div( u p 2 u) = λa(x)u q 2 u+ 1 F(u,v) u

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (



Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

Prey-Taxis Holling-Tanner

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

High order interpolation function for surface contact problem

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

EXISTENCE RESULTS FOR KIRCHHOFF TYPE SYSTEMS WITH SINGULAR NONLINEARITY. A. Firouzjai, G.A. Afrouzi, and S. Talebi

On Critical p-laplacian Systems

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Blowup of regular solutions for radial relativistic Euler equations with damping

with N 4. We are concerned

H Witten- ¾. 1956, Payne-póyla Weinberger [15] Ó ĐË È : (1) λ k+1 λ r 4. λ r. (2) n k. λ k , Yang [19] ÅĐ «Yang ¾. (λ k+1 λ r )λ r 1+ 4 ) 1

DtN ² *1) May, 2016 MATHEMATICA NUMERICA SINICA Vol.38, No.2. ˱ Helmholtz µå ű Dirichlet-to-Neumann. u = g, Γ, (1.1) r iku = o(r 1 2 ), r,

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

Ανώτερα Μαθηματικά ΙI

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Mesh Parameterization: Theory and Practice

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

Reverse Ball-Barthe inequality

tan(2α) = 2tanα 1 tan 2 α

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

A summation formula ramified with hypergeometric function and involving recurrence relation

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Déformation et quantification par groupoïde des variétés toriques

2 SFI

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D

A General Note on δ-quasi Monotone and Increasing Sequence

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Example Sheet 3 Solutions

ACTA MATHEMATICAE APPLICATAE SINICA Sep., ( MR (2000) Õ È 32C17; 32F07; 35G30; 53C55

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Single-value extension property for anti-diagonal operator matrices and their square

Εφαρμοσμένα Μαθηματικά

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

Strong global attractors for non-damping weak dissipative abstract evolution equations

rs r r â t át r st tíst Ó P ã t r r r â

Congruence Classes of Invertible Matrices of Order 3 over F 2

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

On a p(x)-kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term

Jeux d inondation dans les graphes

The Pohozaev identity for the fractional Laplacian

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

Προσομοίωση Δημιουργία τυχαίων αριθμών

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

p din,j = p tot,j p stat = ρ 2 v2 j,

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

þÿ ɺÁ Ä ÅÂ, ±»Î¼ Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

Matrices and Determinants

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

arxiv: v1 [math.dg] 3 Sep 2007

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

ZZ (*) 4l. H γ γ. Covered by LEP GeV

Some New Friedrichs-Type Inequalities in Domains with Microinhomogeneous Structure

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

Κληρονομικότητα. ΙωάννηςΓºΤσ ούλος

Second Order Partial Differential Equations

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Alterazioni del sistema cardiovascolare nel volo spaziale

¼ ½ ¾ À Á Â Á Ã Ä Å Á Æ Ç È É È É Á Ê Ä Ã Ã Ë Ì Í Ç Á Ê Ã È Á Ê Æ Ê Ì Ä Î Í Ï Ä É È Í Ç È Í Ð Í Ä Ê Ñ Ê Ì Ä É È Í Ò Ó Ô Õ Ö Ø Ù Ú Ú Û Ü Ý Þ Ó Ø ß à á

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Consommation marchande et contraintes non monétaires au Canada ( )

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Transcript:

, À ADVANCES IN MATHEMATICSCHINA) doi: 10.11845/sxjz.2013141b R N ÙÁÍÈÖ Ñ Þ ÚÓÇ ¼ «ß ß, «, ¾, 046011) Ò : µ R N Sobolev -Lalacian ± º Ð., ß, Nehari ²Æ³ «, ¾ Đ λ,µ) R 2 Å, л 2 ½«. Å : ± º Ð ; Nehari ²; Sobolev ; Ekeland ß ¹ MR2010) Û Ê: 35A15 / Ø ÊÂ: O175.2 Ï: A 1 ÄÜ ÆÎ Ö» Î ¾Æ ØÆ ºØ: div u 2 u) = λax)u q 2 u+ 1 Fu,v), x R N, u div v 2 v) = µbx)v q 2 v + 1 Fu,v), x R N, v ux),vx) > 0, x R N, P) 2 q < < N, λ > 0, µ > 0, ³Â ax),bx),fs,t) «: a) ax),bx) L R N ), ³ Ω R N 0 Ω, Ω > 0), Ω ax),bx) > 0, = N N Sobolev ± ; b) F C 1 R + R +,R + ) Â, Í Fνs,νt) = ν Fs,t) ν > 0). Î Ç ß Ö Ä Ö Å ² È Å [4, 23]» Ú½ Å [20] Ä ¹µ ½. ² È Å, µ Å. > 2, 1,2) ÂØ È, = 2 ² È. [6] ± Ì ØÐ ØÎ ¾Æ { u = λu+ u 2 2 u, x Ω, 1.1) ux) = 0, x Ω ÐÐ, Ω R N. [6] N 4, 0 < λ < λ 1, ¾Æ 1.1) ³ 1, λ 1 à Å. ± ØÎ ¾Æ Ç, º º : 2013-10-28. Ú º : 2014-03-27. Ê Ñ : ¾ Ô Î ÑÕ Ñ No. 20111129) Å«ß Ñ No. 2011113). E-mail: ywl6133@126.com

2 ß «[24], Í N 5, λ Ó, ¾Æ 1.1) ³ cat Ω Ω)., [29] ÐÐ Þ Ì ØÐÄ Ã ØÎ ¾Æ Ç, ¾ Æ ØÄ ºØ. [18] Í [29] ºØ -Lalacian ØÎ ¾Æ. [2, 8 9, 12 13, 15, 22, 28]. Ü, Ô Ì ØÐ Î ¾Æ ØÄ ºØ Ç Ü ÐÐ, [1, 3, 5, 7, 14, 17, 21]. Å, [30] Ö» ØÎ ¾Æ : u = λfx) u q 2 u+ α α+β hx) u α 2 u v β, x Ω, v = µgx) v q 2 v + β α+β hx) u α v β 2 v, x Ω, ux) = vx) = 0, x Ω, 1 < q < 2, α > 1, β > 1 «2 < α+β < 2, ³  f,g,h «Õ Ê. λ,µ) R 2 Ì, Nehari Ö, ¾Æ 1.2) ³ 2., [19] ÐÐ ¾Æ 1.2) f = g = h 1 ºØ, ³ [17] Í. [17], Hsu Nehari ÖÐл ØÎ ¾Æ : u = λ u q 2 u+ 2α α+β u α 2 u v β, x Ω, v = µ v q 2 v + 2β α+β u α v β 2 v, x Ω, ux) = vx) = 0, x Ω, 1 < q < < N, λ,µ > 0, ³ α > 1, β > 1 «α+β =. Λ > 0, λ,µ «0 < λ +µ < Λ, Ç 1.3) ³ 2., [25] Í Å ØÐÀ Â. [10], Chu Ä Tang» ØÎ ¾Æ u = εgx)+f u u,v), x Ω, v = εhx)+f v u,v), x Ω, 1.4) ux),vx) > 0, x Ω, ux) = vx) = 0, x Ω ØÄ ºØ, g,h C 1 Ω)\{0}, F µ µ 2,2 ]) Â. ¾ ¹Ä ¾¹, ε ÇÓ, ¾Æ 1.4) ³ 2., Ò Ä, Ç P) R N Ì ØÐÄ ± Ø ±É. [10, 17, 19, 25, 30 32], ± Nehari Ö ÜÐÐ Ç, ¹¾ ¹Æ Pohozaev [16] Æ ¾¹ÞÁ. ³ [17, 25, 30] ÅÍ R N. β = 2M F K ) )K q ), 1.2) 1.3)

Ð: R N Á ² ÙÏ µ» 3» ¾Đ Å: Ë 1.1 Ê a), b) Đ,» λ,µ «Ê : < β, Æ Ç P) ³ 1. Ë 1.2 Ê a), b) Đ, Æ Å C > 0, λ,µ «Ê : < C, Ç P) ³ 2. 2 ÐÀ Ì ¼, Å u É R N ux)dx. Ù X = {u,v) D 1, R N ) D 1, R N )}. u,v) = u 1, + v 1,, u 1, = u ) 1, v 1, = v ) 1. D 1, R N ) = {u L R N ) : u L R N )}» Banach Ù. ³ Å K > 0, ± u D 1, R N ), u K u 1,. 2.1) ¼Ä½, Ç P) º ± C 2 ½Â I : X R, Í Iu,v) = 1 u,v) 1 q λax) u q +µbx) v q 1 Fu,v) º. 2.1 [11] F C 1 R + R +,R + ) Â, Æ 1) Å M F > 0, ± s,t) R R, Fs,t) M F s + t ); 2) sf s s,t)+tf t s,t) = Fs,t); 3) F s,f t CR R,R) 1 Â. «½Â I X, Ä Ö» Nehari Ö: N = {u,v) X \{0,0)} : I u,v)),u,v) = 0}., ½Â I º À N. Ë 2.1 ½Â I Nehari Ö N ² ³. Ô ± u,v) N, Iu,v) = 1 1 ) u,v) ) u,v) q 1 ) λax) u q +µbx) v q q 1 ) ) K q u,v) q.

4 ß φu,v) = I u,v),u,v), Ʊ u,v) N, φ u,v),u,v) = u,v) λax) u q +µbx) v q Fu,v) = ) u,v) q ) λax) u q +µbx) v q = ) u,v) ) Fu,v). [27] Nehari Ö ¾¹ N ¼, Í N = N + N 0 N, N + = {u,v) N : φ u,v),u,v) > 0}, N 0 = {u,v) N : φ u,v),u,v) = 0}, N = {u,v) N : φ u,v),u,v) < 0}. N 0,N +,N Õص. Ë 2.2» u,v) I N, ³ u,v) / N 0, Æ u,v) I. Ô u,v) I N, Ä ÓÛ Ý¹ ¹, Å ω, ³ u,v) / N 0, Í Ä I u,v) = ωφ u,v). 0 = I u,v),u,v) = ω φ u,v),u,v). φ u,v),u,v) 0, ω = 0. I u,v) = 0. Ë 2.3» λ,µ «Ê λ a +µ b < β, Æ N 0 =. Ô N 0. Ʊ u,v) N, ص 2.1 Fu,v) M F u + v ) 2M F K P u,v). 2.2) u,v) N 0, 0 = φ u,v),u,v) = ) u,v) ) Fu,v), Ä u,v) 2M F K ) ) 1.

«Ð: R N Á ² ÙÏ µ» 5 ) u,v) = ) λax) u q +µbx) v q Í ) )K q u,v) q, )K q ) 1 ) 1 u,v) λ a + µ b. Æ Ê ³. Ä Å Đ. α > d. 2M F K ) Ý «2.3,» λ,µ «λ a +µ b )K q ). < β, Æ N = N + N. α = inf u,v) N α+ = inf Iu,v), α = inf Iu,v). u,v) N + u,v) N Ë 2.4 1)» λ,µ «Ê λ a +µ b < β, Æ α α + < 0. 2)» λ,µ «Ê λ a +µ b Ô 1) u,v) N +, Iu,v) = u,v) > 1 ) u,v) + q q 1 ) Ä «α,α + Í α α + < 0. 2) u,v) N, Æ 2.2) u,v) < u,v) > Iu,v) > 2M F K ) q 1 < q Fu,v), β, Æ Å d > 0, Fu,v) < qn u,v) < 0. Fu,v), 2M F K ) ) q 1 1 ) ) 1. 2M F K ) ) ) K q. )

6 ß Ä Å d > 0, α > d. Ý» λ,µ «Ê λ a +µ b < q β, u,v) X\{0,0)}, ³«Fu,v) > 0, Æ 0 < t + < t, t + u,t + v) N +,t u,t v) N, ³ It + u,t + v) = inf 0 t t Itu,tv), It u,t v) = su t 0 Itu,tv). 3 Ü ÆÎ Õ 1.1 Ä 1.2, ÛĐ. Ë 3.1» {u n,v n )} I N ÓÝ Í {u n,v n )} N, Iu n,v n ) α), ³ λ,µ «λ a +µ b < β, Æ r > 0, φ u n,v n ),u n,v n ) r. Ô {u n,v n )} N, φ u n,v n ),u n,v n ) 0, Æ ) u n,v n ) = q ) λax) u n q +µbx) v n q +o n 1), ) u n,v n ) = ) Fu n,v n )+o n 1). «2.1) ) u n,v n ) = ) Fu n,v n )+o n 1) 2M F K P ) u n,v n ) +o n 1), ) 1 o n 1) 2M F K P ) ) u n,v n ) u n,v n ). n, L > 0, 1 u n,v n) L. u n,v n ) 0 n ), Æ Iu n,v n ) 0. Ä α = 0. Æ α < 0 ³. «) ) u n,v n ) )K q un,v n ) q +o n 1), u n,v n ) 1 ) ) )K q o n 1) λ a + µ b + u n,v n ) q. Ä n, Í 2M F K ) )K q ). Æ Ê ³. Ë 3.2 1)» λ,µ «Ê λ a +µ b < β, I X s) α + Ý {u n,v n )} N +. 2)» λ,µ «Ê λ a +µ b < q β, I X s) α Ý {u n,v n )} N.

Ð: R N Á ² ÙÏ µ» 7 Ô 1) «2.1 I N. Ä Ekeland, Ý {u n,v n )} N «Iu n,v n ) α, I Nu n,v n ) 0. 3.1) ÓÛ Ý¹ ¹, λ n R I u n,v n ) = I Nu n,v n ) λ n φ u n,v n ). 3.2) I u n,v n ),u n,v n ) = I N u n,v n ),u n,v n ) λ n φ u n,v n ),u n,v n ). Ó {u n,v n )} N, 3.1) Ä 3.1 ØÍ λ n 0 n ). Ó 2.1 {u n,v n )} N, φ u n,v n ). Ä «3.2) Í I u n,v n ) 0. 2) Ë Ø. Ë 3.1» λ,µ «Ê λ a +µ b < β, Æ u,v) N +, 1) Iu,v) = α = α + ; 2) u,v) Ç P). Ô Ó 3.2, Ý {u n,v n )} N +, Iu n,v n ) α, I u n,v n ) 0. Ó 2.1 {u n,v n )}. X»Ù, Ä {u n,v n )}, X u n,v n ) u,v)., u,v) N {0,0)}. Ó [26] ax) u n q ax) u q, Iu n,v n ) q 1 ) n, Ó 2.4 Ä 3.3) λ u q +µ v q > 0. λ,µ > 0, Ä u,v) N. bx) v n q bx) v q. 3.3) λax) u n q +µbx) v n q. ¾, Fatou α Iu,v) = 1 ) u,v) q 1 ) λax) u q +µbx) v q liminf n 1 ) u n,v n ) q 1 ) ) λax) u n q +µbx) v n q = liminf n Iu n,v n ) = α.

8 ß Í Iu,v) = α, lim u n,v n ) = u,v). 3.4) n u,v) N +., {u n,v n )} N +, Ä Ó 3.1 Ø φ u n,v n ),u n,v n ) = ) u n,v n ) q ) λax) u n q +µbx) v n q r > 0. n, Ó 3.3) Ä 3.4) φ u,v),u,v) = ) u,v) q ) λax) u q +µbx) v q r > 0. Ä u,v) N +. ÓË u,v) Ç P). { u,v) S F = inf u,v) N : Fu,v) γ = 1 N S N F )K q q } Fu,v) > 0, 3.5) ).. Ë 3.3 ½Â I N «s) c Ê, c,γ). Ô {u n,v n )} N, Iu n,v n ) c, I u n,v n ) 0. Ó 2.1 {u n,v n )}, Ä {u n,v n )}, u n,v n ) u,v). u n ) = u n u,v n v), Ó Brézis-Lieb u n ) = u n,v n ) u,v) +o n 1), F u n ) = Fu n,v n ) Fu,v)+o n 1). 1 u n, v n ) 1 u n ) F u n ) = c Iu,v)+o n 1), 3.6) F u n ) = o n 1). u n ) l, F u n ) l. 3.7)» l = 0, Æ Å Đ.» l > 0, «3.5) Ä 3.7) l S N F. «3.6) c γ. Æ ³. Ä l = 0, Å Đ.

Ë 3.4 N Ò Ð: R N Á ² ÙÏ µ» 9 u,v) ÄÅ m > 0, λ,µ «Ê λ a + µ b < m, su t 0 Itu,tv) < γ. Å, λ,µ «Ê λ a µ b < m, α < γ. + Ô Å ρ > 0, B 2ρ 0) Ω. ηx) C R N,[0,1]), x B ρ 0), ηx) = 1, x R N \B 2ρ 0), ηx) = 0. ± ε > 0, u ε x) = ε+ x ηx) N 1 ). Ø Þ λ,µ γ = 1 N S N F )K q q > 0. Ó Itu ε,tu ε ) t u ε,u ε ) Ø t 0 > 0, su Itu ε,tv ε ) < γ. 0 t t 0 È [29] Ï, Ø Þ λ,µ suitu ε,tu ε ) 1 t t 0 N S N F +O ) ε N t q 0 λax) u ε q +µbx) v ε q < γ. q B 2ρ0) m > 0, λ,µ «Ê λ a +µ b < m, su t 0 Itu,tv) < γ. Ë 3.2» λ,µ «Ê λ a +µ b < C, C = min{ q β, m}, Æ u,v) N, 1) Iu,v) = α ; 2) u,v) Ç P). Ô Ó 3.2, Ý {u n,v n )} N, Iu n,v n ) α, I u n,v n ) 0. Ó 2.1 {u n,v n )}. X»Ù, Ä {u n,v n )}, X u n,v n ) u,v)., u,v) N {0,0)}. Ó 3.3 3.4 Ä 3.3) Ø Iu,v) = α > 0, Ä u,v) N. 3.1 Ø u,v) N. ÓË u,v) Ç P). Ë 1.1 Ã 1.2 Ô Ó 3.1 ØÍ 1.1 Đ. Ó N + N =, 3.1 3.2 ØÍ 1.2 Đ.

10 ß É [1] Adriouch, K. and El Hamidi, A., The Nehari manifold for systems of nonlinear ellitic equations, Nonlinear Anal., 2006, 6410): 2149-2167. [2] Alves, C.O. and Ding, Y.H., Multilicity of ositive solutions to a -Lalacian equation involving critical nonlinearity, J. Math. Anal. Al., 2003, 2792): 508-521. [3] Alves, C.O. and El Hamidi, A., Nehari manifold and existence of ositive solutions to a class of quasilinear roblems, Nonlinear Anal.: TMA, 2005, 604): 611-624. [4] Astrita, G. and Marrucci, G., Princiles of Non-Newtonian Fluid Mechanics, New York: McGraw-Hill, 1974. [5] Benmouloud, S., Echarghaoui, R., and Sbaï, S.M., Multilicity of ositive solutions for a critical quasilinear ellitic system with concave and convex nonlinearities, J. Math. Anal. Al., 2012, 3961): 375-385. [6] Brezis, H. and Nirenberg, L., Positive solutions of nonlinear ellitic equations involving critical Sobolev exonents, Comm. Pure. Al. Math., 1983, 364): 437-477. [7] Brown, K.J. and Wu, T.F., A semilinear ellitic system involving nonlinear boundary condition and signchanging weight function, J. Math. Anal. Al., 2008, 3372): 1326-1336. [8] Cao, D.M., Peng, S.J. and Yan, S.S., Infinitely many solutions for -Lalacian equation involving critical Sobolev growth, J. Funct. Anal., 2012, 2626): 2861-2902. [9] Chen, J.Q., Multile ositive solutions for a class of nonlinear ellitic equations, J. Math. Anal. Al., 2004, 2952): 341-354. [10] Chu, C.M. and Tang, C.L., Existence and multilicity of ositive solutions for semilinear ellitic systems with Sobolev critical exonents, Nonlinear Anal.: TMA, 2009, 7111): 5118-5130. [11] de Morais Filho, D.C. and Souto, M.A.S., Systems of -Lalacean equations involving homogeneous nonlinearities with critical Sobolev exonent degrees, Comm. Partial Diff. Eqs., 1999, 247/8): 1537-1553. [12] Degiovanni, M. and Lancelotti, S., Linking solutions for -Lalace equations with nonlinearity at critical growth, J. Funct. Anal., 2009, 25611): 3643-3659. [13] Deng, Y.B. and Wang, J.X., Critical exonents and critical dimensions for quasilinear ellitic roblems, Nonlinear Anal.: TMA, 2011, 7411): 3458-3467. [14] Ding, L. and Xiao, S.W., Multile ositive solutions for a critical quasilinear ellitic system, Nonlinear Anal.: TMA, 2010, 725): 2592-2607. [15] Ding, L. and Tang, C.L., Positive solutions for critical quasilinear ellitic equations with mixed Dirichlet- Neumann boundary conditions, Acta Math. Sci., 2013, 33B2): 443-470. [16] Drábek, P. and Pohozaev, S.I., Positive solutions for the -Lalacian: alication of the fibrering method, Proc. Roy. Soc. Edinburgh, Sect. A, 1997, 1274): 703-727. [17] Hsu, T.S., Multile ositive solutions for a critical quasilinear ellitic system with concave convex-nonlinearities, Nonlinear Anal.: TMA, 2009, 717/8): 2688-2698. [18] Hsu, T.S., Multilicity results for -Lalacian with critical nonlinearity of concave-convex tye and signchanging weight functions, Abstr. Al. Anal., 2009, 2009: Article ID 652109, 24 ages. [19] Hsu, T.S. and Lin, H.L., Multile ositive solutions for a critical ellitic system with concave-convex nonlinearities, Proc. Roy. Soc. Edinburgh, Sect. A, 2009, 1396): 1163-1177. [20] Ladde, G.S., Lakshmikantham, V. and Vatsala, A.S., Existence of couled quasi-solutions of systems of nonlinear reaction-diffusion equations, J. Math. Anal. Al., 1985, 1081): 249-266. [21] Lin, H.L., Multile ositive solutions for semilinear ellitic systems, J. Math. Anal. Al., 2012, 3911): 107-118. [22] Lin, M.L., Some further results for a class of weighted nonlinear ellitic equations, J. Math. Anal. Al., 2008, 3371): 537-546.

Ð: R N Á ² ÙÏ µ» 11 [23] Martinson, L.K. and Pavlov, K.B., Unsteady shear flows of a conducting fluid with a rheological ower law, Magnitnaya Gidrodinamika, 1971, 72): 50-58 in Russian). [24] Rey, O., A multilicity results for a variational roblem with lack of comactness, Nonlinear Anal.: TMA, 1989, 1310): 1241-1249. [25] Shen, Y. and Zhang, J.H., Multilicity of ositive solutions for a semilinear -Lalacian system with Sobolev critical exonent, Nonlinear Anal.: TMA, 2011, 744): 1019-1030. [26] Stavrakakis, N.M. and Zograhooulos, N.B., Existence results for quasilinear ellitic systems in R N, Electron. J. Diff. Eqs., 1999, 199939): 1-15. [27] Tarantello, G., On nonhomogeneous ellitic equations involving critical Sobolev exonent, Ann. Inst. H. Poincaré C), Anal. Non Linéaire, 1992, 93): 281-304. [28] Wu, T.F., On semilinear ellitic equations involving concave-convex nonlinearities and sign-changing weight function, J. Math. Anal. Al., 2006, 3181): 253-270. [29] Wu, T.F., On semilinear ellitic equations involving critical Sobolev exonents and sign-changing weight function, Comm. Pure. Al. Anal., 2008, 72): 383-405. [30] Wu, T.F., The Nehari manifold for a semilinear ellitic system involving sign-changing weight functions, Nonlinear Anal.: TMA, 2008, 686): 1733-1745. [31] Zhang, W.L., The existence of ositive ground state solutions for a,q)-lalacian system in R N, Math. Practice Theory, 2012, 424): 246-254 in Chinese). [32] Zhang, W.L., and Zhong, L.N., Existence and multilicity of nonnegative solutions for a quasilinear system in R N, Acta Math. Sci., 2013, 33A1): 174-184 in Chinese). Multilicity of Positive Solutions for a Quasilinear Ellitic Systems Involving Sobolev Critical Exonent in R N ZHANG Wenli Deartment of Mathematics, Changzhi University, Changzhi, Shanxi, 046011, P. R. China) Abstract: In this aer, we study the -Lalacian quasilinear system involving Sobolev critical exonent in R N. With the hel of the roerties of the weight function, by using variational method, and by using decomosition for Nehari manifold, we rove that the system exists at least two ositive solutions when the air of arameters λ,µ) belongs to a certain subset in R 2. Keywords: quasilinear ellitic system; Nehari manifold; Sobolev critical exonent; Ekeland variational rincile