Comparison of Numerical Performance of Mathematica 11.2 and Maple

Σχετικά έγγραφα
1 Elementary Functions

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

Review Exercises for Chapter 7

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Formulario di Trigonometria

Μαθηµατικοί Υπολογισµοί στην R

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

1 Σύντομη επανάληψη βασικών εννοιών

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

PARTIAL NOTES for 6.1 Trigonometric Identities

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΑΝΑΛΥΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΣΥΝΑΡΤΗΣΕΩΝ ΒΙΒΛΙΟΘΗΚΗΣ

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

BarChart y 1, y 2, makes a bar chart with bar lengths y 1, y 2,.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Συνοπτική εισαγωγή στην γλώσσα FORTRAN Μάριος Βαφειάδης Αν.Καθηγητής ΑΠΘ. Θεσσαλονίκη 2004

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.

Biostatistics for Health Sciences Review Sheet

Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

= df. f (n) (x) = dn f dx n

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

If we restrict the domain of y = sin x to [ π 2, π 2

Evolutive Image Coding

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

Rectangular Polar Parametric

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

MathCity.org Merging man and maths

ΤΗΛΕΠΙΣΚΟΠΗΣΗ. Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement)

Χάρης Παναγόπουλος Καθηγητής Φυσικής, Π.Κ

Chapter 6 BLM Answers

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

Trigonometric Formula Sheet

x j (t) = e λ jt v j, 1 j n

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Jörg Gayler, Lubov Vassilevskaya

Numerical Analysis FMN011

Εισαγωγή στη Γεώργιος Γεωργίου & Χρίστος Ξενοφώντος

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

Μεταγλωττιστές 2019 Θέμα εργασίας

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ. Παράδειγμα #1. Πράξεις μεταξύ ακεραίων αριθμών

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΕΠΙΣΤΗΜΟΝΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΥΣ

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Μαθηματική Ανάλυση Ι

Trigonometry 1.TRIGONOMETRIC RATIOS

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

Χρονικές σειρές 2 o μάθημα: Εισαγωγή στη MATLAB

Ι ΤΕΛΕΣΤΕΣ, ΤΑΥΤΟΤΗΤΕΣ, ΠΑΡΑΓΩΓΟΙ, ΣΕΙΡΕΣ, ΙΑΦΟΡΟΙ ΤΥΠΟΙ

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Formula for Success a Mathematics Resource

Συλλογή απο σταθερές και εντολές του Mathematica (Κυρίως για την έκδοση 6)

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις δεύτερου φυλλαδίου ασκήσεων.

Section 8.3 Trigonometric Equations

Ηλεκτρονικοί Υπολογιστές IV

Fundamentals of Wireless Communication

Εντολές της «Χελωνόσφαιρας»

ΠΕΡΙΕΧΟΜΕΝΑ Microsoft Office Excel 2003 Θεωρία - Συναρτήσεις - VBA - Εφαρµογές

FP series Anti-Bend (Soft termination) capacitor series

Διάλεξη 10η: Πολυδιάστατοι Πίνακες

Γενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Histogram list, 11 RANDOM NUMBERS & HISTOGRAMS. r : RandomReal. ri : RandomInteger. rd : RandomInteger 1, 6

INPAQ Global RF/Component Solutions

2x 2 + x + 1 (x + 3)(x 1) 2 dx, 2x (x + 1) dx. b x 1 + x dx x x 2 1, 6u 5 u 3 + u 2 du = 6u 3 u + 1 du. = u du.

IV. ANHANG 179. Anhang 178

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

MCB and MHC Series Chip Ferrite Bead for Automotive Applications Qualified based on AEC-Q200

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

5 Παράγωγος συνάρτησης

Other Test Constructions: Likelihood Ratio & Bayes Tests

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation


CRASH COURSE IN PRECALCULUS

Οι εντολές του MaLT+

Answers to Selected Exercises

Differential equations

Λίστα. Το διάνυζμα (vector) στο Mathematica είναι μια λίστα που έχει τα στοιχεία. Ο πίνακας ( matrix ) είναι λίστα απο τις λίστες.

_Toc ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΓΙΝΟΜΕΝΑ ΣΤΟ MATHEMATICA ΑΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΣΤΟ MATHEMATICA. 3

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Μετασχηματισμός Δεδομένων

Computing the Macdonald function for complex orders

FORMULAS FOR STATISTICS 1

RMT Tick RMT. Application of the RMT-test on Real Data: Hash Function and Tick Data of Stock Prices

ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ

Αριθµητικές Μέθοδοι Collocation. Απεικόνιση σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές

Transcript:

Comparison of Numerical Performance of Mathematica. and Maple 07. Summary Category Tests Median Mathematica speed Real data operations 0 s faster Real data operations (manual type override) 0 s faster Complex number data operations 6 s faster Complex number data operations (manual type override) 6 s faster Sparse real data operations 7 7,000 s faster Integer data operations 0 s faster Integer data operations (manual type override) 0 s faster Extended precision data operations (0 digits) 6 s faster Extended precision data operations (,000 digits) 6 s faster Random number generation 9 7 s faster Elementary & special functions 90,69 s faster Elementary & special functions (manual type override) 66 6 s faster Complex elementary & special functions 90 6 s faster Complex elementary & special functions (manual type override) 90 s faster Elementary & special functions (0 digits) 90 9 s faster High-precision function evaluation 9 s faster Exact functions 9 s faster GPU operations s faster Total 87 s faster

Machine-Precision Real Linear Algebra.0. Cholesky 00 00 00 000 size 0. 0.0 0.0 0. 0. 0.0 Convert matrix to vector 00 00 00 000 size.0. Covariance 00 00 00 000 size.0..0. Det 00 00 00 000 size.. 0.8 0.6 0. 0. Dot 00 00 00 000 size..0..0. Eigenvalues 00 00 600 800 00 size Eigenvectors Fit. Fourier 8 6 0.8 0.6 0. 0. 00 00 600 800 00 size 000 000 000 000 size 00 000 000 000 size Inverse LinearProgramming 0.8 LinearSolve 8 6 0.6 0. 0. 00 00 00 000 size 00 00 00 000 size 00 00 00 000 size 0. 0. 0. 0. MatrixExp MatrixPower 0 0 80 60 0 0 MatrixRank 0 00 00 00 size 00 00 00 000 size 00 000 000 000 000 6000 size

. 0.8 0.6 Mean 0.7 0.6 0. 0. Power Sort 0. 0. 0. 0. 000 000 000 000 size 00 00 00 000 size 00 000 000 000 size. Sort by absolute value 0.0 Transpose.0. 0.0 0.0 0.0 Mathematica. Maple 07. 0.0 00 000 000 000 size 00 00 00 000 size Machine-Precision Complex Linear Algebra.0. Det..0. Dot 8 6 Eigenvalues 00 00 00 000 size 00 00 00 000 size 00 00 600 800 00 size Eigenvectors Power. Convert matrix to vector 0.8 0.6 0. 0.. 0.8 0.6 0. 0. 00 00 600 800 00 size 00 00 00 000 size 00 00 00 000 size Fourier Inverse LinearSolve 0.0. 0. 0. 0.0 00 000 000 000 size 00 00 00 000 size 00 00 00 000 size

.0 MatrixExp. MatrixPower 00 MatrixRank. 0.8 0.6 00 00 0. 0. 0 0 00 00 00 00 size 00 00 600 800 00 size 00 000 000 000 000 6000 size.0. Mean..0. Sort by absolute value 0.08 0.06 0.0 Transpose 0.0 000 000 000 000 size 00 000 000 000 size 00 00 00 000 size Mathematica. Maple 07. Sparse Data Convert matrix to vector Dot LinearSolve 0 0.0 0.0 0.00-000 000 000 0 000 size 00 0.0 0.00 0.0 0.00 0.00. - 000 000 000 0 000 size 0 0. 00 000 000 000 000 6000 size MatrixPower Mean Power 0 0.0 0.0 0.00 000 000 000 000 6000 7000 8000 size 0.0 0.0 0.00 - - size 0 000 000 0 000 000 0.0 0.00 000 000 000 0 000 size Transpose 0.0 0.0 0.00 Mathematica. Maple 07. - 000 0 000 0 000 0 000 size

Integer Linear Algebra Det Dot Eigenvalues 0 00 00 00 00 600 size 00 00 00 800 600 00 00 00 00 00 000 size 0 0 0 0 60 size.0. Power 0.0 Convert matrix to vector Inverse.0. 0. 0. 0.0 00 00 00 000 size 00 00 00 000 size 0 0 60 80 size LinearSolve 60 0 0 MatrixExp 0 0 MatrixPower 0 0 0 0 0 00 00 00 00 size 0 0 0 size 0 00 00 00 00 size MatrixRank Mean Sort 00 0 0.08 0.06 0. 0. 0 0 0.0 0.0 0.0 00 00 00 000 size 00 000 000 000 size 00 000 000 000 size Sort by absolute value Transpose.0..0. 0.0 0.0 0.0 0.0 0.0 Mathematica. Maple 07. 00 000 000 000 size 00 00 00 000 size

6 Extended-Precision Data Cholesky 8 Det Dot 6 0 0 60 80 0 size 0 0 0 00 size 0 0 60 80 size 8 Eigenvalues 0 Eigenvectors 0 Power 6 0 0 0 0 0 60 size 0 0 60 80 size 00 00 600 800 00 size 8 6 Convert matrix to vector..0..0. Inverse 0. 0. 0. 0. LinearSolve 00 00 00 000 size 0 0 60 80 size 0 0 60 80 0 size MatrixExp MatrixPower MatrixRank 0 0 0 0 0 0 0 0 60 80 0 size 0 0 60 80 size 0 0 0 00 size Mean Sort Sort by absolute value 0. 0. 80 60 0 80 60 0.0 0 0 0 0 0 000 0 000 60 000 80 000 0 000 size 000 000 000 000 size 000 000 000 000 size Transpose 8 6 Mathematica. Maple 07. 00 00 00 000 size

7 Cholesky Det Dot 00 00 00 0 8 6 0 0 60 80 0 size 0 0 0 00 size 0 0 60 80 0 size 0 Eigenvalues 00 Eigenvectors 0 Power 0 0 0 0 0 0 0 0 0 0 60 80 size 0 0 60 80 size 00 00 600 800 00 size 0.8 0.6 Convert matrix to vector 8 6 Inverse LinearSolve 0. 0. 00 00 00 000 size 0 0 60 80 size 0 0 60 80 size 00 00 00 00 0 MatrixExp 0 MatrixPower 0 MatrixRank 0 0 0 0 60 size 0 0 60 80 size 0 0 60 80 0 size 0. 0. 0. 0. Mean 0 Sort 60 0 0 0 0 Sort by absolute value 0 000 0 000 60 000 80 000 0 000 size 00 000 000 000 size 00 000 000 000 size Transpose 0. 0. 0. Mathematica. Maple 07. 0. 00 00 00 000 size

8 Scalability of Data Operations faster 600 Sort 00 Power 00 00 00 00 0 800 600 00 00 real 00 000 000 000 Fit 6 6 6 0 00 00 600 800 00 Sort by absolute value 00 00 00 00 0 real 00 000 000 000 0 000 0 000 0 000 0 000 faster Inverse Det 70 60 0 0 0..0..0. integer integer[8] 0 0 0 0 60 80 MatrixRank 0 0 00 00 00 00 600 Dot 000 000 000 00 000 000 00 integer integer[8] 0 00 00 00 00 00 00 000

9 Random Numbers Maple Mathematica 8 77 8 9 6 0 Function Evaluation

Maple Mathematica 000 Map ~ map 00 00 Sin Cos Tan ArcTan Sec Csc Cot Exp 9 BesselJ BesselK BesselY Zeta Sinh Cosh Tanh Erf Gamma ArcSinh sin(cos(x)) erf(sin(x)) e x Maple Mathematica 00 00 00 0 0 0 Sqrt ArcSin ArcCos Log Log ArcCosh ArcTanh + ( ) + + + ( ) x log(sinh(x)) Map ~ map 0 Maple Mathematica 07 8 87 7 768 89 67 6 67 0 69 89 Map ~ map 0 Sqrt Sin Cos Tan ArcSin ArcCos ArcTan Sec Csc Cot Exp Sinh Cosh Tanh Log Log Erf Gamma

Maple Mathematica 00 00 0 0 Sqrt Sin Cos Tan ArcSin ArcCos ArcTan Sec Csc Cot Exp Sinh Cosh Tanh Log Log Erf Gamma BesselJ BesselK BesselY ArcSinh ArcCosh ArcTanh Zeta + ( ) + + + ( ) sin(cos(x)) x log(sinh(x)) erf(sin(x)) e x Map ~ map Maple Mathematica 00 00 0 0 Sqrt Sin Cos Tan ArcSin ArcCos ArcTan Sec Csc Cot Exp Sinh Cosh Tanh Log Log Erf Gamma BesselJ BesselK BesselY ArcSinh ArcCosh ArcTanh Zeta + ( ) + + + ( ) sin(cos(x)) x log(sinh(x)) erf(sin(x)) e x Map ~ map

Maple Mathematica 0 0 Map ~ map Sqrt Sin Cos Tan ArcSin ArcCos ArcTan Sec Csc Cot Exp Sinh Cosh Tanh Log Log Erf Gamma BesselJ BesselK BesselY ArcSinh ArcCosh ArcTanh Zeta + ( ) + + + ( ) sin(cos(x)) x log(sinh(x)) erf(sin(x)) e x High-Precision Evaluation Maple Mathematica 0 77 66 06 0 0 0 π sin() + +sin e log() tan( + i) K () Γ erf() Exact Numeric Functions π

Function Largest test value Mathematica speed BernoulliB 6,000 s faster Fibonacci 00,000 s faster HarmonicNumber,000 Maple cannot compute for n > 00 Zeta 0,000 s faster Binomial 7 s faster GPU Performance 8 6 Dot 000 000 6000 size General Testing Methodology +

Revision Notes Appendix: Test Source Code Mathematica code $HistoryLength = 0; steps = ; repeats = ; maxvector = ^6; maxmatrix = 000; maxsparsematrix = 0 000; makedata[type_, i_] := Switch type, "RealVector", RandomReal[{-, }, i], "RealMatrix", RandomReal[, {i, i}], "ExtendedMatrix", RandomReal[, {i, i}, WorkingPrecision 0], "ExtendedMatrix00", RandomReal[, {i, i}, WorkingPrecision 00], "ExtendedVector", RandomReal[, {i}, WorkingPrecision 0], "ExtendedVector00", RandomReal[, {i}, WorkingPrecision 00], "IntegerMatrix", RandomInteger[0, {i, i}], "IntegerVector", RandomInteger[0, i], "SparseMatrix", SparseArray Table {RandomInteger[{, i}], RandomInteger[{, i}]} Random[], i^ 000, {i, i}, "SparseVector", SparseArray Table RandomInteger[{, i}] Random[], Floor i 000, {i}, "MediumSparseMatrix", SparseArray Table {RandomInteger[{, i}], RandomInteger[{, i}]} Random[], i^ 00, {i, i}, "ComplexMatrix", RandomComplex[{0, + I}, {i, i}], "ComplexVector", RandomComplex[{0, + I}, {i}], _, Print[type] ;

dreport[path_, fn_, hi_, type_] := Block {data}, Export "Mathematica" <> ToString[$VersionNumber] <> path <> ".txt", Table {Floor[t], Mean[Table[ data = makedata[type, Floor[t]]; AbsoluteTiming[fn[data]][[]], {repeats}]]} hi, t, steps, hi, hi, "Table" ; steps highprecisionreport[path_, fns_, n_] := Export["Mathematica" <> ToString[$VersionNumber] <> path <> ".txt", Map[AbsoluteTiming[N[#, n]][[]] &, fns]] NumericTest[path_, fns_list, n_, type_] := Block[{data}, Export["Mathematica" <> ToString[$VersionNumber] <> path <> ".txt", Table[data = makedata[type, n]; AbsoluteTiming[i[data]][[]], {i, fns}]]]; evaluatetest[path_, expr_hold] := Export["Mathematica" <> ToString[$VersionNumber] <> path <> ".txt", Apply[List, First /@ Map[AbsoluteTiming, expr]]] fnlist = {Sqrt, Sin, Cos, Tan, ArcSin, ArcCos, ArcTan, Sec, Csc, Cot, Exp, Sinh, Cosh, Tanh, Log, Log, Erf, Gamma, BesselJ[0, #] &, BesselK[, #] &, BesselY[, #] &, ArcSinh, ArcCosh, ArcTanh, Zeta, # Sin[Log[#] + * Sqrt[#] + ] + Sqrt[#] + Log[#] &, Sin[Cos[#]] &, # Log[Sinh[#]] &, Erf[Sin[#]] &, Exp[#^] &}; NumericTest["ElementaryFunctions", fnlist, maxvector, "RealVector"]; NumericTest["ElementaryFunctionsComplex", fnlist, maxvector, "ComplexVector"]; NumericTest "ElementaryFunctionsExtended", fnlist, maxvector, "ExtendedVector" ; NumericTest "ElementaryFunctionsExtended00", fnlist, maxvector 0, "ExtendedVector00" ; NumericTest["ElementaryFunctionsSparse", fnlist, 0 000 maxvector, "SparseVector"];

6 dreport["fourierreal", Fourier, maxvector, "RealVector"]; dreport["sortreal", Sort, maxvector, "RealVector"]; dreport["sortcustomreal", SortBy[#, Abs] &, maxvector, "RealVector"]; dreport["meanreal", Mean, maxvector, "RealVector"]; dreport["dotreal", #.# &, maxmatrix, "RealMatrix"]; dreport["inversereal", Inverse, maxmatrix, "RealMatrix"]; Quiet@ dreport["linearsolvereal", LinearSolve[#, #[[]]] &, maxmatrix, "RealMatrix"]; dreport["choleskyreal", CholeskyDecomposition[Transpose[#].#] &, maxmatrix, "RealMatrix"]; dreport["matrixpowerreal", MatrixPower[#, ] &, maxmatrix, "RealMatrix"]; dreport["detreal", Det, maxmatrix, "RealMatrix"]; dreport["transposereal", Transpose, maxmatrix, "RealMatrix"]; dreport["flattenreal", Flatten, maxmatrix, "RealMatrix"]; dreport "EigenvaluesReal", Eigenvalues, maxmatrix, "RealMatrix" ; dreport "EigenvectorsReal", Eigenvectors, maxmatrix, "RealMatrix" ; dreport["linearprogrammingreal", LinearProgramming[Abs[#[[]]], Abs[#], Abs[#[[]]], Method "CLP"] &, maxmatrix, "RealMatrix"]; dreport["elementpowerreal", # ^ &, maxmatrix, "RealMatrix"]; dreport["movingaveragereal", MovingAverage[#, ] &, maxvector, "RealVector"]; dreport "FitReal", Function[{data}, Fit[data, x, x]][transpose[{#, #}]] &;, * maxvector, "RealVector" ; dreport "MatrixExpReal", MatrixExp, maxmatrix, "RealMatrix" ; dreport["covariancereal", Covariance, maxmatrix, "RealMatrix"]; dreport["matrixrank", MatrixRank, maxmatrix, "RealMatrix"]; dreport["fouriercomplex", Fourier, maxvector, "ComplexVector"]; dreport["sortcustomcomplex", SortBy[#, Abs] &, maxvector, "ComplexVector"]; dreport["meancomplex", Mean, maxvector, "ComplexVector"]; dreport["dotcomplex", #.# &, maxmatrix, "ComplexMatrix"]; dreport["inversecomplex", Inverse, maxmatrix, "ComplexMatrix"]; dreport["linearsolvecomplex", LinearSolve[#, #[[]]] &, maxmatrix, "ComplexMatrix"]; dreport["choleskycomplex", CholeskyDecomposition[ConjugateTranspose[#].#] &, maxmatrix, "ComplexMatrix"]; dreport "MatrixPowerComplex", MatrixPower[#, ] &, maxmatrix, "ComplexMatrix" ; dreport["detcomplex", Det, maxmatrix, "ComplexMatrix"]; dreport "EigenvaluesComplex", Eigenvalues, maxmatrix, "ComplexMatrix" ; dreport "EigenvectorsComplex", Eigenvectors, maxmatrix, "ComplexMatrix" ; dreport["transposecomplex", Transpose, maxmatrix, "ComplexMatrix"]; dreport["flattencomplex", Flatten, maxmatrix, "ComplexMatrix"]; dreport["elementpowercomplex", # ^ &, maxmatrix, "ComplexMatrix"]; dreport "MatrixExpComplex", MatrixExp, maxmatrix, "ComplexMatrix" ; dreport["matrixrankcomplex", MatrixRank, maxmatrix, "ComplexMatrix"]

7 dreport["dotsparse", #.# &, maxsparsematrix, "SparseMatrix"]; Quiet@dReport "LinearSolveSparse", LinearSolve[#, #[[]]] &, maxsparsematrix, "MediumSparseMatrix" ; dreport["transposesparse", Transpose, * maxsparsematrix, "SparseMatrix"]; dreport["flattensparse", Flatten, maxsparsematrix, "SparseMatrix"]; dreport["elementpowersparse", # ^ &, maxsparsematrix, "SparseMatrix"]; dreport["meansparse", Mean, maxvector * 0, "SparseVector"]; dreport "MatrixPowerSparse", MatrixPower[#, ] &, * maxsparsematrix, "SparseMatrix" ; dreport["movingaveragesparse", MovingAverage[#, ] &, maxvector, "SparseVector"]; dreport["dotinteger", #.# &, maxmatrix, "IntegerMatrix"]; dreport "InverseInteger", Inverse, maxmatrix, "IntegerMatrix" ; dreport "LinearSolveInteger", LinearSolve[#, #[[]]] &, maxmatrix, "IntegerMatrix" ; dreport "MatrixPowerInteger", MatrixPower[#, ] &, maxmatrix, "IntegerMatrix" ; dreport["detinteger", Det, 600, "IntegerMatrix"]; dreport["transposeinteger", Transpose, maxmatrix, "IntegerMatrix"]; dreport["flatteninteger", Flatten, maxmatrix, "IntegerMatrix"]; dreport["meaninteger", Mean, maxvector, "IntegerVector"]; dreport["sortinteger", Sort, maxvector, "IntegerVector"]; dreport["sortcustominteger", SortBy[#, Abs] &, maxvector, "IntegerVector"]; dreport "EigenvaluesInteger", Eigenvalues, maxmatrix 0, "IntegerMatrix" ; dreport["elementpowerinteger", # ^ &, maxmatrix, "IntegerMatrix"]; dreport["matrixexpinteger", MatrixExp, 0, "IntegerMatrix"]; dreport["matrixrankinteger", MatrixRank, maxmatrix, "IntegerMatrix"]; dreport "DotExtended", #.# &, maxmatrix, "ExtendedMatrix" ; dreport "InverseExtended", Inverse, maxmatrix, "ExtendedMatrix" ; dreport "CholeskyExtended", CholeskyDecomposition[Transpose[#].#] &, maxmatrix 0, "ExtendedMatrix" ; dreport["eigenvaluesextended", Eigenvalues, 60, "ExtendedMatrix"]; dreport["eigenvectorsextended", Eigenvectors, 80, "ExtendedMatrix"]; dreport "ElementPowerExtended", #^ &, maxmatrix, "ExtendedMatrix" ; dreport "LinearSolveExtended", LinearSolve[#, #[[]]] &, maxmatrix 0, "ExtendedMatrix" ; dreport "DetExtended", Det, maxmatrix, "ExtendedMatrix" ; dreport["transposeextended", Transpose, maxmatrix, "ExtendedMatrix"]; dreport["flattenextended", Flatten, maxmatrix, "ExtendedMatrix"]; (*dreport "FourierExtended",Fourier,maxVector 0,"ExtendedVector" ; Maple converts to floats*) dreport "MeanExtended", Mean, maxvector, "ExtendedVector" ; dreport["sortextended", Sort, * maxvector, "ExtendedVector"]; dreport["sortcustomextended", SortBy[#, Abs] &, * maxvector, "ExtendedVector"]; dreport "EigenvectorsExtended", Eigenvectors, maxmatrix, "ExtendedMatrix" ; dreport "MatrixPowerExtended", MatrixPower[#, ] &, maxmatrix, "ExtendedMatrix" ; dreport["matrixexpextended", MatrixExp, 0, "ExtendedMatrix"]; dreport "MatrixRankExtended", MatrixRank, maxmatrix, "ExtendedMatrix" ;

8 dreport "DotExtended00", #.# &, maxmatrix 0, "ExtendedMatrix00" ; dreport "InverseExtended00", Inverse, maxmatrix, "ExtendedMatrix00" ; dreport "CholeskyExtended00", CholeskyDecomposition[Transpose[#].#] &, maxmatrix 0, "ExtendedMatrix00" ; dreport["eigenvaluesextended00", Eigenvalues, 80, "ExtendedMatrix00"]; dreport["eigenvectorsextended00", Eigenvectors, 80, "ExtendedMatrix00"]; dreport "ElementPowerExtended00", #^ &, maxmatrix, "ExtendedMatrix00" ; dreport "LinearSolveExtended00", LinearSolve[#, #[[]]] &, maxmatrix, "ExtendedMatrix00" ; dreport "DetExtended00", Det, maxmatrix, "ExtendedMatrix00" ; dreport["transposeextended00", Transpose, maxmatrix, "ExtendedMatrix00"]; dreport["flattenextended00", Flatten, maxmatrix, "ExtendedMatrix00"]; dreport "MeanExtended00", Mean, maxvector, "ExtendedVector00" ; dreport["sortextended00", Sort, maxvector, "ExtendedVector00"]; dreport["sortcustomextended00", SortBy[#, Abs] &, maxvector, "ExtendedVector00"]; dreport "MatrixPowerExtended00", MatrixPower[#, ] &, maxmatrix, "ExtendedMatrix00" ; dreport["matrixexpextended00", MatrixExp, 60, "ExtendedMatrix00"]; dreport "MatrixRankExtended00", MatrixRank, maxmatrix 0, "ExtendedMatrix00" evaluatetest["exactfunctions", Hold[ Table[BernoulliB[i], {i, 6000}], Table[Fibonacci[i], {i, 0, 00 000, 00}], (*Table[HarmonicNumber[i],{i,000}], Maple fails*) Table[Zeta[i], {i, 0, 0 000, 000}], Table[Binomial[i^, i], {i,, 000}] ]]; evaluatetest["randomnumbers", Hold[ makedata["realmatrix", 000], makedata["realmatrix", 000], makedata["integermatrix", 000], makedata["integermatrix", 000], makedata["extendedmatrix", 000], makedata["extendedmatrix00", 000], RandomVariate[NormalDistribution[0, ], ^ 7], RandomVariate[PoissonDistribution[], ^ 7], RandomVariate[BinomialDistribution[, 0.], ^ 7] ]]; highprecisionreport "ManyDigits", Pi, Sqrt[], Sin[] +, Exp[], Log[], Tan[ + I], 000 000 ; + Sin[] highprecisionreport "FewerDigits", BesselK[, ], Gamma, Erf[], 000 ;

Maple 9

0