,. Με βάση τα σημεία π π =, =, = και τις αντίστοιχες τιμές f =, f =, f = εφαρμόστε παρεμβολή Lagrage και παρεμβολή κυβικών splies και βρείτε τα πολυώνυμα παρεμβολής. Σχολιάστε τα αποτελέσματά σας. 5. Έστω η συνάρτηση f ( ) si π π Λαμβάνοντας υπόψη ότι f = f = (επιπλέον δεδομένα) εφαρμόστε τη μέθοδο παρεμβολής κυβικών splies ελαφρώς τροποποιημένη και βρείτε τα πολυώνυμα παρεμβολής. Σχολιάστε τα αποτελέσματά σας ως προς τη σημαντικότητα των επιπλέον δεδομένων. Προτείνετε επιγραμματικά τρόπους βελτίωσης των παραπάνω αποτελεσμάτων Το ιξώδες του νερού µ ( Ns/m ) σε διάφορες θερμοκρασίες T ( o C) δίδεται στον παρακάτω πίνακα: T 5 3 µ Εφαρμόστε τη μέθοδο των ελαχίστων τετραγώνων και βρείτε ένα γραμμικό πολυώνυμο παρεμβολής της μορφής: µ ( T ) = at + b 7. Ο πληθυσμός μιας μικρής κοινότητας έχει αυξηθεί ραγδαία τα τελευταία χρόνια σύμφωνα με τα εξής δεδομένα: t 5 5 p Εφαρμόστε ένα εκθετικό μοντέλο παρεμβολής και εκτιμήστε τον πληθυσμό της κοινότητας μετά από 5 έτη ( t = 5). 5

53 8. Θεωρείστε το εξής πρόβλημα παρεμβολής: Έστω ότι,,..., είναι διακριτοί πραγματικοί αριθμοί και y, y,..., y τα αντίστοιχα δεδομένα. Η συνάρτηση παρεμβολής είναι f( ) = ce = έτσι ώστε ( ) f = y, i =,,...,. Στη συνέχεια με βάση τον πίνακα δεδομένων i i i 3 5 y 4 4 i βρείτε με τη μέθοδο των ελαχίστων τετραγώνων τους συντελεστές της συνάρτησης παρεμβολής ( ) f = c + ce 9. Να βρεθούν με τη μέθοδο των κυβικών splies για τα δεδομένα 4 9 f ( ) οι τιμές παρεμβολής της f ( ) στα σημεία, 7 και 7. Σχολιάστε την ακρίβεια των αποτελεσμάτων.. Δίδεται ο πίνακας δεδομένων: y Βρείτε το πολυώνυμο παρεμβολής y= a+ a + a με τη μέθοδο των ελαχίστων τετραγώνων 53

54 . Να βρεθεί με πολυωνυμική παρεμβολή η συνάρτηση που προσεγγίζει την y ( ) = + 5 στο διάστημα [, ] χρησιμοποιώντας σημεία παρεμβολής που απέχουν μεταξύ τους α) ίσες και β) όχι ίσες αποστάσεις. Στη δεύτερη περίπτωση να χρησιμοποιηθούν ως σημεία παρεμβολής οι ρίζες του πολυωνύμου Chebyshev. Επίσης, να εφαρμοστεί η μέθοδος των κυβικών splies. 54

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

x,f με j 012,,,...,n x,x S x f S x είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S x S x y y Μέθοδος κυβικών splines: Έστω ότι έχουμε τα δεδομένα

x,f με j 012,,,...,n x,x S x f S x είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S x S x y y Μέθοδος κυβικών splines: Έστω ότι έχουμε τα δεδομένα Μέθοδος κυβικών sples: Έστω ότι έχουμε τα δεδομένα,f με,,,...,,. Για κάθε διάστημα βρίσκουμε ένα πολυώνυμο παρεμβολής 3 ης τάξης S,,..., έτσι ώστε να ισχύουν τα παρακάτω: Συνθήκη Α: S f, S f S Συνθήκη

Διαβάστε περισσότερα

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή Κεφ. 4: Ολοκλήρωση 4. Εισαγωγή 4. Εξισώσεις ολοκλήρωσης Newto Cotes 4.. Κανόνας τραπεζίου 4.. Πρώτος και δεύτερος κανόνας Simpso 4.. Πολλαπλά ολοκληρώματα 4. Ολοκλήρωση Gauss 4.. Πολυώνυμα Legedre, Chebyshev,

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. x x

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. x x ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, --, ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ Βαρούτης Ποια είναι η γενική μορφή των πολυωνύμων παρεμβολής των μεθόδων Newto και grge; Τα πολυώνυμα παρεμβολής

Διαβάστε περισσότερα

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή Κεφ. 5: Ολοκλήρωση 5. Εισαγωγή 5. Εξισώσεις ολοκλήρωσης Newto Cotes 5.. Κανόνας τραπεζίου 5.. Πρώτος και δεύτερος κανόνας Smpso 5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) 5. Ολοκλήρωση Gauss 5..

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ, --6 Επιμέλεια λύσεων: Γιώργος Τάτσιος Άσκηση [] Επιλύστε με μία απευθείας μέθοδο διατηρώντας τρία σημαντικά ψηφία σε

Διαβάστε περισσότερα

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή Κεφ. 5: Ολοκλήρωση 5. Εισαγωγή 5. Εξισώσεις ολοκλήρωσης Newto Cotes 5.. Κανόνας τραπεζίου 5.. Πρώτος και δεύτερος κανόνας Smpso 5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) 5. Ολοκλήρωση Gauss 5..

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

f x και τέσσερα ζευγάρια σημείων

f x και τέσσερα ζευγάρια σημείων ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 014 015, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 1 11 014 Ημερομηνία παράδοσης εργασίας: 18 11 014 Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

Interpolation (1) Τρίτη, 3 Μαρτίου Σελίδα 1

Interpolation (1) Τρίτη, 3 Μαρτίου Σελίδα 1 Iterpolatio () Τρίτη, 3 Μαρτίου 05 9:46 πμ 05.03.03 Σελίδα 05.03.03 Σελίδα 05.03.03 Σελίδα 3 05.03.03 Σελίδα 4 05.03.03 Σελίδα 5 05.03.03 Σελίδα 6 05.03.03 Σελίδα 7 05.03.03 Σελίδα 8 05.03.03 Σελίδα 9

Διαβάστε περισσότερα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

Παράδειγμα #6 ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγμα #6 ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Παράδειγμα # ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να γίνει σύγκριση των μεθόδων παρεμβολής Newton και agrange: Απάντηση: Παρεμβολή Newton: N ( ) ( )( ) ( ) P a a a a () N Παρεμβολή agrange:

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas)..

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων Κεφ. : Επίλυση συστημάτων εξισώσεων. Επίλυση εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas).. Νόρμες πινάκων,

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή . Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU ειδικές περιπτώσεις: Cholesky, Thomas..

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου

Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου Τελευταία ενηµέρωση: 4 Ιανουαρίου 8 Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο 6-7 -- Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου Οδηγίες για την 6 η άσκηση της 6 ης εργασίας

Διαβάστε περισσότερα

2.1 Αριθμητική επίλυση εξισώσεων

2.1 Αριθμητική επίλυση εξισώσεων . Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Αν θεωρήσουμε την ^5h εξίσωση ως προς x και εκτελέσουμε τις πράξεις προκύπτει:

Αν θεωρήσουμε την ^5h εξίσωση ως προς x και εκτελέσουμε τις πράξεις προκύπτει: Οι προσεγγίσεις στον νόμο αραιώσεως του Ostld Η μελέτη των προσεγγίσεων προϋποθέτει τη μελέτη χωρίς προσεγγίσεις. Από μαθηματικής σκοπιάς είτε έχουμε διάλυμα ασθενούς οξέος είτε διάλυμα ασθενούς βάσης

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Προσέγγιση και Ομοιότητα Σημάτων Επιμέλεια: Πέτρος Π. Γρουμπός Καθηγητής Γεώργιος Α. Βασκαντήρας Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή 4. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, Αυγούστου 00 Θέμα. (μονάδες.5) α) [μονάδες: 0.5] Υπολογίστε

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 7: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Να βρεθεί το πολυώνυμο παρεμβολής Lagrage για τα σημεία (, ), (, ) και (4, ) Λύση: Για τα σημεία x, x, x 4, y, y, y υπολογίζουμε x x x x () x x x x x x 4 L

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουλίου Θέμα ( μονάδες) 4 Θεωρούμε τον Ευκλείδειο χώρο και τον υποχώρο του V που παράγεται

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Στην πράξη, για πολύ σημαντικές εφαρμογές, γίνονται μετρήσεις τιμών μιας ποσότητας σε μια κλινική, για μια σφυγμομέτρηση,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Άνοιξη 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ 1. Τι σημαίνει f ; f 2 ; f 1 ; Να υπολογισθούν αυτές οι ποσότητες για f(x)=(x-α) 3 (β-x) 3, α

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle. Κατηγορία η Συνθήκες θεωρήματος Rolle Τρόπος αντιμετώπισης:. Για να ισχύει το θεώρημα Rolle για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ) πρέπει:

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

9 Πολυώνυμα Διαίρεση πολυωνύμων

9 Πολυώνυμα Διαίρεση πολυωνύμων 4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε

Διαβάστε περισσότερα

P m (x)p n (x)dx = 2 2n + 1 δn m. P 1 (x) = x. P 2 (x) = 1 2 (3x2 1) P 3 (x) = 1 2 (5x3 3x) P 4 (x) = 1 8 (35x4 30x 2 + 3)

P m (x)p n (x)dx = 2 2n + 1 δn m. P 1 (x) = x. P 2 (x) = 1 2 (3x2 1) P 3 (x) = 1 2 (5x3 3x) P 4 (x) = 1 8 (35x4 30x 2 + 3) ΠΟΛΥΩΝΥΜΑ LEGENDRE Τα πολυώνυμα Legendre P n (x είναι ορθογώνια πολυώνυμα στο διάστημα [ 1, +1], με συνάρτηση βάρους την w(x = 1, άρα ισχύει: +1 1 P m (xp n (xdx = 2 2n + 1 δn m Τα επτά πρώτα πολυώνυμα

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 6-7, 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. Επιλέξτε αυθαίρετα µία συνάρτηση ( x και τέσσερα ζευγάρια σημείων ( x, ( x, έτσι ώστε τα σημεία x να μην

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Οι συναρτήσεις που θα διαπραγματευτούμε θεωρούνται ότι είναι ολοκληρώσιμες με την έννοια που καθόρισε ο Riemann. Η συνάρτηση

Οι συναρτήσεις που θα διαπραγματευτούμε θεωρούνται ότι είναι ολοκληρώσιμες με την έννοια που καθόρισε ο Riemann. Η συνάρτηση . Αριθμητική ολοκλήρωση Η αριθμητική ολοκλήρωση αφορά την εύρεση της τιμής ενός ορισμένου ολοκληρώματος. Η αρχή αυτής της προσπάθειας ανάγεται στην αρχαιότητα και ένα παράδειγμα είναι ο διαμερισμός (quadrature)

Διαβάστε περισσότερα

ΑΡΙΣΤΕΣ ΤΙΜΕΣ ΚΑΙ ΑΚΡΟΤΑΤΕΣ ΤΙΜΕΣ

ΑΡΙΣΤΕΣ ΤΙΜΕΣ ΚΑΙ ΑΚΡΟΤΑΤΕΣ ΤΙΜΕΣ ΑΡΙΣΤΕΣ ΤΙΜΕΣ ΚΑΙ ΑΚΡΟΤΑΤΕΣ ΤΙΜΕΣ Κοινό κριτήριο επιλογής µεταξύ εναλλακτικών τρόπων παραγωγής είναι η µεγιστοποίηση (κέρδος ήηελαχιστοποίηση (κόστος κάποιου µεγέθους. Αυτά τα προβλήµατα µεγιστοποίησης

Διαβάστε περισσότερα

lnx ln x ln l x 1. = (0,1) (1,7].

lnx ln x ln l x 1. = (0,1) (1,7]. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος 9/8/6 Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Να υπολογισθούν τα ακρότατα της συνάρτησης: y y y y 3 (, ) 3 3 3 Πεδίο ορισμού της συνάρτησης είναι το Υπολογίζουμε

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

a n = 3 n a n+1 = 3 a n, a 0 = 1

a n = 3 n a n+1 = 3 a n, a 0 = 1 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13 Γραμμική Άλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/2014 1 / 13 Εισαγωγή Τι έχουμε μάθει; Στο πρώτο μάθημα Γραμμικής Άλγεβρας

Διαβάστε περισσότερα

Περιεχόμενα μεθόδευση του μαθήματος

Περιεχόμενα μεθόδευση του μαθήματος Περιεχόμενα μεθόδευση του μαθήματος. Πως ορίζεται η έννοια. Το όριο. To f() f() ; f() εφόσον υπάρχει είναι μονοσήμαντα ορισμένο; εξαρτιέται από τα άκρα α, β των ( α, ) και (, β ) ;. Πως ορίζονται τα πλευρικά

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #4: ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. με το πολυώνυμο παρεμβολής Lagrange 2 ης τάξης

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #4: ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. με το πολυώνυμο παρεμβολής Lagrange 2 ης τάξης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 6-7, 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. Διατυπώστε τον 1 ο κανόνα ολοκλήρωσης Smpson b f ( xdx ) ( 1 3 f f f ) a, αντικαθιστώντας τη συνάρτηση f

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

Κεφάλαιο 1 Συστήματα γραμμικών εξισώσεων

Κεφάλαιο 1 Συστήματα γραμμικών εξισώσεων Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Γραμμική Άλγεβρα Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών

Διαβάστε περισσότερα

Συνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, )

Συνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) Κατηγορία η Συνθήκες ΘΜΤ Τρόπος αντιμετώπισης: Για να ισχύει το ΘΜΤ για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ( a) '( ) ) πρέπει: a Η συνάρτηση

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. ρ ρμ

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. ρ ρμ 569: Υπολογιστικές Μέθοδοι για Μηχανικούς Παρεμβολή Προσαρμογή ρ ρμ http://ecouseschemegtug/couses/computtol_methods_fo_egees/ Παρεµβολή Προσαρμογή Παρεµβολή tepolto είναι η διαδικασία µε την οποία βρίσκεται

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 5 Προσέγγιση Συναρτήσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 5 1 / 55 Παρεµβολή Ας υποθέσουµε ότι δίνονται

Διαβάστε περισσότερα

Κεφάλαιο 0: Εισαγωγή

Κεφάλαιο 0: Εισαγωγή Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς.

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. 569: Υπολογιστικές Μέθοδοι για Μηχανικούς Παρεμβολή ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Παρεµβολή Παρεµβολή interpoltion είναι η διαδικασία µε την οποία βρίσκεται µία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ. Εστω f πραγµατική συνάρτηση, της οποίας είναι γνωστές µόνον οι τιµές f(x i ) σε n+1 σηµεία xi

ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ. Εστω f πραγµατική συνάρτηση, της οποίας είναι γνωστές µόνον οι τιµές f(x i ) σε n+1 σηµεία xi ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ 5 Πολυωνυµική παρεµβολή Εστω f πραγµατική συνάρτηση της οποίας είναι γνωστές µόνον οι τιµές f(x ) σε + σηµεία x = του πεδίου ορισµού της Το πρόβληµα εύρεσης µιας συνάρτησης φ (από

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 7

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 7 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 7 Πάτρα 2008 Τοποθέτηση Επιλογή πόλων Θεωρούμε ένα (Σ)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

3.""Πώς"θα"λύσω"μια"εξίσωση"δευτέρου"βαθμού;

3.Πώςθαλύσωμιαεξίσωσηδευτέρουβαθμού; 3.""Πώς"θα"λύσω"μια"εξίσωση"δευτέρου"βαθμού; Βασικό! Το να έχεις τον άγνωστο x με εκθέτη 2 εξ αρχής στην εξίσωση, δεν είναι σίγουρο ότι θα δώσει εξίσωση δευτέρου βαθμού! Αυτό θα προκύψει μετά την εκτέλεση

Διαβάστε περισσότερα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που

Διαβάστε περισσότερα

Εύρεση της n-οστής δύναμης ενός πίνακα εϕαρμόζοντας το θεώρημα των Cayley-Hamilton

Εύρεση της n-οστής δύναμης ενός πίνακα εϕαρμόζοντας το θεώρημα των Cayley-Hamilton Εύρεση της n-οστής δύναμης ενός πίνακα εϕαρμόζοντας το θεώρημα των Cayley-Hamilton Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. 3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. Στην εισαγωγή δείξαμε ότι η διαφορική εξίσωση του γραμμικού, χρονικά αναλλοίωτου συστήματος μιας εισόδου μιας εξόδου με διαφορική εξίσωση

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης

Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης 8 Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμός Έστω μια συνάρτηση f ορισμένη σε διάστημα Δ. Ονομάζουμε αρχική συνάρτηση ή παράγουσα της f στο Δ, μια συνάρτηση F παραγωγίσιμη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας

Διαβάστε περισσότερα