Κεφάλαιο 11 Στροφορμή

Σχετικά έγγραφα
Κεφάλαιο 11 Στροφορµή

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

12 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Αρχή διατήρησης στροφορμής

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W

ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Μηχανική Στερεού Ασκήσεις Εμπέδωσης

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 23/2/2014 ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3-4

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται

ΑΣΚΗΣΗ 5.1 Το διάνυσμα θέσης ενός σώματος μάζας m=0,5kgr δίνεται από τη σχέση: 3 j οπότε το μέτρο της ταχύτητας θα είναι:

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ (8 ΠΕΡΙΟΔΟΙ)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε:

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

Μηχανική Στερεού Σώματος

2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

Κεφάλαιο M11. Στροφορµή

ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Τετάρτη 12 Απριλίου Θέμα 1ο

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

β. Υπολογίστε την γραμμική ταχύτητα περιστροφής της πέτρας γ. Υπολογίστε την γωνιακή ταχύτητα περιστροφής της πέτρας.

το άκρο Β έχει γραμμική ταχύτητα μέτρου.

Γκύζη 14-Αθήνα Τηλ :

Ασκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΦΥΣΙΚΗ

ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ. Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται.

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= 1 s ). Αν η ταχύτητα στη θέση x

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο

( σφόνδυλος : τροχαλία με μεγάλη μάζα)

Θέματα Παγκύπριων Εξετάσεων

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ-ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΝΙΚΟΣ ΣΑΜΑΡΑΣ ΝΙΚΟΣ ΚΟΥΝΕΛΗΣ ΘΕΜΑ Α

Διαγώνισμα: Μηχανική Στερεού Σώματος

ΟΡΟΣΗΜΟ. 12 της στροφορμής της ράβδ ου ως προς παράλληλο άξονα, που περνά από το ένα άκρο της, με ίδια ω, είναι: ω 3

ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ)

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5

2) Βάρος και κυκλική κίνηση. Β) Κυκλική κίνηση

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ


ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 4: ΣΤΡΟΦΟΡΜΗ [Υποκεφάλαια 4.7: Στροφορμή του σχολικού βιβλίου]

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο

Διαγώνισμα B Λυκείου Σάββατο 22 Απριλίου 2017

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 02/12/12 ΑΠΑΝΤΗΣΕΙΣ

Και τα στερεά συγκρούονται

ΕΡΓΑΣΙΑ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ 25/12/2016 ΘΕΜΑ

3.6. Σύνθετα θέματα στερεού. Ομάδα Δ.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΤΡΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤO ΣΤΕΡΕΟ

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο

περιφέρειας των δίσκων, Μονάδες 6 Δ2) το μέτρο της γωνιακής ταχύτητας του δίσκου (1), Μονάδες 5

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.

Στροφορµή. ΦΥΣ Διαλ.25 1

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

ΦΥΣΙΚΗ. Ενότητα 8: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

Β ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 19-Νοεµβρίου-2011

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 21-Νοεµβρίου-2009

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 07 Ορμή Κρούσεις ΦΥΣ102 1

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι

Απάντηση: α) 16,0 Ν, β) 10,2 Ν


ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α

υ υ Μονάδες 5 Α 2. Δύο σφαίρες (1) και (2) που έχουν ορμές, αντίστοιχα, συγκρούονται κεντρικά και ελαστικά. Κατά την κρούση ισχύει: p p και 1

Transcript:

Κεφάλαιο 11 Στροφορμή

Περιεχόμενα Κεφαλαίου 11 Στροφορμή Περιστροφή Αντικειμένων πέριξ σταθερού άξονα Το Εξωτερικό γινόμενο-η ροπή ως διάνυσμα Στροφορμή Σωματιδίου Στροφορμή και Ροπή για Σύστημα Σωματιδίων Στροφορμή και Ροπή Συμπαγούς Σώματος Διατήρηση Στροφορμής Το φαινόμενο Coriolis Περιστρεφόμενα συτήματα αναφοράς

11-1 Περιστροφή πέριξ σταθερού άξονα Η ανάλογη περιστροφική ποσότητα με την γραμμική ορμή είναι η στροφορμή, L: Ενώ ο 2 ος νόμος του Νεύτωνα για την περιστροφική κίνηση γίνεται: Η σχέση αυτή ισχύει μόνο όταν η ροπή αδράνειας I είναι σταθερή.

Όταν στο σύστημα δεν δρα εξωτερική ροπή, τότε η συνολική στροφορμή του συστήματος παραμένει σταθερή: dl dt 0 and L I constant. Η διαφορετικά, η στροφορμή ενός συστήματος παραμένει σταθερή εφόσον η συνολική εξωτερική ροπή που ασκείται πάνω του είναι μηδέν.

Αυτό σημαίνει: Αυτό σημαίνει ότι εάν κατά την διάρκεια της περιστροφής έχουμε μεταβολή στην ροπή αδράνειας, τότε αναγκαστικά θα αλλάξει η γωνιακή ταχύτητα

Μια μικρή μάζα m που συγκρατιέται από ένα σκοινί, περιστρέφεται κυκλικά πάνω σε ένα τραπέζι χωρίς τριβές, όπως φαίνεται στο σχήμα. Αρχικά η μάζα περιστρέφεται με τάχο υ 1 = 2.4 m/s με ακτίνα R 1 = 0.80 m. Στη συνέχεια το σκοινί μετατοπίζεται κατακόρυφα προς τα κάτω ώστε η ακτίνα περιστροφής να μικρύνει σε R 2 = 0.48 m. Πόση είναι ο νέος τάχος υ 2 ;

Ένα απλό σύστημα συμπλέκτη (ντεμπραγιάζ) αποτελείται από δύο δίσκους που μπορούν να πιεστούν μεταξύ τους. Οι μάζες των δύο δίσκων είναι M A = 6.0 kg και M B = 9.0 kg, με ίσες ακτίνες R 0 = 0.60 m. Αρχικά οι δίσκοι είναι διαχωρισμένοι. Ο δίσκος M A επιταχύνεται από στάση σε γωνιακή ταχύτητα ω 1 = 7.2 rad/s σε χρόνο Δt = 2.0 s. Υπολογίστε (α)την στροφορμή του M A, και (β)την ροπή ου απαιτείται για την επιτάχυνση του M A σε ω 1. (γ) Στη συνέχεια ο δίσκος M B, αρχικά στάσιμο αλλά έχοντας την ελευθερία της περιστροφικής κίνησης πιέζεται πάνω στο δίσκο M A, και οι δύο δίσκοι τώρα περιστρέφονται με γωνιακή ταχύτητα ω 2, σημαντικά μικρότερη από την ω 1. Γιατί συμβαίνει αυτό και πόση είναι η ω 2 ;

Η Στροφορμή είναι «διάνυσμα». Για συμμετρικά αντικείμενα που περιστρέφονται γύρω από άξονα συμμετρίας η διεύθυνση της στροφορμής είναι ίδια με αυτήν της γωνιακής ταχύτητας «ψευτοδιάνυσμα» Το ίδιο συμβαίνει με όλα τα διανύσματα που προκύπτουν από εξωτερικά γινόμενα διανυσμάτων

Υποθέτουμε ότι ένας φοιτητής 60-kg στέκεται στην άκρη μιας κυκλικής πλατφόρμας με ακτίνα 6.0-m-προσαρμοσμένη σε ρουλεμάν με μηδενική τριβή και ροπή αδράνειας 1800 kg m 2. Η πλατφόρμα είναι αρχικά ακίνητη και ο φοιτητής αρχίζει να τρέχει με σπουδή 4.2 m/s (ως προς τη Γη) κατά μήκος της περιφέρειας της πλατφόρμας. Βρείτε την γωνιακή ταχύτητα της πλατφόρμας

Εάν υποθέσουμε ότι κρατάω ένα τροχό ποδηλάτου που περιστρέφεται και στέκομαι πάνω σε πλατφόρμα που μπορεί να περιστρέφεται χωρίς τριβή. Τι θα συμβεί εάν ξαφνικά αντιστρέψω την φορά περιστροφής του τροχού;

11-2 Εξωτερικό Γινόμενο Διανυσμάτων Ορίζουμε το εξωτερικό γινόμενο δύο διανυσμάτων ως: Η κατεύθυνση του διανύσματος που προκύπτει προσδιορίζεται από τον κανόνα του δεξιάς παλάμης :

Εναλλακτικός ορισμός για το εξωτερικό γινόμενο είναι:

Ορισμένες ιδιότητες:

Η Ροπή μπορεί να οριστεί ως το εξωτερικό γινόμενο της μετατόπισης του σημείου με την δύναμη:

Το διάνυσμα της Ροπής Υποθέστε το διάνυσμα r βρίσκεται στο επίπεδο xz, και r = 1. 2m i + 1. 2m k. Βρείτε το διάνυσμα της ροπής τ εάν F = 150N i.

11-3 Στροφορμή σωματιδίου Η στροφορμή ενός σωματιδίου δίνεται από τη σχέση:

Παίρνοντας την παράγωγο του L βρίσκουμε: Επειδή Βρίσκουμε:

Βρείτε την στροφορμή ενός σωματιδίου μάζας m που κινείται με ταχύτητα υ κυκλικά με ακτίνα r και φορά αντίθετη με αυτή των δεικτών του ρολογιού.

11-4 Στροφορμή Συστήματος Σωματιδίων-Γενική Κίνηση Η στροφορμή ενός συστήματος σωματιδίων δύναται να μεταβληθεί μόνο εάν υπάρχει εξωτερική ροπή- οι ροπές εξ αιτίας εσωτερικών δυνάμεων αναιρούνται μεταξύ τους. Η σχέση αυτή ισχύει για οποιοδήποτε αδρανειακό σύστημα. Ισχύει ακόμη και για το Κέντρο Μάζας ακόμα και αν αυτό επιταχύνεται.

11-5 Στροφορμή και Ροπή για στερεό Σώμα Για ένα στερεό σώμα αποδεικνύεται ότι η στροφορμή του δίδεται από τη σχέση:

Η μηχανή του Atwood Όπως έχουμε ξαναδεί η μηχανή του n Atwood αποτελείται από δύο μάζες, m A και m B, που συνδέονται μέσω τροχαλίας με ένα ιμάντα αμελητέας μάζας. Εάν η τροχαλία έχει ακτίνα R 0 και ροπή αδράνειας I, Βρείτε την επιτάχυνση των μαζών m A και m B, και συγκρίνατε με την περίπτωση όπου η ροπή αδράνειας της τροχαλίας είναι μηδέν.

Κρατάμε το τροχό ενός ποδηλάτου από τον άξονα του όπως φαίνεται στο σχήμα. Ο τροχός περιστρέφεται γρήγορα. Εάν επιχειρήσουμε να ανυψώσουμε το τροφό κατακόρυφα προς τα πάνω (έτσι ώστε το ΚΜ να μετατοπιστεί κατακόρυφα) παρατηρούμε ότι ο τροχός «θέλει» να κινηθεί προς τα δεξιά. Γιατί;

Σε ένα σύστημα που δεν είναι «ζυγοσταθμισμένο» η στροφορμή και η γωνιακή ταχύτητα δεν είναι ευθυγραμμισμένες και απαιτείται ροπή για να συνεχίσει ένα τέτοιο σύστημα να περιστρέφεται.

Βρείτε το μέγεθος της ροπής τ net που απαιτείται για να συνεχίσει να περιστρέφεται το σύστημα.

11-6 Διατήρηση της Στροφορμής Εάν η ροπή σε ένα σύστημα είναι σταθερή τότε, Η συνολική στροφορμή ενός συστήματος παραμένει σταθερή εφόσον η συνολική εξωτερική ροπή που δρα στο σύστημα είναι μηδέν.

Ο δεύτερος Νόμος του Kepler λέει ότι ένας πλανήτης κινείται έτσι ώστε η απόστασή του από τον Ήλιο διαγράφει ίσες επιφάνειες σε ίσους χρόνου.

Μια σφαίρα (άτομο) μάζας m κινείται με σπουδή v και ενσωματώνεται στην περιφέρεια ενός κυλίνδρου (μορίου) μάζας M και ακτίνας R 0. Ο κύλινδρος που είναι αρχικά ακίνητος αρχίζει να περιστρέφεται γύρω από τον άξονα συμμετρίας του ο οποίος (ο άξονας) δεν μετακινείται. Αγνοώντας τριβές, πόση είναι η γωνιακή ταχύτητα του κυλίνδρου μετά την κρούση; Διατηρείται η κινητική ενέργεια;

11-7 Σβούρες Ο άξονας περιστροφής μια σβούρας θα μετατοπίζεται (precess) γύρω από το σημείο επαφής της σβούρας λόγω της ροπής που δημιουργεί η βαρύτητα όταν ο άξονας της σβούρας δεν είναι κατακόρυφος.

Η γωνιακή ταχύτητα της μετατόπισης του άξονα περιστροφής (precession) είναι :

11-8 Περιστρεφόμενα Συστήματα Αναφοράς Δυνάμεις Αδράνειας Ως αδρανειακό ορίσαμε ένα σύστημα όπου ισχύουν οι νόμοι του Νεύτωνα. Ένα σύστημα αναφοράς που περιστρέφεται έχει γωνιακή επιτάχυνση και επομένως ορισμένα δεν είναι «αυστηρά» αδρανειακά

Υπάρχει μια φαινομενολογική δύναμη που ασκείτε πάνω σε αντικείμενα που βρίσκονται μέσα σε ένα σύστημα που περιστρέφεται. Η «ψευτοδύναμη» αυτή, έχει φορά προς τα έξω και την ονομάζουμε φυγόκεντρος δύναμη.

11-9 Το φαινόμενο Coriolis Σε ένα αντικείμενο που κινείται σε μη αδρανειακό σύστημα, ασκείται άλλη μια «ψευτοδύναμη». Τούτο γιατί καθώς κινείται το αντικείμενο προς μεγαλύτερη απόσταση από τον άξονα περιστροφής, η γραμμική του ταχύτητά (εφαπτόμενη) δεν αυξάνεται. Αυτό έχει ως αποτέλεσμα το αντικείμενο να εμφανίζει μια «πλάγια» μετατότπιση. Inertial reference frame Rotating reference frame

11-9 Το φαινόμενο Coriolis Το φαινόμενο Coriolis ευθύνεται για την περιστροφή των αέριων μαζών (καταιγίδες) γύρω από περιοχές χαμηλών πιέσεων Αριστερόστροφα στο Βόρειο ημισφαίριο και Δεξιόστροφα στο Νότιο. Η επιτάχυνση Coriolis είναι: