ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών



Σχετικά έγγραφα
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

HY118- ιακριτά Μαθηµατικά

εσµευµένες Πιθανότητες-Λυµένα Παραδείγµατα 3. Επιλέγουµε έναν που δεν είναι άνεργος. Ποια είναι η πιθανότητα να είναι πτυχιούχος; = 0.

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

(1) 98! 25! = 4 100! 23! = 4

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης. Λύσεις εύτερης Σειράς Ασκήσεων

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ. Νίκος Μυλωνάς Βασίλης Παπαδόπουλος. Βοήθηµα διδάσκοντα

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9

Θεωρία Πιθανοτήτων και Στατιστική

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

(365)(364)(363)...(365 n + 1) (365) k

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

(1) 98! 25! = 4 100! 23! = 4

Συνδυαστική. Σύνθετο Πείραµα. Πείραµα. 19 -Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Τρίτη, 19/04/2016

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων.

3.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ. 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

Υπολογιστικά & Διακριτά Μαθηματικά

Στατιστική ΙΙ Ενότητα 2: ειγµατοληψία

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

8. Τεχνικές απαϱίϑµησης

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ

5.2 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝ ΕΧΟΜΕΝΑ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

1.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα

Συνδυαστική Απαρίθµηση

1.1 Πείραμα Τύχης - δειγματικός χώρος

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

Πρόχειρες σηµειώσεις στις Πιθανότητες

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1.

P (D) = P ((H 1 H 2 H 3 ) c ) = 1 P (H 1 H 2 H 3 ) = 1 P (H 1 )P (H 2 )P (H 3 )

ΙΙΙ εσµευµένη Πιθανότητα

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βασικά στοιχεία της θεωρίας πιθανοτήτων

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

3/10/2016. Στατιστική Ι. 1 η Διάλεξη

Βιομαθηματικά BIO-156

ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων)

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Σηµειώσεις στη Θεωρία Πιθανοτήτων

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

στατιστική θεωρεία της δειγµατοληψίας

1.7 Διατάξεις 1. Στην ελληνική βιβλιογραφία επικρατεί ο συμβολισμός. Permutations

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

Συνδυαστική. Που το πάµε. Πείραµα Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Πέµπτη, 21/4/2016

Συνδυαστική Ανάλυση. Υπολογισμός της πιθανότητας σε διακριτούς χώρους με ισοπίθανα αποτελέσματα:

Τυχαίες Μεταβλητές Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΠΙΘΑΝΟΤΗΤΕΣ. 8. * Αν Ω είναι ο δειγµατικός χώρος ενός πειράµατος τύχης,

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

P (Ηρ) = 0.4 P (Αρ) = 0.32 P (Απ) = 0.2

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

Θεωρία Πιθανοτήτων & Στατιστική

Βασικά στοιχεία της θεωρίας πιθανοτήτων

Στατιστική Εισαγωγικές Έννοιες

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση Μεταθέσεις

8 Άρα η Ϲητούµενη πιθανότητα είναι

Περιεχόµενα. Πρόλογος Ιστορική εξέλιξη της πιθανοκρατικής αντίληψης... 13

Επιπλέον Ασκήσεις ΤΟ ΠΡΟΒΛΗΜΑ ΤΩΝ ΣΥΝΑΝΤΗΣΕΩΝ

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

Θεωρία Πιθανοτήτων & Στατιστική

Ασκήσεις στην διωνυμική κατανομή

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Πέµπτη, 22 Μαΐου 2008 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

Συνδυαστική Απαρίθμηση

Δειγματικές Κατανομές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

επιτροπή πρόεδρος k, ( k = 1, 2,..., m)

Transcript:

Τµ. Επιστήµης των Υλικών

Χώρος Πιθανότητας Συµµετρικός Χώρος Πιθανότητας 1 Θεωρούµε ότι ο δειγµατοχώρος Ω είναι πεπερασµένος, Ω= {ω 1,ω 2,...,ω n }. 2 Κάθε δειγµατοσηµείο έχει τις ίδιες ευκαιρίες εµφάνισης (ή πραγµατοποίησης), τότε πλήθος των ευνοϊκών περιπτώσεων πραγµατοποίησης του A P(A) =. πλήθος των σηµείων του δειγµατοχώρου Η τριάδα (Ω, A, P) ονοµάζεται συµµετρικός χώρος πιθανότητας. Παράδειγµα 1 ιαθέτουµε ένα συµµετρικό Ϲάρι και ένα αµερόληπτο νόµισµα, τα οποία ϱίχνουµε µια ϕορά. Να υπολογιστούν οι πιθανότητες των παρακάτω γεγονότων. A = {εµφανίζεται Κ στο νόµισµα}. B = {ο αριθµός που εµφανίζεται στο Ϲάρι είναι 3}. A B, A B, A c, B c.

Προσθετικό Θεώρηµα A, B ενδεχόµενα όχι ξένα µεταξύ τους, τότε P(A B) = P(A)+P(B) P(A B). Γενίκευση. P(A B Γ) = P(A)+P(B)+P(Γ) P(A B) P(A Γ) P(B Γ)+P(A B Γ). Παράδειγµα 2 Τρεις εφηµερίδες Α, Β και Γ εκδίδονται σε µία πόλη και έχει εκτιµηθεί ότι το 20% διαβάζουν την εφηµερίδα Α, 16% την εφηµερίδα Β, 14% διαβάζουν την εφηµερίδα Γ, 8% διαβάζουν τις εφηµερίδες Α και Β, 5% διαβάζουν τις εφηµερίδες Α και Γ, 4% διαβάζουν τις εφηµερίδες Β και Γ, ενώ 2% διαβάζουν και τις 3 εφηµερίδες. Ποιο ποσοστό από τον παραπάνω πληθυσµό διαβάζει τουλάχιστον µια εφηµερίδα;

Βασική Αρχή Απαρίθµησης Εστω ότι ϑέλουµε να εκτελέσουµε ένα έργο Τ και το έργο εκτελείται σε κάποιες ϐαθµίδες, οι οποίες ϐαθµίδες εκτελούνται σε υποέργα, T j, j = 1, 2,...,k και κάθε υποέργο µπορεί να εκτελεστεί κατά n j τρόπους j = 1, 2,..., k. Ο συνολικός αριθµός των διαφορετικών τρόπων εκτέλεσης είναι, n 1 n 2... n k. Παράδειγµα 3 Ενα µενού εστιατορίου αποτελείται από το ορεκτικό, την σαλάτα, το κυρίως πιάτο και το επιδόρπιο. Στον κατάλογο ενός εστιατορίου υπάρχουν 7 είδη ορεκτικών, 5 διαφορετικές σαλάτες, 6 κυρίως πιάτα και 4 διαφορετικά επιδόρπια, τότε τα διαφορετικά µενού που µπορούν να δηµιουργηθούν από αυτόν τον κατάλογο ϑα είναι 7 5 6 4.

ειγµατοληψία Ορισµός ιαθέτουµε µία κάλπη, η οποία περιέχει n πανοµοιότυπα σφαιρίδια και κάθε σφαιρίδιο ϕέρει έναν αριθµό από το 1, 2,...,n. Θέλουµε να πάρουµε k σφαιρίδια για να δούµε πόσες οµάδες µπορούµε να σχηµατίσουµε. Η λήψη σφαιριδίων από την κάλπη ονοµάζεται δειγµατοληψία. Τα k σφαιρίδια που πήραµε σχαηµατίζουν ένα δείγµα µεγέθους k. Χωρίς Επανατοποθέτηση ειγµατοληψία Με ιάταξη Χωρίς ιάταξη Με Επανατοποθέτηση Χωρίς Επανατοποθέτηση Με Επανατοποθέτηση

ειγµατοληψία Θεώρηµα 1 ( ιατεταγµένα δείγµατα) Εστω ότι παίρνουµε από την κάλπη k σφαιρίδια, τότε 1 Το πλήθος των k διατεταγµένων δειγµάτων χωρίς επανατοποθέτηση ϑα δίνεται από τη σχέση (n) k = n(n 1)...(n k + 1). Αν k = n, τότε (n) n = n! και έχουµε µετάθεση. 2 Το πλήθος των k διατεταγµένων δειγµάτων µε επανατοποθέτηση ϑα δίνεται από τη σχέση Παράδειγµα4 Ο αριθµός της πινακίδας κυκλοφορίας ενός αυτοκινήτου σχηµατίζεται χρησιµοποιώντας 3 γράµµατα και 4 ψηφία µε τη σειρά αυτή. Πόσες πινακίδες κυκλοφορίας µπορούν να δηµιουργηθούν; n k.

ειγµατοληψία Θεώρηµα 2 (Μη ιατεταγµένα δείγµατα) Εστω ότι παίρνουµε από την κάλπη k σφαιρίδια, τότε 1 Το πλήθος των k µη διατεταγµένων δειγµάτων χωρίς επανατοποθέτηση ϑα δίνεται από τη σχέση ( n (n) k k! = n! k!(n k)! = 2 Το πλήθος των k µη διατεταγµένων δειγµάτων µε επανατοποθέτηση ϑα δίνεται από τη σχέση ( n + k 1 k ). k ). Παράδειγµα5 Μέσα σε µια κάλπη έχω τρία αριθµηµένα σφαιρίδια ({1, 2, 3}). Με πόσους διαφορετικούς τρόπους µπορώ να πάρω 2 σφαιρίδια από αυτήν την κάλπη;

Αρχή της Προσθετικότητας Εστω ότι έχουµε ένα γεγονός A 1 και υπάρχουν r 1 επιλογές για την εκτέλεση του γεγονότος. Οµοίως, ένα γεγονός A 2 µε r 2 επιλογές. ένα γεγονός A 3 µε r 3 επιλογές. ένα γεγονός A k µε r k επιλογές. Τότε ο συνολικός αριθµός εκτέλεσης του A 1 ή A 2 ή... ή A k είναι r 1 + r 2 +...+r k.