Φυσική για Μηχανικούς

Σχετικά έγγραφα
Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

1 η Ενότητα Κλασική Μηχανική

Συστήματα συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Φυσική για Μηχανικούς

Κεφάλαιο M3. Διανύσµατα

Σημειώσεις Μαθηματικών 1

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

Φυσική για Μηχανικούς

ΦΥΣΙΚΗ. Η Φυσική είναι πειραματική επιστήμη

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

ΦΥΣΙΚΗ. Η Φυσική είναι πειραματική επιστήμη

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

Φυσική για Μηχανικούς

Θέση-Μετατόπιση -ταχύτητα

Φυσική για Μηχανικούς

Φυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β.

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

1.2 Συντεταγμένες στο Επίπεδο

2 ο Μάθημα Κίνηση στο επίπεδο

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1. ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης

Διανύσματα. (α) μέτρο, (β) διεύθυνση και. (γ) φορά. (κατεύθυνση=διεύθυνση+φορά).

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

Φυσική για Μηχανικούς

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

Φυσική για Μηχανικούς

Κεφάλαιο 3. Κίνηση σε δύο διαστάσεις (επίπεδο)

ΠΕΡΙΛΗΨΗ ΘΕΩΡΙΑΣ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

n, C n, διανύσματα στο χώρο Εισαγωγή

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ευθύγραμμη Κίνηση

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

Κεφάλαιο 3. Κίνηση σε δύο ή τρεις διαστάσεις

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

Η ΚΙΝΗΣΗ ΣΩΜΑΤΙΟ Ή ΥΛΙΚΟ ΣΗΜΕΙΟ Ή ΣΗΜΕΙΑΚΟ ΑΝΤΙΚΕΙΜΕΝΟ

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής

είναι τα διανύσματα θέσης της τελικής και της αρχικής του θέσης αντίστοιχα. Η αλγεβρική τιμή της μετατόπισης είναι Δx xτελ xαρχ

ΙΑΝΥΣΜΑΤΑ. Σ Λ + α = α

ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων

Φυσική για Μηχανικούς

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΣΥΝΟΨΗ 1 ου Μαθήματος

Μαθηματικά Προσανατολισμού Β Λυκείου

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

Εναλλασσόμενο και μιγαδικοί

Φυσική για Μηχανικούς

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,,

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

Φυσική για Μηχανικούς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Κεφάλαιο 8. Ορμή, ώθηση, κρούσεις

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση

 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ


Φυσική για Μηχανικούς

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ

Φυσική για Μηχανικούς

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

ΦΥΣΙΚΗ. Ενότητα 4: ΚΙΝΗΣΗ ΣΕ 2 ΔΙΑΣΤΑΣΕΙΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

Θέση και Προσανατολισμός

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις


Εφαρμοσμένα Μαθηματικά ΙΙ

1 η Ενότητα Κλασική Μηχανική

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

Transcript:

Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του να το προσγειώσει με ασφάλεια. Ποσότητες που ορίζονται τόσο από το μέτρο τους όσο και από την κατεύθυνσή τους (όπως η ταχύτητα) λέγονται διανυσματικές ποσότητες. (Mark Wagner/Getty Images) Κίνηση σε Μια Διάσταση Διανύσματα

Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του να το προσγειώσει με ασφάλεια. Ποσότητες που ορίζονται τόσο από το μέτρο τους όσο και από την κατεύθυνσή τους (όπως η ταχύτητα) λέγονται διανυσματικές ποσότητες. (Mark Wagner/Getty Images) Κίνηση σε Μια Διάσταση Διανύσματα

Στην κίνηση στο επίπεδο, τα διανύσματα είναι απαραίτητα! Διάνυσμα ΟΑ: προσανατολισμένο ευθύγραμμο τμήμα Μέτρο Διεύθυνση Φορά Καρτεσιανές συντεταγμένες x τετμημένη y τεταγμένη

Πολική μορφή x = rcos θ, y = rsin θ όπου r = x 2 + y 2 θ = tan 1 y x Παράδειγμα: Βρείτε την πολική μορφή του διανύσματος με συντεταγμένες (x,y) = (1,1) και ύστερα αυτού με συντεταγμένες (x,y)=(-1, -1).

Ιδιότητες διανυσμάτων Ισότητα διανυσμάτων Ίδιο μέτρο και κατεύθυνση Πρόσθεση διανυσμάτων

Ιδιότητες Αντιμεταθετικότητα Α + Β = Β + Α Προσεταιριστικότητα A + B + C = A + B + C

Αρνητικό διάνυσμα ενός διανύσματος Α Ορίζεται ως το διάνυσμα εκείνο που όταν προστεθεί στο Α, μας δίνει το μηδενικό διάνυσμα, δηλ. Α + Α = 0 Παράδειγμα: Πρόσθεση

Πολλαπλασιασμός διανύσματος με αριθμό Το διάνυσμα διατηρεί τη διεύθυνση, αλλά αλλάζει (πιθανώς) η φορά, και το μέτρο του B = m A, m R B = m A B A, αν m > 0 B A, αν m < 0

Η γραφική μέθοδος είναι βολική για απλά ή διαισθητικά προβλήματα Για μεγαλύτερη ακρίβεια, προτιμούμε την ανάλυση σε συνιστώσες (μια κάθετη και μια παράλληλη στον x- άξονα)

Πολική μορφή A x = Acos θ, A y = Asin θ Α = A x 2 + A y 2, θ = tan 1 A y A x Προσοχή στον υπολογισμό της γωνίας θ!

Πολλές φορές εκφράζουμε σύνθετα διανύσματα με όρους μοναδιαίων διανυσμάτων Μοναδιαία διανύσματα ι, j, k Έχουν μέτρο 1 (μονάδα) Δίνουν διεύθυνση i x, j y, k z Κάθετα μεταξύ τους i j, j k, i k

Το διάνυσμα Α μπορεί να γραφεί ως Α = Α x i + A y j με χρήση των μοναδιαίων διανυσμάτων Διάνυσμα θέσης Σημείο Α(x,y) r = x i + y j Οι συνιστώσες του r είναι οι x i, y j.

R = Α + Β R = A x i + A y j + B x i + B y j R = A x + B x i + A y + B y j με R x = A x + B x R y = A y + B y Πρόσθεση όλων των x-συνιστωσών και όλων των y- συνιστωσών R = R x 2 + R y 2 = A x + B x 2 + (A y + B y ) 2 tan θ = R y R x = A y+b y A x +B x

Προσθήκη περισσότερων διαστάσεων Α = Α x i + A y j + Α z k Όμοια ακριβώς συλλογιστική!

Παράδειγμα: Ένα ρομπότ αεροδρομίου προχωρά 25m ΝA από το σημείο αφετηρίας του. Ο αλγόριθμος αναγνώρισης εμποδίων του το σταματά και το «στέλνει» 40m σε διεύθυνση 60 ο ΒΑ, όπου και βρίσκει τον πύργο ελέγχου του (Δείτε το σχήμα). A. Αναλύστε τις συνιστώσες του ρομπότ για κάθε κίνησή του. B. Ορίστε τις συνιστώσες της συνολικής μετατόπισης R του ρομπότ. Βρείτε μια έκφραση για το R με όρους μοναδιαίων διανυσμάτων. C. Τι θα συνέβαινε αν το ρομπότ έπρεπε να επιστρέψει στο σημείο αφετηρίας του, μετά την επαφή του με τον πύργο ελέγχου του; Ποιες συνιστώσες θα περιέγραφαν την πορεία του; Ποια θα ήταν η κατεύθυνση του ρομπότ;

Παράδειγμα - Λύση Ένα ρομπότ αεροδρομίου προχωρά 25m ΝA από το σημείο αφετηρίας του. Ο αλγόριθμος αναγνώρισης εμποδίων του το σταματά και το «στέλνει» 40m σε διεύθυνση 60 ο ΒΑ, όπου και βρίσκει τον πύργο ελέγχου του. (Δείτε το σχήμα) A. Αναλύστε τις συνιστώσες του ρομπότ για κάθε κίνησή του.

Παράδειγμα - Λύση Ένα ρομπότ αεροδρομίου προχωρά 25m ΝA από το σημείο αφετηρίας του. Ο αλγόριθμος αναγνώρισης εμποδίων του το σταματά και το «στέλνει» 40m σε διεύθυνση 60 ο ΒΑ, όπου και βρίσκει τον πύργο ελέγχου του. (Δείτε το σχήμα) B. Ορίστε τις συνιστώσες της συνολικής μετατόπισης R του ρομπότ. Βρείτε μια έκφραση για το R με όρους μοναδιαίων διανυσμάτων.

Παράδειγμα - Λύση Ένα ρομπότ αεροδρομίου προχωρά 25m ΝA από το σημείο αφετηρίας του. Ο αλγόριθμος αναγνώρισης εμποδίων του το σταματά και το «στέλνει» 40m σε διεύθυνση 60 ο ΒΑ, όπου και βρίσκει τον πύργο ελέγχου του. (Δείτε το σχήμα) C. Τι θα συνέβαινε αν το ρομπότ έπρεπε να επιστρέψει στο σημείο αφετηρίας του, μετά την επαφή του με τον πύργο ελέγχου του; Ποιες συνιστώσες θα περιέγραφαν την πορεία του; Ποια θα ήταν η κατεύθυνση του ρομπότ;

Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί τρείς) διαστάσεις. Φυσική για Μηχανικούς Μηχανική Κίνηση σε Δυο Διαστάσεις

Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί τρείς) διαστάσεις. Φυσική για Μηχανικούς Μηχανική Κίνηση σε Δυο Διαστάσεις

Κίνηση σε Δυο Διαστάσεις Μελέτη κίνησης σε δυο διαστάσεις Κίνηση στο επίπεδο (x-y) Χρήσιμη σε πολλές εφαρμογές Κίνηση ρομπότ στο επίπεδο Κίνηση ηλεκτρονίων σε ηλεκτρικό πεδίο Κίνηση δορυφόρου σε τροχιά

Κίνηση σε Δυο Διαστάσεις Είδαμε σε προηγούμενη διάλεξη την κίνηση σε μια διάσταση (οριζόντιος άξονας x) Ας επεκτείνουμε τις ιδέες μας στο χώρο x-y Χώρος επιπέδου Θα κάνουμε εκτεταμένη χρήση διανυσμάτων αλλά και ανάλυσης σε συνιστώσες

Κίνηση σε Δυο Διαστάσεις Στη μια διάσταση, μας αρκούσε ένα μονόμετρο μέγεθος (αριθμ. τιμή) για να ορίσουμε τη θέση ενός σωματιδίου Στις δυο διαστάσεις, χρειαζόμαστε το διάνυσμα θέσης r Ξεκινά από το (0,0) και φτάνει ως τη θέση του σωματιδίου στο επίπεδο xy Mετατόπιση Δr Διαφορά μεταξύ αρχικής και τελικής θέσης Δr = r f r i

Κίνηση σε Δυο Διαστάσεις Ορίζουμε τη Μέση Ταχύτητα σε ένα χρονικό διάστημα Δt: v avg = Δ r Δt Διάνυσμα με ίδια διεύθυνση και φορά με το Δ r Θυμηθείτε από την κίνηση σε μια διάσταση: u avg Δ x Δt Διάνυσμα ανεξάρτητο της διαδρομής!! Γιατί; Εξαρτάται μόνο από το Δ r Που εξαρτάται μόνο από την αρχική και την τελική θέση του σωματιδίου

Τέλος Διάλεξης (συνεχίζεται )