Lectures on Quantum sine-gordon Models

Σχετικά έγγραφα
Lectures on Quantum sine-gordon Models

1 Classical Mechanics

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

Solutions - Chapter 4

Dark matter from Dark Energy-Baryonic Matter Couplings

Lecture 21: Scattering and FGR

Fourier Analysis of Waves

6.4 Superposition of Linear Plane Progressive Waves

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Space-Time Symmetries

= df. f (n) (x) = dn f dx n

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Relativistic particle dynamics and deformed symmetry

Geodesic paths for quantum many-body systems

Higher Derivative Gravity Theories

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

1 String with massive end-points

Κβαντομηχανική Ι Λύσεις προόδου. Άσκηση 1

Analytical Mechanics ( AM )

Aspects of the BMS/CFT correspondence

A 1 A 2 A 3 B 1 B 2 B 3

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Physics 582, Problem Set 2 Solutions

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 27. Relativity of transverse waves and 4-vectors

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ


L 2 -σύγκλιση σειρών Fourier

Kinetic Space Plasma Turbulence

Srednicki Chapter 55

Επίλυση Δ.Ε. με Laplace

4.4 Superposition of Linear Plane Progressive Waves

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Higher spin gauge theories and their CFT duals

Oscillatory Gap Damping

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

D Alembert s Solution to the Wave Equation

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

The Feynman-Vernon Influence Functional Approach in QED

Κβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1

Homework 8 Model Solution Section

Three coupled amplitudes for the πη, K K and πη channels without data

Spherical Coordinates

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

AdS black disk model for small-x DIS

Physics 513, Quantum Field Theory Examination 1

σ (9) = i + j + 3 k, σ (9) = 1 6 k.

Quantum Electrodynamics

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Forced Pendulum Numerical approach

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.

Συστήματα Επικοινωνιών Ι

Probability and Random Processes (Part II)

[Note] Geodesic equation for scalar, vector and tensor perturbations


Exact Two Waves Solutions with Variable Amplitude to the KdV Equation 1

Symmetric Stress-Energy Tensor

Christian J. Bordé SYRTE & LPL.

1 Conformal transformations in 2d

Chapter 2. Stress, Principal Stresses, Strain Energy

Spectrum Representation (5A) Young Won Lim 11/3/16

Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20

( ˆ Š ƒ ˆ ).. Ì Ó,. Œ. µ

Markov chains model reduction

From Fierz-Pauli to Einstein-Hilbert

Cosmological Space-Times

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Graded Refractive-Index

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

General equilibrium second-order hydrodynamic coefficients for stress-energy tensor and axial current

LTI Systems (1A) Young Won Lim 3/21/15

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

L A TEX 2ε. mathematica 5.2

Aspects of the BMS/CFT correspondence

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Name: Math Homework Set # VI. April 2, 2010

Second Order Partial Differential Equations

Transcript:

Lectures on Quantum sine-gordon Models Juan Mateos Guilarte, Departamento de Física Fundamental (Universidad de Salamanca IUFFyM (Universidad de Salamanca Universidade Federal de Matto Grosso Cuiabá, Brazil, 00

Outline 3

The sine-gordon action Scalar field and R, Minkowski space-time conventions φ : R, R, x µ R,, µ = 0,, x 0 = t, x = x x µ x µ = g µνx µ x ν, g = = g, g = g = 0 µ = x µ, µ µ = = t x, dx = dx 0 dx S = { ( ( } dx µφ µ φ m4 λ cos λ m φ Re-scaling the fields and coordinates: S[φ] = = m λ = m λ dt {T[φ(t] V[φ(t]} { dt dx λ m φ φ, mxµ x µ [ φ φ t t φ φ x x } dx { µφ µ φ ( cos φ ]} ( cos φ (

The field equation Field energy φ(t, x = The sine-gordon equation ( t x φ(t, x + sin φ(t, x = 0 ( φ u + v (u, v = sin φ(u, v, x = u v E[φ] = T[φ(t] + V[φ(t] = m3 λ Configuration space Asymptotic conditions φ lim x ± x (t 0, x = 0, Topological current dx [ φ φ + t t, t = u v C = {φ(t 0, x Maps(R, R/V[φ(t 0 ] < + } lim φ(t 0, x = πn ±, n +, n Z, x ± ] φ φ + ( cos φ x x C = C n+ n j µ T = π εµν νφ(t, x, ε 0 = ε 0 =, ε 00 = ε = 0, µj µ T = 0

Topological charge Q T = Q T = t The stress tensor The sine-gordon invariants dx j 0 t (t, x = φ(t, + φ(t, π π φ φ (t, + + (t, t t = 0 L = µφ µ φ + cos φ, T µν = µφ νφ g µνl T 00 = ( φ φ + φ φ + cos φ, T 0 = φ φ t t x x t x T = ( φ φ + φ φ + cos φ, T 0 = φ φ t t x x x t Conserved quantities: Energy and momentum T µν = g µρ g νσ T ρσ, T 00 = T 00, T = T, T 0 = T 0 t T00 x T0 = 0 t P0 = t dx T 00 = 0 x µ Tµν = 0 dx T 0 = 0 t T0 x T = 0 t P = t

Painlevè property: φ(u, v = f (z, z = uv zf (z+f (z = sin f (z g (z (g Static homogeneous solutions The sine-gordon soliton g (z+ g (z g (z + z if (z = 0, g(z = e φ n = πn, T 00 [φ n] = cos φ n = 0, Q T [φ n] = P 0 [φ n] = P [φ n] = 0 φ n+ = (n + π, T 00 [φ n+ ] = cos φ n+ =, n Z Kink traveling waves T 00 [φ(x] = dφ dφ dφ + cos φ(x = 0 dx dx dx = ± ( cos φ(x dφ sin φ = ±(x x c φ Kn (x = 4 arctan[exp(±(x x c] + πn Lorentz transformations φ Kn ( x xc γt γ ±(x xc γt = 4 arctan[exp[ ]] + πn, γ R γ > γ > 0 = a a +, a = ± + γ γ, C = exp[ x c ], γ xc R

The sine-gordon soliton Kink topological charge, energy, and momentum Q T [φ Kn (t, x] =, P 0 8 [φ Kn (t, x] =, 8 γ P [φ Kn (t, x] = γ γ

Two-soliton solutions: two-kinks Two step Bäcklund : C = C = [ a + a φ 4 (t, x = 4arctan a a [ { }] [ exp (a + x + (a a t exp a [ + exp { (a + }] x + (a a t a }] { (a + a + a + a x + (a + a a a t Two sine-gordon kinks centered at the origin + γ + γ a =, a =, Q T [φ KK (t, x] = γ γ +γ +γ γ φ KK (t, x = 4 arctan γ +γ +γ + exp exp [ γ + x+γ t γ ] γ exp [ x γ t γ [ γ γ ( γ ( γ ( x + (γ γ t ] ]

Energy and momentum P 0 8 [φ KK ] = + γ 8 γ Two-soliton solutions: Kink-Antikink, P 8 [φ KK ] = γ γ 8 γ One sine-gordon kink and one anti-kink centered at the origin a = + γ + γ, a = γ γ, Q T [φ KA (t, x] = 0 φ KA (t, x = +γ + +γ γ 4 arctan γ +γ +γ γ γ [ ] [ ] x γ exp t exp x γ t γ γ [ ] γ + exp γ (x (γ γ t ( γ ( γ γ

Energy and momentum P 0 8 [φ KA ] = + γ Two-soliton solutions: Breathers 8 γ Soliton-antisoliton bound states [ φ B (t, x = 4 arctan tan θ sin(cos θ t ] L cosh(sin θ x L Center of mass γ = 0: a = sin θ i cos θ, Topological charge, energy, momentum, and period, P 8 [φ KA ] = γ γ 8 γ γ, t L = t γx γ, x L = x γt γ a = sin θ + i cos θ Q T [φ B (t, x] = 0, P 0 [φ B (t, x] = 6 γ sin θ P [φ B (t, x] = 6 γ sin θγ, T = π sin θ

The sine-gordon Hamiltonian Canonical momenta and Hamiltonian density π(t, x = δl φ = (t, x δ φ t H[π, φ] = π φ L = t π(t, xπ(t, x + φ φ + cos φ(t, x x x Poisson brackets {F[π, φ], G[π, φ]} = {π(t, x, φ(t, y} = ( λ δf m δπ The sine-gordon Hamiltonian H[π, φ] = dx H[π, φ] = dk ρ(k k + + l δg δφ δf δφ δg δπ λ δ(x y, Ḟ[φ, φ] = {H, F} m p l + 8 + n p n + 6 sin θ n

Lax pair The sine-gordon Lax pair X = i x φ t T3 + k cos φ T + ω sin φ T, T a = σa, a =,, 3 Y = i t φ x T3 + ω cos φ T + k sin φ T, (ω, k R,, ω k = XY YX = [ ] φ i t φ x + sin φ T 3, [T, T b ] = iε abc T c Zero curvature and flat connections D t = t + iat(t, x = iy, Dx = + iax(t, x = ix x F tx = [D t, D x] = i [ ] φ t φ x sin φ T 3 = 0, g(t, x = exp[iθ a(t, xt a ] A t(t, x = g (t, x tg(t, x, A x(t, x = g (t, x xg(t, x Linear spectral problem Xψ = 0, Yψ = 0, X[φ(0, x, π(0, x, ω]ψ k (x = 0 ( i x k ( π(0, x cos φ (0, x ψ k (x k cos φ (0, x i x + π(0, x ψ k (x = ( ( 0 i ω = sin φ (0, x ψ k (x i ω φ (0, x ψ sin k (x

Scattering data Jost matrices XF = 0 df ( π dx = i T3 k cos φ T + ω sin φ T F(x, k { x } F(x, k = Pexp i dya x[π(0, y, φ(0, y, k], F ± (x, k x ± exp [i( n ± kxt ] Scattering amplitudes ( a(k b(k F(x, k = b (k a (k T(k = a(k, R(k = a(k b(k Reading the spectrum. Discrete spectrum: zeroes of a(k Bound states: k = iκ l, 0 < κ l R, ω = κ l ( ( ψ l x e κlx, ψ l x + F (x, k, a(k + b(k =, a (k = a(k, C l e κ lx, C l R Resonances: k = ξ m, ξ m C, ±Reξ m > 0, Imξ m > 0, ω = + ξm ( ( ψ m x e iξmx, ψ m x + d me iξmx, d m C

Discrete plus continuous spectrum Action-angle variables S (b(k, κ l, C l, ξ m, d m ( a(k b(k Evolution of scattering data: (lim x + Y b (k a (k F (x, k = 0 b(k, t = exp(iωtb(k, 0, a(k, t = a(k, 0 C l (t = exp(iω l tc l (0, κ l (t = κ l (0 d m(t = exp(iω mtd m(0, ξ m(t = ξ m(0 One-kink scattering: half-bound state ( d i dx (k tanh x + i ω cosh x ( ψ ω (k tanh x i cosh x d ψ i dx ω = 0 k = i, ψ(x exp[ dx tanh x] = ( ψ x exp[ ( x], ψ x + = 0, ψ = ψ = ψ cosh x exp[ x]

Kink phase shifts One-kink scattering: half-bound state ( d i dx (k tanh x + i ω cosh x ( ψ ω (k tanh x i cosh x d ψ i dx ω = k = 0, ψ(x exp[ ( ψ 0 x ( + i i + e x i ( i + i + e x i ( ψ 0 x + ( + i i + e x i ( i + i + e x i One-kink scattering: continuous spectrum ( d i dx k ( ψ k d ψ i dx =x 0 = 0, ψ = ψ = ψ dx cosh x ] = exp[ arctan[tanh[ x ]]] ψ (x =x e ikx + R(ke ikx, R(k = b(k a(k ψ (x =x (e ikx R(ke ikx ψ = dψ i dx d ψ dx + k ψ = 0

One-kink scattering: continuous spectrum ( d i dx k ( ψ k d ψ i dx Transparent scattering Kink phase shifts =x 0 ψ (x =x T(ke ikx, T(k = a(k ψ (x =x T(ke ikx ψ = dψ i dx d ψ dx + k ψ = 0 a(k = ik + ik b(k = 0, δ(k = arctan k ( ( F(k, x e iδ 0 e iδ 0 =x 0 e iδ F (k, x = 0 e iδ exp[ikxt ] Evolution of the kink scattering data ( Y(t, x = i t sechx (ω tanh x + i k cosh x k (ω tanh x i cosh x i t + sechx ( Y ± = Y(t, x ± = i t ω ω i t

Y ( Y + ( T(ke ikx f (t = 0 df dt e ikx f (t + R(ke ikx g(t (e ikx f (t R(ke ikx g(t Small deformations = iωf (t f (t = eiωt = 0 { df = iωf (t dt dg = iωg(t dt ψ k (t, x =x e ikx+iωt + R(k, te ikx+iωt, R(k, t = e iωt R(k, 0 ψ k (t, x =x T(k, te ikx+iωt, T(k, t = T(k, 0 f (t = e iωt g(t = e iωt Close solutions [ ( X φ(t, x, φ t = ( φ i ( (t, x, Y φ(t, x, φ (t, x t t (t, x φ (t, x + sin φ(t, x x ] ψ = T 3 ψ φ(t, x φ S (t, x + δφ(t, x + O[(δφ φ (t, x], t φ x + sin φ = 0 ( [φ s(t, x]δφ(t, x = t x + cos φ S(t, x δφ(t, x = 0

Two-soliton well at t = 0 Two-soliton ground states Zero-modes at t = 0 The ground states for any time x φ KK = t φ KK = 3(5 cosh[x] + 4 cosh[ (3t + 5x] 4 8 + 9 cosh[/4(3t + x] + cosh[3/4(t + 3x] 9 cosh[x] 8 + 9 cosh[/4(3t + x] + cosh[3/4(t + 3x]

Two-soliton well at t = 0 Two-soliton ground state Zero modes at t = 0

Bibliography L. D. Faddeev and V. E. Korepin, Quantum theory of solitons", Physics Reports C4 (978-87 R. Rajaraman, Solitons and instantons", North Holland, Amsterdam, 98 P. Drazin and R. Jhonson, Solitons: an introduction", Cambridge University Press, Cambridge U. K., 996