ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10



Σχετικά έγγραφα
ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Τάξη A Μάθημα: Άλγεβρα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου

(α > β και γ > δ)=> αγ > βδ. τύπο S. άνισες. Δίνεται η συνάρτηση f με τύπο f( χ )= y j x »/ Ç + 3. παρακάτω προτάσεις: ΜΟΝΑΔΕΣ 2x5=10

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 1.Δίνεται η εξίσωση f x x 4x. Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ. Ηµεροµηνία: Κυριακή 17 Απριλίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς

1, 2, Β 3, 2,λ. 7, να 2 βρείτε την τιμή του k. x x y y Α)Να βρείτε τις τιμές των x,y για τις οποίες ορίζεται η παράσταση. Β)Να αποδείξετε ότι Α=-1

B= πραγματοποιείται τουλάχιστον ένα από τα ενδεχόμενα Α και Β ii) B = πραγματοποιούνται ταυτόχρονα τα ενδεχόμενα Β και Γ iii)

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ της Α ΛΥΚΕΙΟΥ

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ 1. Να λυθούν οι ανισώσεις: i) 2x 1 5

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

1 η δεκάδα θεµάτων επανάληψης

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

Εισαγωγή στα ΣΥΝΟΛΑ. Ε.1 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Α), αν είναι αληθείς ή με (Ψ), αν είναι ψευδής

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

4 η δεκάδα θεµάτων επανάληψης

Άλγεβρα Α Λυκείου Επαναληπτικές ασκήσεις

Σας εύχομαι καλή μελέτη και επιτυχία.

) = 0. Λύσεις/Ρίζες της εξίσωσης. Ακριβώς δύο άνισες πραγματικές λύσεις, τις: Η εξίσωση δεν έχει πραγματικές λύσεις

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

x y z xy yz zx, να αποδείξετε ότι x=y=z.

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α - Β ΛΥΚΕΙΟΥ 1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

Ω = { ω 1, ω 2,, ω ν } Δηλαδή το ενδεχόμενο Α είναι ένα υποσύνολο του δειγματικού χώρου Ω. Α Ω

1η έκδοση Αύγουστος2014

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

3 η δεκάδα θεµάτων επανάληψης

4 η δεκάδα θεµάτων επανάληψης

Ορισμένες σελίδες του βιβλίου

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Άλγεβρα Α Λυκείου

Άλγεβρα Α Λυκείου. Αξίζει να τονίσω ότι οι περισσότερες από τις ασκήσεις αυτές προήλθαν από διάφορα εξωσχολικά βιβλία και ιστοσελίδες συναδέλφων.

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

ΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ

Κ Ε Φ Α Λ Α Ι Ο 2 ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. 2.1 Οι Πράξεις και οι Ιδιότητές τους. 2.2 Διάταξη Πραγματικών Αριθμών

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» stvrentzou@gmail.com

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΘΕΜΑ 2. 1 x < 4. (Μονάδες 9) 2. α) Να λύσετε την ανίσωση: β) Να λύσετε την ανίσωση: x (Μονάδες 9)

α έχει μοναδική λύση την x α

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 4 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

Οι Ασκήσεις της Α Λυκείου

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Τ ρ α π ε ζ α Θ ε μ α τ ω ν

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι

Πραγματικοί αριθμοί. Κεφάλαιο Οι πράξεις και οι ιδιότητές τους. = 2. Να υπολογίσετε

Transcript:

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη α Ισχύει ότι α α, για κάθε πραγματικό αριθμό α β Η εξίσωση αx + βx + γ = 0, α 0 έχει δύο ρίζες άνισες αν Δ < 0 γ Η απόσταση δύο αριθμών α και β στον άξονα x x είναι d(α, β)= α β δ Το σύνολο των πραγματικών αριθμών x με α < x < β λέγεται κλειστό διάστημα από α μέχρι β και συμβολίζεται [α, β] ε Η γραφική παράσταση μιας συνάρτησης μπορεί να έχει το πολύ ένα κοινό σημείο με κάθε κατακόρυφη ευθεία x= 0 A Έστω η εξίσωση αx + βx + γ = 0, α 0 που έχει πραγματικές ρίζες x,x Να αποδείξετε ότι: α x x β + = α β x x γ = α A3 Τι λέγεται συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β; ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη α Η απόσταση των αριθμών α και β ισούται με α+β

β Το τριώνυμο αx + βx + γ α 0 με > 0 και x, x ρίζες, είναι ετερόσημο του α, μόνο για τις τιμές του x που βρίσκονται μεταξύ των ριζών γ Αν ρ R με ρ> 0 και x R, τότε ισχύει η ισοδυναμία: x < ρ ρ<x<ρ δ Για κάθε πραγματικό αριθμό α και φυσικό αριθμό ν ισχύει: ν μ α = ε H ευθεία y=αx + β με α>0 σχηματίζει αμβλεία γωνία με τον άξονα x x νμ A Αν α,β 0, να αποδείξετε την ισότητα: A3 Να δώσετε τον ορισμό της αριθμητικής προόδου ΘΕΜΑ A 3 Α Να συμπληρωθούν οι παρακάτω ισότητες: α ν α ν β= ν α β x= 0 Μονάδες 0 i α ν =, όπου α ν είναι ο ν-οστός όρος αριθμητικής προόδου, α o πρώτος όρος και ω η διαφορά της προόδου ii d(α, β) = Μονάδες x=4 Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη i Αν α 0, η εξίσωση α x = 0 είναι αδύνατη ii Τρεις αριθμοί α, β, γ είναι διαδοχικοί όροι αριθμητικής προόδου αν και μόνο αν ισχύει β = α + γ iii Η ευθεία y = αx + β έχει κλίση λ = β Μονάδες 3x=6 A3 Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ισχύει P(A ) = P(A) Μονάδες 0 A4 Να γράψετε τον ορισμό της απόλυτης τιμής ενός πραγματικού αριθμού α

3 ΘΕΜΑ A 4 Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη i Η εξίσωση ii μ ν α= μ+ν ν x =α, με α < 0 και ν άρτιο φυσικό αριθμό, είναι αδύνατη α για κάθε α 0 και μ, ν θετικοί ακέραιοι iii d(α,β) = α +β όπου d(α, β) η απόσταση των αριθμών α και β iv Το τριώνυμο αx + βx + γ, α 0 γίνεται ομόσημο του α, μόνο όταν Δ>0 και για τις τιμές του x που βρίσκονται μεταξύ των ριζών v Αν Δ>0, τότε αx + βx + γ = α(x x )(x x ), όπου x, x οι ρίζες του τριωνύμου x=0 A Να αποδείξετε ότι για οποιουσδήποτε πραγματικούς αριθμούς α, β ισχύει αβ=α β Μονάδες 0 A3 Να αποδείξετε ότι αν τρεις αριθμοί α, β, γ είναι διαδοχικοί όροι α+γ αριθμητικής προόδου τότε ισχύει: β= ΘΕΜΑ A 5 Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη α Για κάθε x R ισχύει x = x β Η εξίσωση 0x = β είναι αδύνατη για κάθε β R γ Αν η διακρίνουσα ενός τριωνύμου είναι αρνητική τότε το τριώνυμο είναι θετικό για κάθε x R δ Αν α, β ομόσημοι τότε α+β < α + β ε Αν γ < 0 και α < β τότε αγ > βγ x=0 A Να αποδείξετε ότι η εξίσωση α x +β x+γ= 0 με α,β,γ R, α 0 και με άθροισμα και γινόμενο ριζών S και P αντίστοιχα, μετασχηματίζεται στην μορφή x Sx + P = 0 Μονάδες 0 A3 Πότε δύο ενδεχόμενα λέγονται ασυμβίβαστα;

4 ΘΕΜΑ A 6 Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη α Για κάθε πραγματικό α ισχύει α α = α α β Αν α 0 και ν άρτιος τότε ν ν α = α γ Η εξίσωση αx + βx + γ = 0 με α 0 έχει δυο άνισες ρίζες όταν Δ 0 δ Τα σημεία (α, β) και ( α, β) του καρτεσιανού επιπέδου, είναι συμμετρικά ως προς τον άξονα x x ε Αν δυο αριθμοί x, x έχουν άθροισμα S και γινόμενο P, τότε η εξίσωση δευτέρου βαθμού που έχει ρίζες τους αριθμούς x και x είναι: x Sx + P = 0 x=0 A Δίνονται οι πραγματικοί αριθμοί α και β α Να αποδείξετε ότι α + β α + β Μονάδες 7 β Πότε στην παραπάνω σχέση ισχύει το ίσον; Μονάδες 3 A3 Σε ένα πείραμα με ισοπίθανα αποτελέσματα να δώσετε τον κλασικό ορισμό της πιθανότητας ενός ενδεχομένου Α ΘΕΜΑ A 7 Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη α Η ανίσωση ισχύει για κάθε x R α x +β x+γ> 0 με α, β, γ R, α <0 και Δ < 0 β Αν θ > 0, ισχύει η ισοδυναμία x<θ θ<x<θ γ Αν οι αριθμοί α, β, γ είναι διαδοχικοί όροι αριθμητικής προόδου, τότε α+γ ισχύει: β=

5 δ Το συμμετρικό του σημείου Α(α, β) ως προς τον άξονα x x είναι το σημείο Α (α, β) ε Αν x, x είναι οι πραγματικές ρίζες της εξίσωσης αx +βx + γ = 0, α 0, β τότε ισχύει x +x = α x=0 A Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω να αποδείξετε ότι ισχύει: ΡΑ Β =ΡΑ+ΡΒ ΡΑ Β Μονάδες 0 A3 Τι λέγεται γεωμετρικός μέσος δύο αριθμών α και γ; ΘΕΜΑ A 8 Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο γραπτό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη α Ως συντελεστής διεύθυνσης ή ως κλίση μιας ευθείας ε, ορίζεται η εφαπτομένη της γωνίας ω που σχηματίζει η ε με τον άξονα x x β Η εξίσωση α x +β x +γ= 0, με α 0 με διακρίνουσα αρνητική δεν έχει πραγματικές λύσεις γ Η γραφική παράσταση της συνάρτησης f είναι συμμετρική της γραφικής παράστασης της συνάρτησης f, ως προς τον άξονα y y δ Δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω λέγονται ασυμβίβαστα, όταν Α Β ε Για δύο οποιουσδήποτε πραγματικούς αριθμούς α και β ισχύει α+β = α + β A Πότε μία ακολουθία λέγεται γεωμετρική πρόοδος; x=0 A3 Αν Α Β, να αποδείξετε ότι P(A) P(B) Μονάδες 0

6 ΘΕΜΑ A 9 Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο γραπτό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη α α +β = 0 α= 0 ή 0 β= β Η εξίσωση α x+β= 0, όταν α=0, έχει μοναδική λύση γ Για κάθε πραγματικό αριθμό α ισχύει α= α 0 δ Το τριώνυμο αx +βx +γ με α 0 γίνεται ομόσημο του α μόνο όταν Δ> 0 και για τις τιμές του x που είναι μεταξύ των ριζών ε x>ρ x > ρ ή x < ρ (ρ > 0) Μονάδες 0 A Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει: Ρ(Α Β) = Ρ(Α) + Ρ(Β) x=0 A3 Να δώσετε τον αλγεβρικό ορισμό της απόλυτης τιμής ενός πραγματικού αριθμού α ΘΕΜΑ A 0 Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη α Αν θ > 0, τότε: x=θ x=θ β Αν είναι x + y =0 τότε x = 0 και y = 0 γ Τρεις μη μηδενικοί αριθμοί α, β, γ είναι διαδοχικοί όροι γεωμετρικής προόδου αν και μόνο αν ισχύει β = αγ δ Για δυο συμπληρωματικά ενδεχόμενα Α και Α ισχύει: Ρ(Α )= Ρ(Α) ε Αν S το άθροισμα των ριζών x, x της εξίσωσης α x +β x +γ= 0, α 0 τότε: S = β α x= 0 Α Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω να αποδείξετε ότι ισχύει: ΡΑ Β =ΡΑ ΡΑ Β Μονάδες 0 Α3 Να γράψετε τον ορισμό της ν-οστής ρίζας μη αρνητικού αριθμού α

0 ΑΣΚΗΣΕΙΣ 0 ΘΕΜΑ Γ ΣΥΝΑΡΤΗΣΕΙΣ ΡΙΖΕΣ ΠΙΘΑΝΟΤΗΤΕΣ x 3x 8 + + Δίνεται η συνάρτηση f(x) = x 3 Γ Να βρείτε το πεδίο ορισμού της συνάρτησης f Γ Να αποδείξετε ότι: f( 0) = και f( 5) = Γ3 Να υπολογίσετε την παράσταση + + f(0) + f(5) Μονάδες 8 Γ4 Αν για τα ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω γνωρίζουμε ότι : ( f( P( ) )) P(A) =, 8 P(B) τότε να υπολογίσετε: α τις πιθανότητες P( A ) και P( B ) ΛΥΣΗ Γ Πρέπει : β την πιθανότητα PA ( B ) ( f ( 5) ) P( Ω) = και P( A B) 5 = 8 Μονάδες 4 Μονάδες 3 x + 3x + 8 0 3 x 6, αφού οι ρίζες του τριωνύμου x + 3x + 8 είναι οι αριθμοί 3 και 6 και x 3 0 x 3 Άρα το πεδίο ορισμού της συνάρτησης είναι το A = [ 3,3) ( 3, 6] Γ Είναι 8 9 3 f 0 = = = = 3 3 3 και 5 + 5 + 8 8 4 f( 5) = = = = = 5 3

Γ3 + + + = + = = = + f(0) + f(5) + + Γ4 α Επειδή P( ) = 0 και ( ) P(A) είναι: f P = f 0 =,είναι: ( f( P( ) )) ( ) = = = = Επίσης επειδή 8 8 8 4 ( ) Ω P Ω =, f 5 P P(B) = = = Οπότε έχουμε διαδοχικά: P( A B) = P( A) + P( B) P( A B) 5 = + P ( A B ) 8 4 5 4 5 P( A B) = + = + = 4 8 8 8 8 8 P A B = P A P A B = = = 4 8 8 8 8 β Είναι ΘΕΜΑ Γ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΙΣΩΣΗ ΜΕ ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω Α, Β δύο ενδεχόμενα ενός δειγματικού χώρου Ω= {,, 3,, 0} που αποτελείται από ισοπίθανα απλά ενδεχόμενα, με: A= { x Ω/x 4< } και B = { x Ω / x ανήκει στο πεδίο ορισμού της συνάρτησης f (x) = 4 x } Γ Να λύσετε την ανίσωση x 4 < και να αποδείξετε ότι: A= { 3, 4, 5} Μονάδες 7 Γ Να βρείτε το πεδίο ορισμού της συνάρτησης f(x) = 4 x και να αποδείξετε ότι B= {,, 3, 4} Γ3 Να βρείτε τις πιθανότητες : α P( A ), P( B ) και P( A B) Μονάδες 7

β να πραγματοποιηθεί τουλάχιστον ένα από τα Α και Β γ να πραγματοποιηθεί μόνο ένα από τα Α και Β Μονάδες 6 Μονάδες Μονάδες 3 ΛΥΣΗ Γ x 4 < < x 4 < < x < 6 και επειδή x Ω, είναι Γ Πρέπει 4 x 0 x 4 A= { 3, 4, 5} και επειδή x Ω, είναι B {,, 3, 4} = Γ3 α Είναι Ω= {,, 3,, 0}, A= { 3, 4, 5} και B {,, 3, 4} A B = { 3, 4} Άρα: P( A) = = ( Ω) N A 3 N 0 β Έχουμε διαδοχικά:, P( B) ( Ω) N B 4 = = N 0 P( A B) = P( A) + P( B) P( A B) =, οπότε και P( A B) = 0 3 4 5 P( A B) = + = = 0 0 0 0 γ Το ενδεχόμενο να πραγματοποιηθεί μόνο ένα από τα Α και Β είναι το ( A B) ( B A) Επειδή τα ενδεχόμενα A B και B A ασυμβίβαστα, έχουμε: (( ) ( )) = ( ) + ( ) = P( A) P( A B) + P( B) P( A B) = P( A) + P( B) P( A B) P A B B A P A B P B A 3 4 3 = + = 0 0 0 0 ΘΕΜΑ Γ AΝΙΣΩΣΕΙΣ ( Α ΒΑΘ ΜΕ ΑΠΟΛ ΤΙΜΗ, Β ΒΑΘ) ΔΕΥΤ ΕΞΙΣ ΠΙΘΑΝΟΤΗΤΕΣ 3 Θεωρούμε το δειγματικό χώρο Ω= { 3,,,,3} που αποτελείται από απλά ισοπίθανα ενδεχόμενα, και τα ενδεχόμενα του: είναι

3 A= { x Ω/x } B = { x Ω/ x 4x + 3 0} { / η εξίσωση x ( ) x 0 έχει διπλή ρίζα} Γ = λ Ω + λ + = Γ Να λύσετε την ανίσωση x και να δείξετε ότι : Γ Να λύσετε την ανίσωση Γ3 Να δείξετε ότ ι Γ= {, 3} A = {, 0,,, 3} x 4x 3 0 Μονάδες 7 + και να δείξετε ότι B = {,,3} Γ4 Να βρείτε τις πιθανότητες P( A ), P( B ) και P ( Γ ) Γ5 Να βρείτε τις πιθανότητες P( Β Γ ) και Ρ Α ( Β Γ) Μονάδες 7 Μονάδες 7 Μονάδες Μονάδες ΛΥΣΗ Γ x x x 3 και επειδή x Ω, είναι Γ A = {, 0,,, 3} x 4x + 3 0 x 3, αφού οι ρίζες του τριωνύμου είναι οι αριθμοί και 3 και επειδή x Ω, είναι B = {,,3} Γ3 Η εξίσωση x 4x + 3 x + ( λ) x + = 0 έχει διπλή ρίζα, άρα = 0, οπότε : ( λ) 4 = 0 λ= ή λ= λ= 3 ή λ= Άρα Γ= {, 3} Γ4 Είναι Ν Α Ρ Α = = Ν Ω 5 7, Ν Β Ρ Β = = Ν Ω 3 7 και Ν Γ Ρ Γ = = Ν Ω 7

4 4 Β Γ = 7 Γ5 Είναι Β Γ= {,,,3}, άρα P Επίσης Α ( Β Γ ) = { 0}, οπότε Ρ Α Β Γ = ΘΕΜΑ Γ ΣΥΝΑΡΤΗΣΕΙΣ ΡΙΖΕΣ ΑΠΟΛΥΤΗ ΤΙΜΗ - ΠΙΘΑΝΟΤΗΤΕΣ 4 Δίνεται η συνάρτηση f ( x) = 9 x λ, λ R Γ Να βρείτε το πεδίο ορισμού της συνάρτησης f 7 Mονάδες 7 Γ Έστω Ω= {,,3, 4,5,6,7,8,9,0} ο δειγματικός χώρος ενός { R:f 5 } πειράματος τύχης και το ενδεχόμενό του Α = λ = λ + λ Αν επιλέξουμε τυχαία ένα στοιχείο από το δειγματικό χώρο Ω, να βρείτε την πιθανότητα το στοιχείο αυτό να ανήκει στο Α Γ3 Για λ= 0, α Να βρείτε το f ( 5) και να μετατρέψετε την παράσταση f ( 5) 3 σε ισοδύναμη με ρητό παρονομαστή Μονάδες 8 β Να βρείτε το σημείο που η γραφική παράσταση της f τέμνει τον άξονα y y Moνάδες 5 ΛΥΣΗ Γ Πρέπει 9 x 0 x 9 9 x 9 Άρα το πεδίο ορισμού της συνάρτησης f είναι το A = [ 9,9] Γ Είναι f( 5) = λ + λ, άρα 9 5 λ = λ + λ 4 λ= λ + λ λ 3λ+ = 0 λ= ή λ= Άρα A = {, } και επειδή {,,3, 4,5,6,7,8,9,0} Ω= είναι P A ( Ω) N A = = = N 0 5

Γ3 α Για 0 λ= είναι 5 f 5 = 9 5 = 9 5 = 4 =, οπότε : f ( 5) 3+ 3+ 3+ = = = = = 3+ 3 3 3 3+ 3 β Το πεδίο ορισμού της συνάρτησης f είναι το A = [ 9,9],άρα το 0 Α, οπότε για λ= 0 είναι f( 0) = 9 = 3, άρα η γραφική παράσταση της συνάρτησης f τέμνει τον άξονα y y στο σημείο K ( 0,3 ) ΘΕΜΑ Γ ΣΥΝΑΡΤΗΣΕΙΣ ΑΡΙΘ ΠΡΟΟΔΟΣ ΕΞΙΣ Β ΒΑΘ ΜΕ ΑΠΟΛ ΤΙΜΗ 5 Έστω οι συναρτήσεις f( x) = x 4 και 3 g x = 7 x Γ Να βρείτε τα πεδία ορισμού των συναρτήσεων f και g Μονάδες 4 Γ Να αποδείξετε ότι οι αριθμοί f( 3 ),f( 8 ),f( 5), με την σειρά που δίνονται, είναι διαδοχικοί όροι αριθμητικής προόδου Μονάδες 3 Γ3 Αν ο f( 8) είναι ο δεύτερος όρος της παραπάνω αριθμητικής προόδου, να βρείτε το άθροισμα των 0 πρώτων όρων της Γ4 Να βρείτε το συμμετρικό του σημείου M 9, g ( 9) ως προς άξονες συμμετρίας τους x x, y y και ως προς κέντρο συμμετρίας την αρχή των αξόνων 4 3 f x g x = 3 Γ5 Να λύσετε την εξίσωση : Μονάδες 4 Γ6 Να βρείτε εξίσωση δευτέρου βαθμού με ρίζες τους αριθμούς g( 0 ) και g ( 9) ΛΥΣΗ Γ Είναι: Μονάδες 4

6 x 4 0 x 4 x 4 ή x 4 Άρα το πεδίο ορισμού της συνάρτησης f είναι το A (, 4] [ 4, ) f = + 7 x 0 x 7 7 x 7 Άρα το πεδίο ορισμού της συνάρτησης g είναι το A [ 7, 7] g = Γ Είναι f ( 3) = 3 4 = 3 4 = 9 = 3 f( 8) = 8 4 = 8 4 = 4 = και f( 5) = 5 4 = 5 4 = = ( ) + ( ) f 3 f 5 Αρκεί λοιπόν να δείξουμε ότι f( 8) = 3+ Πράγματι είναι =, άρα οι αριθμοί f( 3 ),f( 8 ),f ( 5), με την σειρά που δίνονται, είναι διαδοχικοί όροι αριθμητικής προόδου Γ3 Ο δεύτερος όρος της αριθμητικής προόδου είναι α = f( 8) = και η διαφορά της ω= f( 5) f( 8) = =, άρα έχουμε : α =α +ω α =α ω= ( ) = 3, οπότε το άθροισμα των δέκα πρώτων όρων της αριθμητικής προόδου είναι : 0 S = 0 ( 0 ) 5( 6 9) 5 α+ ω = = 3 3 Γ4 Είναι g 3 ( 9) = 7 9 = 7 9 = 8 =, άρα M ( 9, ) Άρα: Το συμμετρικό του Μ ως προς τον άξονα x x είναι το Ν( 9, ) Το συμμετρικό του Μ ως προς τον άξονα y y είναι το K ( 9, ) Το συμμετρικό του Μ ως προς O( 0,0) είναι το Λ( 9, )

Γ5 Για x Af Ag 7, δηλαδή για x [ 7, 4] [ 4, 7] 4 3 3, είναι : 4 3 f x g x = 3 x 4 7 x = 3 ( x 4) 7 + x = 3 x 8 x + 6 7 + x = 3 x 7 x 8 = 0 x = 8 ή x = αδύνατη Άρα x = 8 ή x = 8 g 9 = 7 9 = 7 9 = 8 = 3 Γ6 Είναι g ( 0) = 7 = 3 και 3 3 3 οπότε S = g ( 0) + g ( 9) = 3 + = 5 και η ζητούμενη εξίσωση είναι η P = g 0 g 9 = 3 = 6, άρα x Sx + P = 0 x 5x + 6 = 0 ΘΕΜΑ Γ ΡΙΖΕΣ ΕΞΙΣΩΣΗ ΤΗΣ ΜΟΡΦΗΣ x ν =α =ee 3 3 6 Δίνονται οι παραστάσεις: A= 4 και Β= + + Γ Να αποδείξετε ότι Α= Μονάδες 0 Γ Να αποδείξετε ότι Β= Μονάδες 8 3 Γ3 Να λύσετε την εξίσωση x = + Α+ Α Α Α Μονάδες 7 Λύση Γ 3 3 3 4 3 3 4 3 3 A 4 4 4 = = = = 3 4 = = 3 3 = 3 = 4 4 8 Γ + + 4 4 Β= + = = = = + + 4 Γ3 Η εξίσωση 3 x = + Α+ Α Α Α λόγω του ερωτήματος Γ γίνεται :

3 x = + + 8 και λόγω του ερωτήματος Γ γίνεται : 3 x =, οπότε 3 x = ΘΕΜΑ Γ ΠΑΡΑΜΕΤΡΙΚΗ ΕΞΙΣΩΣΗ - ΕΞΙΣΩΣΗ ΤΗΣ ΜΟΡΦΗΣ x ν =α 7 Δίνεται η εξίσωση ( x ) λ λ +λ = 3 λ x (), όπου x o άγνωστος και λ R η παράμετρος Γ Να βρεθούν οι τιμές του πραγματικού αριθμού λ, αν η εξίσωση έχει ως ρίζα τον αριθμό Μονάδες 6 Γ Να λυθεί η εξίσωση για τις διάφορες τιμές του αριθμού λ Μονάδες Γ3 Αν η εξίσωση είναι αόριστη να βρεθεί η τιμή του πραγματικού αριθμού α+ = 8 α, ώστε να ισχύει: 3 Λύση Γ Η εξίσωση ( x ) λ Μονάδες 7 λ λ +λ = 3 λ x έχει ρίζα τον αριθμό, οπότε λ λ +λ = 3 λ λ λ+λ = 6λ 4 3λ 7λ+ 4 = 0 Γ Είναι Αν 4 λ= ή λ= 3 λ λ x +λ = 3 λ x λ x λ+λ = 3λx x ( λ λ+ ) 3 x =λ λ λ λ+ λ λ, η εξίσωση έχει μοναδική λύση την 3 0, δηλαδή και λ( λ ) λ λ λ x = = = λ 3λ+ λ λ λ Αν λ=, η εξίσωση γίνεται 0x = 0 ( αόριστη ) Αν λ=, η εξίσωση γίνεται 0x = ( αδύνατη ) Γ3 Η εξίσωση είναι αόριστη, άρα α+ = 8 λ=, οπότε η εξίσωση 3 3 3 3 α+ = 8 α+ = 8 ή α+ = 8 γίνεται α+ = ή α+ = α= 3 ή α= λ

ΘΕΜΑ Γ ΕΞΙΣΩΣΗ Β ΒΑΘΜΟΥ ΤΥΠΟΙ VIETA 8 Δίνεται η εξίσωση x 4λx = 0 (), λ R 9 Γ Να αποδείξετε ότι η εξίσωση () έχει ρίζες πραγματικές και άνισες για κάθε λ R Μονάδες 8 Γ Αν η εξίσωση () έχει ρίζα τον αριθμό x = να βρεθεί η παράμετρος λ και η άλλη ρίζα x της εξίσωσης Μονάδες 0 Γ3 Αν λ= και x, x οι ρίζες της () να κατασκευάσετε εξίσωση ου βαθμού η οποία να έχει ρίζες τους αριθμούς ρ = και ρ = x x Λύση Γ Είναι Μονάδες 7 = 4λ 4 = 6λ + 48 > 0, άρα η εξίσωση () έχει δυο ρίζες πραγματικές και άνισες για κάθε λ R Γ Η εξίσωση () έχει ρίζα τον αριθμό x =, άρα 4 λ = 0 4 + 8λ = 0 λ=, οπότε η εξίσωση γίνεται : x 4x = 0 () Αν x η άλλη ρίζα της εξίσωσης είναι : Γ3 Είναι x + x = 4 και x x = x x= x x 6 = = x+ x 4 Άρα S =ρ +ρ = + = = = x x x x 3 και P =ρ ρ = x x = x x = = Επομένως η ζητούμενη εξίσωση είναι η x + x = 0 3

30 ΘΕΜΑ Γ ΕΞΙΣΩΣΗ Β ΒΑΘΜΟΥ ΤΥΠΟΙ VIETA 9 Δίνεται η εξίσωση λx ( λ+ x ) + 8= 0() με λ R και λ 0 Γ Να αποδείξετε ότι η εξίσωση () έχει πραγματικές ρίζες Μονάδες 0 Γ Αν x, x είναι οι ρίζες της εξίσωσης (), α Να βρείτε τις τιμές των παραστάσεων x+ x και x x Λύση συναρτήσει του λ β Να βρεθεί ο λ αν (x + x ) x x = 0 Μονάδες 0 Γ Η εξίσωση λx ( λ+ x ) + 8= 0είναι δευτέρου βαθμού ( λ 0) με = λ+ 3λ= 4 λ + 4λ+ 4 3λ= 4λ 6λ+ 6 = = 4( λ ) 0 Άρα έχει πραγματικές ρίζες Γ α Αν x, x είναι οι ρίζες της εξίσωσης από τύπους Vieta έχουμε για λ 0: λx ( λ+ x ) + 8= 0, x λ+ λ+ + x = = λ λ 8 και x x = λ β Η σχέση (x + x ) x x = 0 λόγω Γ γίνεται : λ+ 8 λ+ 4 8 = 0 = 0 λ λ λ λ λ+ 4 8 λ+ 4 8 λ+ λ 4 + = 0 = 0 λ λ λ λ λ λ λ= 6 ή λ=

ΘΕΜΑ Γ ΕΞΙΣΩΣΗ Β ΒΑΘΜΟΥ ΤΥΠΟΙ VIETΑ ΕΞΙΣΩΣΗ 0 Δίνεται η εξίσωση x +(λ )x λ = 0, λ R 3 Γ Αν x,x είναι οι ρίζες της () τότε: (), { } Να βρεθούν τα x+ x και x x ως συνάρτηση του λ Γ Να βρεθεί η τιμή του λ που επαληθεύει την εξίσωση: x+ x + 3λ 8 5 x x +λ+ 3 + 3 + 3 = 5 Λύση Γ Από τύπους του Vieta είναι : x λ λ + x = = λ + και x x = = λ Μονάδες0 Μονάδες 5 Γ x + x + 3λ 8 5 x x +λ+ 3 + 3 Γ + 3 = 5 λ+ + 3λ 8 5 λ+λ+ 3 + 3 + 3 = 5 λ 6 5 λ+ 3 + 3 + 3 = 5 λ 3 5 λ + 3 + 3 + 3 = 5 λ 3 5 λ+ 3 + 3 + 3 = 5 λ 3= λ+ 3 4 λ 3 0 + 30 = 5 λ 3 + 5 λ 3 = 5 λ 3 = 5 ή λ 3 = 5 Άρα λ= 8 ή λ=