MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (



Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

2 SFI

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

v w = v = pr w v = v cos(v,w) = v w

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

p din,j = p tot,j p stat = ρ 2 v2 j,

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Delta Inconel 718 δ» ¼

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

arxiv: v1 [math.dg] 3 Sep 2007

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

tan(2α) = 2tanα 1 tan 2 α

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

Blowup of regular solutions for radial relativistic Euler equations with damping

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

High order interpolation function for surface contact problem

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

Ανώτερα Μαθηματικά ΙI

Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

ƒ ˆŒ Œ ƒ ƒ ˆ ƒ ˆŠ ˆ -144

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ƒ ² ± Ñ Ò É ÉÊÉ Ô É Î ± Ì Ö ÒÌ ² μ Å μ Ò Í μ ²Ó μ ± ³ ʱ ²μ Ê, Œ ±

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

P ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö, Ÿ. ʲ ±μ ± 1. Š Ÿ Šˆ ˆŒ ˆ ƒ ˆŠ. ² μ ±μ Ë Í Õ Œ É ³ É Î ±μ ³μ ² μ ÒÎ ² É ²Ó Ö Ë ± 2013 (ŒŒ '2013)

P ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3, ,. ʳÌÊÊ. Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ. ² μ Ê ² Annals of Nuclear Energy

Ó³ Ÿ , º 7(205) Ä1268 ˆ ˆŠ ˆ ˆŠ Š ˆ. ƒ ˆˆ μì Ê ³... Ê ±μ, Œμ ± Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± É ƒ ³³ - μ ª Œμ ±, Œμ ±

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

Transcript:

Ø 46 Ø 8 Vol.46 No.8 2010 8 µ Ø 1004 1008 Ú ACTA METALLURGICA SINICA Aug. 2010 pp.1004 1008 ÆÙ ± /» à Á  À (ß ¼ Ö ², Ò ËÀ ËÚ Ð, ÇÓ 110819) ÅÊ Å ÑÆ«º, Î Æ«ß/ ÑÐÕ Ê, ¾ Õ Å º Ñ µ µô, Ñ Á±Í. Á Ð, ߯«Ã È, ÑÏ, ±³Í¼ÑÐÛº, ¼Æ«150 r/min, Ñ Ð 1.58 m/s; Æ«150 È 250 r/min, Ê, Ô (25 r/min) È (50 r/min) ³Ì Ê; ¼ Å 2% È 7.5%, 5 È 8 r/min. ß,, Æ«, Å Đ TG249 ¹ºÜ A ¹ Û 0412 1961(2010)08 1004 05 MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR ZHAO Qiuyue, ZHANG Ting an, CAO Xiaochang, LIU Yan, JIANG Xiaoli Key Laboratory of Ecological Utilization of Multi metal Intergrown Ores of Ministry of Education, School of Materials and Metallurgy, Northeastern University, Shenyang 110819 Correspondent:ZHANG Ting an, professor, Tel: (024)8687715, E-mail: zta2000@16.net Supported by Research Fund for the Doctoral Program of Higher Education (No.20050145029) and Science and Technology Talents Fund for Excellent Youth of Liaoning Province (No.2005221012) Manuscript received 2009 12 04, in revised form 2010 05 17 ABSTRACT The computational fluid dynamics (CFD) method was used to research the velocity and concentration fields in the multiphase flow tubular stirred reactor. A mathematical model of liquid/solid two phase flow was established and the simulated results obtained by using this model are in better agreement with the experimental ones. The results show that the maximum velocity of solid liquid phase flow is 1.58 m/s when the rotation speed is 150 r/min and there is no flow dead zone in the tubular stirred reactor because that turbulent flow is strengthened by the stirring action. Radial mixture is better when the rotation speeds are 150 and 250 r/min than when the rotation speeds are 25 and 50 r/min, a proper rotation speed is need to obtain the prefered mixture. The critical impeller speeds are 5 and 8 r/min when the solid concentration are 2% and 7.5%, respectively. KEY WORDS metallurgy, tubular reactor, stir, simulation ³ÆÅ, À Al Ð Õ Al 2 O Í ÉÙÓØ. ½ Al 2 O Í Ã É, ÃÅ Ì, ½ É ÂÕ «, Ç, ÉÁ Í Ã Ð ²Î [1]. ³, [2] Ë Å Í Ð * ¹ ÒÁ² Û 20050145029 È Ï Ø ½ 2005221012  : 2009 12 04, : 2010 05 17 Ô :,, 1978 Ì, Å, ² DOI: 10.724/SP.J.107.2009.00811 ÃÆ, Æ T ËÜ Ð«Ò Æ. ½ Ð Æ / Ò Å º, ÒÝ Ä ÆÐÒ«, È ÆÐ, ÃÈ Û ½Ò«É, Ò«± Ò«º. «Ê, ÆË Æ / Ò Ð Ë ÕÉ»Á ÌÕ. Æ Ð ËÃ Ã Æ Á ÐÏ Ë É Á Ð Ë 2».» [,4], Ï Ëà ŠÆÎ Õ, Ë Ð Å, «Ê, ½» Á Ð Ë Ð Õ

Ø 8 µµñ : Ö Å Þ/ ÐĐ ¹ 1005»Ï Á Ð Ë. ² [5 8] л Â, É ËÃ ÐÆ Đν ºÐ Õ, Ë ĐÐ Ò Â,  º. «Ê, Õ Æ Ò Õ Ë ²ÎÖ. Khopkar Ó [9] à ½ Õ «««½ÐÜ, Yamazaki Ó [10] Ù Ï «Ò ² Î, Ö «/ Æ Ï ËÃ.» É Ð Ü Æ ²Î, ²ÄÕÐÆË Æ / ÒлÀÂ. Õ½» [11] Ð Å, ÆË Æ É ¹ Î Ðɼ ( ¾ºÐ Ç Õ Ë Ó) ²ÎÖ, ± Ò Â Õ,» Æ Ð ¾Ò ɼÉÒ., ½ Ð Æ Ò Õ Ë ÂÐÕ, ²Ð µ³æë Æ ÌÕ. 1 ²¾ ¼ ² Eulerian Eulerian ÜÐ Ò«Ë [12], Ï Ô Æ / ÒÐ Å. «ÚÐ Ð É. t (φ iρ i ) + (φ i ρ i u i ) = 0 (1) t (φ lρ l u l ) + (φ l ρ l u l )u l = φ l p + τ l + È φ l ρ l g + K sl ( u s u l ) (2) t (φ sρ s u s ) + (φ s ρ s u s ) u s = φ s p p s + τ s + φ s ρ s g + K sl ( u l u s ) () Ü. ½³ ËÉ, Ð ÆÊ ÇÐ Æ, Õ Ò«Ê Ð«Æ, Ó Ò«ĐÐ Đ, ²Ò«ÆÙ Ä. «Ê, ³ ˽ Ò / ÒÐÖ «É Å ÐÆ. Ò«ËÐ Ü, ½ Ü Â Ð Á, ²Õ ÐÅ: (1) Æ, Î Ð Đ, Ò É Å«2 ÊÒ«; (2) 2 ÊÒ«Ò ¼ Ð Å ; () Ò«Ó Ò ; (4) Ð Æ Ð Ðµ «; (5) É Ò«. 2 Ú Å² «ÄÐÆË Æ, É Ü T Ë, Ü Đ Åß 90 ½ Ï, 16 Ü. Ü ÐÕ, ½Ì² Æ Ëл,. Æ Ð ÌÕÁÏ 1. Ü ¹½Ð ¾É Ö : Ü 1 10 kg/m, 1.005 10 Pa s, Ò 1.8 m /h; Ü 2.5 10 kg/m, 0.1 mm, «Ò Ö 2% É 7.5%; Ð 25, 50, 150, 250 É 50 r/min. Í FLUENT ÆÐ ÆÊ Gambit Ï Ë±Í Ø, ½ «Ì ½, Æ» É»,» Ö ½, ³» Ò«Đ Ü ;» µ Ö ½. ± º,» Õ» Ý ß«Ð º, «Â 2( ½ Рк ) [12]. ÏÉ Þ, ÇË ß (Wall); Æ (Inlet) Æ Ò ; Ã Æ (Outlet) à ; Þ µ ß. Í CFD FLUENT 6. Ð «Ò Å È, ³» Ò Ü ÐÆÊ ß É, φ i «Ò Ö; ρ i Ü, kg/m ; u i Ð, m/s; τ i Æ, Pa s; i l É s, É ; p, Pa; K sl «Ö; t Đ, s; g Ì Ð, m/s 2. Eulerian Ë Ö «ĐÐ, ¹ ÕÕ Ð Ð Ò¹, Ü ÐÅ / Đ Æ ÉÙ, É Ð, É, ĐÐ Õ Ã É Õ ½ ÐÝ ÅÜ. Ò«ËÐ Ü Ô «ĐÐ Õ Á. ³ Ë ¾ß Ó Æ É ÐÄ, ± ÐÐÆ ÆÊ ÉÒ«, ² Ë 1 Fig.1 Structure chart of a new tubular reactor (unit: mm) 2 Õ Å ¹ Fig.2 Schematic of grids used for simulating the tubular stirred reactor

m a 1006 M r. > jy1 r l x ~_ Wen Yu S, _ T 4 >1 (MRF) M N R x l _^ /, n n~ z n~, FM GlQ{B } fyts l SIMPLE ~, P E. b, B l5< k [ : 10. t 46 7 [1] ( 8) 1 ^} # 4 Q 50 r/min l 5, Æ l Reynolds r :1 10 G, N 2 nb..1 } d K b&gn_ 1.8 m /h 5, ^ } 150 r/min Z, ( lq B b Æ QNSB b Æ, q 8 Æ l >}?. a A = K, Q B b Æ, n N : nb, n~ Dk }J, RZ-N l Y B. b A = K, NS `L l B b Æ, l q, n ~G 6, fs#d, #`b> Qu. N SB b Æ ( b) 8 Æ ( c) l }?>z, v~nsbb Æ ($ jb 8 Æ fsl x, & NSBb Æ k x:, * 1 W G, R, l :,Xq 8 Æ, =gns Bb Æ C N. S} [HG =, ( CYln } ~7+ u lq B b Æ ln n}, n}l + quzn~ Dl `A #`n~ NC lq7 QNKG. 4 ^} 150 r/min Z CFD lwd {Q,DQP {l}?. A, </ ^>n >}? ( 4a) `>n > }? ( 4b) 1-fG>', S} [HM=, ^>niilm[} 1.58 m/s, " E `>n l 1.46 m/s I+. R, n S x K 25, 50, 150, 250 6 ' $ [14], 4 150 r/min, P Aa MR\Æ Aa pæ 7 k > [14] Fig. Velocity fields in the traditional tubular reactor (150 r/min, 1.8 m /h flow) (a), the tubular stirred reactor (150 r/min, 1.8 m /h flow) (b) and tank stirred reactor (9 r/min)[14] (c) Y CFD k =m _=mkvc zp+cpo zk > Fig.4 Flow fields of liquid phase at axial (left) and vertical (right) section in two phases flow (a) and single phase flow (b) simulated by CFD at 150 r/min

Ø 8 µµñ : Ö Å Þ/ ÐĐ ¹ 1007 Ã, ½ Æ ÆÐÐ Đ Ü ÄÐ, Ð, «Ï²³Ò«ÐÐ, ½ ²³Æ ĐÃ, ±½ÐÞ Å ¹Æ½ Ð Ó, Ë Ð»Õ ÆË Æ Å Ð..2 ÐÞ 5 «2% Ы½½ Ð Æ ÉĐ Ä Ð «Ò Ö., Ð 25 r/min, Ð À, º, ÏÉÈ» ν; Ð 50 r/min, Öº Ü, ÉÈÆ Ä ; Ð 150 É 250 r/min, Æ Þ, ² Ù ³, Ê Æ»,, Ô ¼ «, ÉÈ Â; Ð 50 r/min, Æ ÐÝ Ö Î, ³» ƽ Ü ²³, Ê ½ Ï» ÎÂ, Ð Í ÐÈÈ, Ò«½» Ã Ò ÐÇ, / Ð Ë Í. «ÊÆ ¾ Ð Ð ÄÈÈ Æ Ëбß. 6 150 r/min Ð Æ Ï ß «Ò  [12] Ð. Ã, Ä, Æ Ò«½Ï ÀÉ Æ ÒÐ Ü, ³ Ü ÆË Æ ÎÀ,» Æ Ü», ÒÂÕ. Æ Ë, Ú ½ÊÃ É ÌÕÕ. «Ð Ò Ð ÛÄ ³Ë, Æ Ð, ½ Ã³Ï ÐÐ ËÐ, Ð ß, ÒÉ Æ Ý, «Ðν̲ Æ ÆÐ Ë, ½ «É, Ù» «, ÂÖ «Ë ÕÐ Volume fraction 0.40 0.5 0.0 0.25 0.20 0.15 0.10 0.05 Rotation speed 25 r/min 50 r/min 150 r/min 250 r/min 50 r/min 0.00-0.10-0.05 0.00 0.05 0.10 Distance, m 5 ³ Æ«È Ã ÅÑ Õ ( Å 2%) Fig.5 Radial solid phase volume fraction at different rotation speeds in the middle of the tubular stirred reactor (solid concentration 2%) Đ Ò.. ½ ³ ÆË Æ ½ / «½ Ð, вÎ. 7 «Ü Ð Ð Ñ ««Ò Öм. Ã, Ñ «Ò ÖÀ 0.52, «2% «½ Рн 5 r/min Ó, «7.5% «½ Рн 8 r/min Ó, Ð 5 É 8 r/min, Æ Æ ¾. н 50 r/min, Æ Ð «Ñ «Ò Ö Î¹, ½ «ÀÐ «2% «½, Î, Ú Ê,  Þ, «ÈÈ Õ, º Ð Ò«Ü Ý ÆÀ Ò, «Õ, ÊÈÈ ÐÕ ½. «Ê, ÐÐ ¾Õ, 5 ÐÜ Â. 6 ³ Æ«µ Ô Ñ Á [12] Fig.6 Simulated (left) and tracer experimental [12] (right) f max 0.6 0.5 0.4 0. 0.2 0.1 concentration distributions at different times (rotation speed 150 r/min) (5, 0.52) (8, 0.52) Solid concentration 2% 7.5% 0 50 100 150 200 250 00 50 400 Rotation speed, r/min 7 ³ Ð ÅÑ Õ Fig.7 Curves of maximum solid volume fraction (f max) vs rotation speed

1008 Ñ Ø 46» Â, ÆË Æ É Æ Ò É Æ ÐÄ Ð Ü, Ð Ë ÉÆÉ ÂÐ. 4 (1) ÆËØ «Ò Æ», Ï Æ Ð / Ò Ö Ë, Ö «Ð» Æ Ò ÐÐ Õ Ð, É Ð Ò Â ³Ë Æ. (2) ÄÐ Æ É Æ Ò ² Î½Ò Ü», ½ Ð 150 r/min, Ò ÐÑ Ð 1.58 m/s. () Ð 150 É 250 r/min, Ë, ½ «2% É 7.5%, Ð 5 É 8 r/min. Õ Ð (25 r/min) É Ð (50 r/min) Í Ë. Ý ¹º [1] Yuan H J, Huang F, Li Q Q, Xiang Y, Yuan Y. J Guizhou Ind Univ, 2002; 1: 16 (,, ˳³, Ô,. ;Û. 2002; 1: 16) [2] Zhang T A, Zhao Q Y, Dou Z H, Liu Y, He J C. China Pat, ZL 2005100478., 2005 (,, ĐÀÌ, 2005100478., 2005), ÍÚ. È Ì, ZL [] Baldyga J, Pohorecki R. Chem Eng, 1995; 58: 18 [4] Kasat G R, Khopkar A R, Ranade V V, Pandit A B. Chem Eng Sci, 2008; 6: 877 [5] Kraume M. Chem Eng Technol, 1992; 15: 1 [6] Harrop K L, Spanfelner W H, Jahoda M, Otomo N, Etchells A W, Bujalski W, Nienow A W. Récents Progrés génie procédés, 1997; 52: 41 [7] Bujalski W, Takenaka K, Paolini S, Jahoda M, Paglianti A, Takahashi K, Nienow A W, Etchells A W. Chem Eng Res Des, 1999; 77: 241 [8] Michelletti M, Nikiforaki L, Lee K C, Yianneskis M. Ind Eng Chem Res, 200; 42: 626 [9] Khopkar A R, Kasat G R, Pandit A B, Ranade V V. Ind Eng Chem Res, 2006; 45: 4416 [10] Yamazaki H, Tojo K, Miyanami K. Powder Technol, 1986; 48: 205 [11] Zhao Q Y. PhD Thesis, Northeastern University, Shenyang, 2008 (. ² ±. ÈÔ, 2008) [12] Drew D A. Ann Rew Fluid Meth, 198; 15: 261 [1] Wen C Y, Yu Y H. Chem Eng Prog Symp Ser, 1966; 62: 100 [14] Chen T, Wu D Z, Du H X, Wang L Q, Li Z F. J Eng Thermophs, 2010; 1: 271 (,,, Ƴ, ËÀ. ¾ É, 2010; 1: 271)