ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις

Σχετικά έγγραφα
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μεγάλων τάξεων Ενδεικτικές λύσεις

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

: :

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

Θέματα μεγάλων τάξεων

Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ


GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

Αρχιμήδης Μεγάλοι Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

: :

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2012

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )

B τάξη Γυμνασίου : : και 4 :

Ιωάννης Σ. Μιχέλης Μαθηματικός

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ

2 η εκάδα θεµάτων επανάληψης

1,y 1) είναι η C : xx yy 0.

1 ΘΕΩΡΙΑΣ...με απάντηση

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 20 Ιανουαρίου 2018 Β ΓΥΜΝΑΣΙΟΥ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. α β. β (β) Το μικρότερο από τα κλάσματα που βρήκαμε στο προηγούμενο ερώτημα είναι το

Θαλής Α' Λυκείου

: :

Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 28 η Ελληνική Μαθηματική Ολυμπιάδα. "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.


Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Β τάξη Λυκείου. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ Α= = Επομένως έχουμε:

Μαθηματικά A Γυμνασίου

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ. Ημερομηνία: 29/04/2017 Ώρα εξέτασης: 10:00-14:30

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς Μονάδες 2 (β) Αν ισχύει ότι: και αβγ 0, να βρείτε την τιμή της παράστασης: Γ= + +.

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

Β ΓΥΜΝΑΣΙΟΥ ,,,,,,,


x , οπότε : Α = = 2.

Άσκηση 4η Να βρεθεί ο τριψήφιος αριθμός που τα ψηφία του είναι ανάλογα των αριθμών 1, 2, 3 κατά σειρά και διαιρείται από το 9. Άσκηση 7η.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ

Ευκλείδης Β' Λυκείου ΜΕΡΟΣ Α

Transcript:

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-ail : ifo@hs.gr, www.hs.gr GREEK MATHEMATICAL SOCIETY 4, Paepistiiou (Εleftheriou Veizelou) Street GR. 06 79 - Athes - HELLAS Tel. 665-67784 - Fax: 6405 e-ail : ifo@hs.gr, www.hs.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 5 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" Μαρτίου 08 Θέματα μικρών τάξεων Ενδεικτικές λύσεις Πρόβλημα (α) Να εξετάσετε, αν υπάρχει πραγματικός αριθμός x, τέτοιος ώστε οι αριθμοί x και x να είναι και οι δύο ρητοί. (β) Να εξετάσετε, αν υπάρχει πραγματικός αριθμός y τέτοιος ώστε οι αριθμοί y και y να είναι και οι δύο ρητοί. (α) Έστω x q, x p με pq,. Τότε x q x q q οπότε αν αντικαταστήσουμε στη δεύτερη παίρνουμε: q q p q pq Τότε πρέπει q0q. Σε αυτή την περίπτωση p q q 4 4 και x. (β) Έστω y q, y p με pq,. Τότε y q y q q 9q οπότε αν αντικαταστήσουμε στη δεύτερη παίρνουμε: q q 9q p q pq 9q που είναι άτοπο. q 9q p q Πρόβλημα Θεωρούμε τετράγωνο ΑΒΓΔ πλευράς 8 c το οποίο υποδιαιρούμε με ευθείες παράλληλες προς τις πλευρές του σε 64 μικρά τετράγωνα πλευράς c. Χρωματίζουμε 7 μικρά τετράγωνα μαύρα, ενώ όλα τα υπόλοιπα 57 μικρά τετράγωνα είναι λευκά. Υποθέτουμε ότι υπάρχει θετικός ακέραιος k τέτοιος ώστε ανεξάρτητα από τη θέση των 7 μαύρων μικρών τετραγώνων, υπάρχει ορθογώνιο εμβαδού k c με πλευρές παράλληλες στις πλευρές του ΑΒΓΔ και με όλα τα μικρά τετράγωνα από τα οποία

αποτελείται να είναι λευκά, που μπορεί να αποκοπεί απόό το τετράγωνο ΑΒΓΔ. βρεθεί η μέγιστη δυνατή τιμή του k. Να Μπορούμε να χωρίσουμε το τετράγωνο ΑΒΓΔ σε 8 ορθογώνια 4. Έτσι μπορούμε να χρωματίσουμε στα επτά 4 ορθογώνια από ένα μαύρο μικρό τετράγωνο, οπότε από την αρχή του Περιστερώνα θα μείνει με λευκά μικράά τετράγωνα τουλάχιστον ένα 4 ορθογώνιο εμβαδού 8c. Σχήμα Στη συνέχεια θα αποδείξουμε ότι υπάρχει χρωματισμός των 7 μικρών τετραγώνωνν έτσι ώστε να μην υπάρχει ορθογώνιοο με λευκά τετράγωνα εμβαδού μεγαλύτερου των 8c. Στο τετράγωνο του παρακάτω σχήματος αφήνουμε όλα τα συνοριακά μικρά τετράγωνα λευκά και στο 6 6 εσωτερικό τετράγωνο χρωματίζουμε 7 μικρά τετράγωνα μαύρα, έτσι ώστε να μην υπάρχει ορθογώνιο με μ λευκά τετράγωνα εμβαδού μεγαλύτερου των 8c. Σχήμα

Σημείωση: Για το πρώτο κομμάτι της άσκησης μπορούμε να θεωρήσουμε τις 8 γραμμές ή τις 8 στήλες του πίνακα και να κάνουμε το επιχείρημα όπως στην παραπάνω λύση με την αρχή του Περιστερώνα. Πρόβλημα Θεωρούμε τους θετικούς ακεραίους ab, τέτοιους ώστε ο αριθμός ( ab) 4a ab να είναι ακέραιος. Να αποδείξετε ότι αν ο b είναι περιττός, τότε ο a είναι τέλειο τετράγωνο. ( ab) 4a Έστω. Η τελευταία γράφεται ως ab ( ab) 4 a ab () Θα δείξουμε ότι ο a είναι περιττός. () Πράγματι, αν a, τότε θα πρέπει ( a b), τότε θα πρέπει και ο b να είναι άρτιος, άτοπο. Θεωρούμε τώρα την () σαν δευτεροβάθμια εξίσωση ως προς b, στη μορφή: b b( ) aa 4a 0 Για να έχει αυτή ακέραιες λύσεις, η διακρίνουσά της θα πρέπει να είναι τέλειο τετράγωνο. Έχουμε ότι a ( ) 4( a 4 a) a( a( ) 4a 6). Επομένως το γινόμενο των a, a( ) 4a 6 είναι τέλειο τετράγωνο. Επειδή όμως ο a είναι περιττός είναι πρώτοι μεταξύ τους, οπότε ο καθένας τους θα πρέπει να είναι τέλειο τετράγωνο, άρα ο a είναι τέλειο τετράγωνο. ος τρόπος: Έστω d ( a, b) και γράφουμε a dx, b dy, με ( xy, ). Παρατηρούμε ότι επειδή d b και ο b είναι περιττός, θα πρέπει d περιττός. Τότε ο αριθμός ( ab) 4 a d ( x y) 4 dx d( x y) 4x ab d xy dxy είναι ακέραιος. Άρα x d( x y) 4 x x dy και επειδή ( xy, ), πρέπει x d. Επίσης, d d( x y) 4 x d 4x και αφού d περιττός, d x. Από τις δύο αυτές σχέσεις έχουμε d x, άρα a d. Πρόβλημα 4 Δίνεται τρίγωνο με εγγεγραμμένο σε κύκλο c με κέντρο O και ακτίνα R. Ονομάζουμε το αντιδιαμετρικό της κορυφής. Δίνεται επίσης ο κύκλος c του οποίου το κέντρο βρίσκεται επάνω στο τμήμα και περνάει από τα σημεία και. Αν ο κύκλος c τέμνει την στο σημείο, να αποδείξετε

ότι ο περιγεγραμμένος κύκλος περιγεγραμμένου κύκλου c. του τριγώνου, έστω c, εφάπτεται του ( ος Τρόπος) Έστω η τομή του γωνία (άρα και η γωνία ) είναι ορθή διότι βαίνει β στη διάμετρο του περιγεγραμμένου κύκλου cor,. κύκλου c Εφόσον 90, η είναι διάμετρος του κύκλου c και κατά συνέπεια η θα είναι μεσοκάθετος της κοινής χορδής των κύκλων c και c. Η εφάπτεται στον κύκλο c, άρα. Από το ορθογώνιοο τρίγωνο έχουμε: 90 90. () με την και η τομή της με την. Η Οι γωνίες, Σχήμα είναιι εγγεγραμμένες στον κύκλο c και βαίνουν στοο ίδιο τόξο, άρα. Από το ορθογώνιο τρίγωνο, έχουμε: 909 900. Από τις ισότητες γωνιών και συμπεραίνου με ότι:, οπότε τα ευθύγραμμα τμήματαα και είναι παράλληλα και κατά συνέπεια το

τετράπλευρο είναι τραπέζιο. Εφόσον το είναι το μέσο της, συμπεραίνουμε ότι η θα διέρχεται από το μέσο της που είναι το κέντρο του κύκλου c. Άρα τα κέντρα των κύκλων c, c και το σημείο θα είναι συνευθειακά. Εναλλακτικά, το τελικό συμπέρασμα (που διατυπώνεται στην τελευταία παράγραφο) θα μπορούσε να προκύψει και με τη βοήθεια του μετασχηματισμού της ομοιοθεσίας: Από τις ισότητες γωνιών και συμπεραίνου με ότι:, οπότε τα ευθύγραμμα τμήματα και είναι παράλληλα και κ κατά συνέπεια ομοιόθετα στην ομοιοθεσία με κέντρο ομοιοθεσίας το σημείο. Εφόσον τα τμήματα και ( δηλαδή, οι διάμετροι των κύκλωνν c και c ) είναι ομοιόθετα με κέντρο ομοιοθεσίας το και οι κύκλοι c και κ c θα είναι ομοιόθετοι με το ίδιο κέντρο ομοιοθεσίας. Δηλαδή τα κέντρα των κύκλων c, c και ι το σημείο θα είναι συνευθειακά. ος τρόπος Θα αποδείξουμε ότι ο c εφάπτεται του κύκλου cor (, ) στο σ σημείο. Για το σκοπό ο αυτό θα δείξουμε ότιι οι δύο αυτοί κύκλοι έχουν κοινή εφαπτομένηη στο σημείο. Έστω η εφαπτομένη του c( O, R) στο σημείο και ονομάζουμεε. Για να δείξουμε ότι η είναι εφαπτομένη του c στο, αρκεί να αποδείξουμε ότι. () Επειδή η η εφαπτομένη τουυ cor (, ), έχουμε ότι. Ε Επιπλέον η είναι διάμετρος, οπότεε 90, οπότε 90. Όμως (90 ) 80, () από τη σχέση επίκεντρης εγγεγραμμένης στον c. Όμως το τρίγωνο είναι ισοσκελές επομένως λόγω της () θα είναι, οπότε ε η () ισχύει και έχουμε το ζητούμενο.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-ail : ifo@hs.gr, www.hs.gr GREEK MATHEMATICAL SOCIETY 4, Paepistiiou (Εleftheriou Veizelou) Street GR. 06 79 - Athes - HELLAS Tel. 665-67784 - Fax: 6405 e-ail : ifo@hs.gr, www.hs.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 5 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" Μαρτίου 08 Θέματα μεγάλων τάξεων Ενδεικτικές λύσεις Πρόβλημα * Θεωρούμε την ακολουθία ( x ),, που ορίζεται αναδρομικά από τη σχέση x x x, με a x, όπου ab, είναι θετικοί ακέραιοι και ο δεν διαιρεί τον b ακέραιο b. Αν για κάποιο θετικό ακέραιο ο x είναι τέλειο τετράγωνο ρητού αριθμού, να αποδείξετε ότι και ο x είναι τέλειo τετράγωνο ρητού αριθμού. Θα δείξουμε ότι αν ο x είναι τέλειο τετράγωνο ρητού, τότε και ο x είναι τέλειο τετράγωνο ρητού, οπότε επαγωγικά θα πάρουμε το ζητούμενο. Η πρώτη παρατήρηση είναι ότι αφού ο δεν διαιρεί τον b, δεν θα διαιρεί κανέναν παρονομαστή όρου της ακολουθίας. p Από την αναδρομική σχέση έχουμε x x x. Θέτουμε x q όπου ο q δεν διαιρείται με (*) και ( pq, ). Τότε p pq p p q ( ) x x x. q q Αφού ( pq, ), αυτή είναι η ανάγωγη μορφή του x. Πράγματι, οι αριθμοί p( p q ), q είναι πρώτοι μεταξύ τους, αφού αν ένας πρώτος s διαιρεί και τους δύο, τότε s q s q και s p q τότε s p. Αφού όμως s δεν διαιρεί τον p, θα έχουμε s s, q, άτοπο από την (*). Από την εκφώνηση ο x είναι τέλειο τετράγωνο ρητού, οπότε θα πρέπει ο αριθμητής και ο παρονομαστής να είναι τέλεια τετράγωνα. Για να είναι ο παρονομαστής τέλειο τετράγωνο, πρέπει ο q να είναι τέλειο τετράγωνο, έστω q a. Για να είναι ο αριθμητής τέλειο τετράγωνο, έστω p( p q ), πρέπει και οι δύο παράγοντες να είναι τέλεια τετράγωνα αφού είναι σχετικά πρώτοι. Πράγματι, αν ένας πρώτος t διαιρεί τον p και τον p q, τότε t q, που είναι άτοπο αφού ( pq, ). Έτσι p b, p q c. Επομένως x p b q a, άρα ο x είναι τέλειο

τετράγωνο ρητού. Όμοια τώρα, πηγαίνοντας προς τα α πίσω δείχνουμε ότι ο x ρητού, κ.ο.κ μέχρι να φτάσουμε στον x. είναι τέλειο τετράγωνο Πρόβλημα Δίνεται οξυγώνιο τρίγωνο με και ο περιγεγραμμένος κύκλος του c με κέντρο O και ακτίνα R. Στα μικρά τόξα και κ θεωρούμε τα σημεία και Ε αντίστοιχα. Έστω είναι το σημείο τομής των, και είναι το δεύτερο κοινό σημείο των περιεγραμμένων κύκλων των τριγώνων τ, έστω c, και (έστω c ). Να αποδείξετεε ότι: τα σημεία,, είναι συνευθειακά, αν και μόνο αν, το σημείο ανήκει ι στη συμμετροδιάμεσο του τριγώνου, που αντιστοιχεί στην κορυφή. Σημείωση: Συμμετροδιάμεσος τριγώνου είναι η συμμετρική ευθεία της διαμέσου ως προς τη διχοτόμο που περνάει από την ίδια κορυφή με τη διάμεσο ος Τρόπος Έστω το σημείο τομής των, και το δεύτερο κοινό σημείο των κύκλων c, c. Έστω ακόμη το σημείο τομής των εφαπτομένων στα σημεία, του κύκλου c. Θα αποδείξουμε ότι τα σημεία,, είναι συνευθειακά. Σημειώνουμε με τη τομή της με τον c και τη τομή τ της με τον c, τότε θα ισχύουν οι παρακάτω ισότητες γωνιών: : (εγγεγραμμένες στο κύκλο c και βαίνουν στο ίδιο τόξο ) : : (η (η Σχήμα δημιουργείτε από τη χορδή και την εφαπτομένηη BZ στο κύκλο c ) : (εγγεγραμμένες στο κύκλο c και βαίνουν στο ίδιο τόξο ) είναι γωνία της χορδής και την εφαπτομένης Z στο κύκλο c)

: ( οι και Z είναι εφαπτόμενες στο κύκλοο c) Από τις παραπάνω ισότητες προκύπτουν τα εξής:, άρα // και, άραα //. Επομένως το τετράπλευρο είναι ισοσκελές τραπέζιο και ι κατά συνέπεια εγγράψιμο σε κύκλο ( έστω c ). Άρα η κοινή χορδή των κύκλων c και c θα διέρχεται από το ριζικό κέντρο των κύκλων c, c, c. Αν τώρα υποθέσουμεε ότι τα σημεία,, είναι συνευθειακά, τότε (επειδή και τα σημεία,, είναι συνευθειακά) συμπεραίνουμε ότι τα σημεία,,, είναι συνευθειακά, δηλαδή τα σημεία,, θα ανήκουν στηη συμμετροδιάμεσο. Αντίστροφα τώρα, αν υποθέσουμεε ότι το σημείο ανήκει στη συμμετροδιάμεσο, τότε τα σημεία,, θα είναιι συνευθειακά. Οπότε (επειδή και τα α σημεία,, είναι συνευθειακά) συμπεραίνουμεε ότι τα σημεία,, είναι συνευθειακά. ος Τρόπος Έστω το σημείο τομής των, και το δεύτερο κοινό σημείο των κύκλων c, c. Έστω ακόμη το σημείο τομής των εφαπτομένων στα σημεία, του κύκλου c. Αν είναι το σημείο τομής των καιι, θα αποδείξουμε ότι τα σημεία,,, είναι συνευθειακά. Από την εφαρμογή του τ θεωρήματος Pascal στο εκφυλισμένο εξάγωνο, συμπεραίνουμε ότι τα σημεία,, είναι συνευθειακά. Το σημείο έχει την ίδια δύναμηη ως προς το κύκλο c. Δηλ. Δ. Άρα τα σημεία,, είναι συνευθειακά. Οπότε τα σημεία,,, είναι συνευθειακά. Σχήμα

Αν τώρα υποθέσουμε ότι τα σημεία,, είναι συνευθειακά, το σημείο θα ανήκει στην συμμετροδιάμεσο. Αντίστροφα, αν το ανήκει στην συμμετροδιάμεσο τότε τα σημεία,, είναι συνευθειακά. Πρόβλημα (α) Δίνονται οι φυσικοί αριθμοί, με και διακεκριμένοι πραγματικοί αριθμοί a,, a. Να βρεθούν όλα τα πολυώνυμα P με πραγματικούς συντελεστές, βαθμού το πολύ, για τα οποία ισχύει η ισότητα Pa ( i) Pa ( j) ai aj, () για κάθε i, j με i j. (β) Δίνονται φυσικοί αριθμοί, με. Να εξετάσετε αν υπάρχει πολυώνυμο Q με πραγματικούς συντελεστές βαθμού καθώς και διακεκριμένοι πραγματικοί αριθμοί a,, a, τέτοιοι ώστε Qa ( i) Qa ( j) ai aj, για κάθε i, j με i j. (α) Θα ασχοληθούμε πρώτα με το ερώτημα (α). Λόγω της συμμετρίας υποθέτουμε ότι a a a και για ευκολία θέτουμε di P( ai) P( ai ). Τότε λόγω της () έχουμε: d d... d Pa ( ) Pa ( ) Pa ( ) Pa ( )... Pa ( ) Pa ( ) a a a a... a a a a a a... a a a a a a Pa ( ) Pa ( ) Pa ( ) Pa ( ) Pa ( ) Pa ( )... Pa ( ) Pa ( ) d... d d Αυτό σημαίνει ότι οι αριθμοί d, d,..., d είναι ομόσημοι. Οπότε έχουμε δύο περιπτώσεις. η περίπτωση: Όλοι οι d, d,..., d είναι θετικοί. Είναι Τότε από την () έχουμε Pa ( ) Pa ( ) aa Pa ( ) a Pa ( ) a.όμοια ότι Pa ( ) a Pa ( ) a,., Pa ( ) a Pa ( ) a. Έπεται ότι Pa ( ) a Pa ( ) a... Pa ( ) a k() Αυτό σημαίνει ότι το πολυώνυμο Qx ( ) Px ( ) x kπου είναι βαθμού το πολύ,

έχει διακεκριμένες ρίζες (τα a a a ). Έπεται ότι το Qxείναι ( ) το μηδενικό πολυώνυμο, οπότε Px ( ) x k, όπου k. η περίπτωση: Όλοι οι d, d,..., d είναι αρνητικοί. Τότε από την () έχουμε ότι Pa ( ) Pa ( ) aa Pa ( ) a Pa ( ) a.επομένως Pa ( ) a Pa ( ) a... Pa ( ) a () Αυτό σημαίνει ότι το πολυώνυμο Rx ( ) Px ( ) x που είναι βαθμού το πολύ, έχει διακεκριμένες ρίζες (τα a a a ). Έπεται ότι το Rx ( ) είναι το μηδενικό πολυώνυμο, οπότε Px ( ) x, όπου. Επομένως δύο πολυώνυμα, το Px ( ) x k και το Px ( ) x είναι τα μόνα που ικανοποιούν τις συνθήκες του προβλήματος. ος τρόπος: Ας υποθέσουμε ότι και ότι υπάρχουν pqr,, { a,..., a } ώστε να ισχύει: P( p) P( q) pq, P( p) P( r) r p. Με αφαίρεση κατά μέλη των παραπάνω παίρνουμε ότι Pr () Pq () pq r. (4) Όμως από την συνθήκη της εκφώνησης έχουμε ότι Pr () Pq () r qή Pr () Pq () q r. Στην πρώτη περίπτωση η (4) γίνεται r pr p, άτοπο αφού οι pr, { a,..., a } που είναι διακεκριμένοι. Όμοια, αν Pr () Pq () q r τότε η (4) δίνει q p, πάλι άτοπο. Αυτό σημαίνει ότι είτε, είτε ότι δεν υπάρχουν τέτοιοι pqr,, { a,..., a }. η περίπτωση: Αν, τότε ή 0. Προφανώς η 0απορρίπτεται αφού κανένα σταθερό πολυώνυμο δεν ικανοποιεί. Η δίνει Px ( ) ax b, οπότε πρέπει a a baa b a a a i j i j οπότε Px ( ) x b, ή Px ( ) x b. η περίπτωση: Αν δεν υπάρχουν τέτοιοι pqr,, { a,..., a }, τότε είτε Pa ( ) a Pa ( ) a... Pa ( ) a k, οπότε οδηγούμαστε στην η περίπτωση που είδαμε στον ο τρόπο, είτε Pa ( ) a Pa ( ) a... Pa ( ) a, οπότε οδηγούμαστε στην η περίπτωση που είδαμε στον ο τρόπο. (β) Θα δείξουμε ότι αν Qx ( ) x και a i για κάθε i τότε ισχύει η ζητούμενη ανισότητα. Πράγματι,

i i Σημείωση: Στο δεύτερο ερώτημα α υπάρχουν και άλλες πιθανές κατασκευές που μπορεί να γίνουν.. Πρόβλημα 4. Θεωρούμεε σημεία στο επίπεδο,, 4, ανά τρία μη συνευθειακά. Ονομάζουμε ( ) το πλήθος των παραλληλογράμμων εμβαδού που σχηματίζονται με κορυφές αυτά τα σημεία. Να αποδείξετεε ότι ( ) j και a i ai a j... a j ai ai aj.... a j οπότε από την () έχουμε Pa ( ) Pa ( ) a. i j i j Qa ( ) Q( a ) a a a a a j Σταθεροποιούμε μία διεύθυνση u στο επίπεδο. Σε κάθε ευθεία παράλληλη σε αυτή τη διεύθυνση μπορεί να έχουμε έ το πολύ δύο σημεία. Ας υποθέσουμε ότι σε ότι υπάρχουν k ζεύγη σημείων για αυτή τη διεύθυνση. Τότε όπως φαίνεται στο παρακάτω σχήμα (για k ), σχηματίζονται το πολύ k παραλληλόγρ ραμμα εμβαδού με αυτά τα k ζεύγη σημείων. i a j i a i, για κάθε 4. 4 a j... a j ()... Σχήμα Επομένως σε μία διεύθυνση μεε k ζεύγη σημείων, σχηματίζοντσ ται πολύ k παραλληλόγραμμα εμβαδού. Επομένως, αν αθροίσουμε τα παραλληλόγραμμα σε όλες τις διευθύνσεις, θα πάρουμε ( k ) k s, όπου s είναι το συνολικό πλήθοςς των διευθύνσεων στις οποίες ο βρίσκονται σημεία. Το άθροισμα όμως k είναι το άθροισμα όλων των τμημάτων, που είναι.

Επομένως, το πλήθος των παραλληλογράμμων εμβαδού είναι το s. Αλλά με αυτό τον τρόπο μετρήσαμε κάθεε παραλληλόγραμμο διεύθυνση δύοο φορές. Μία φορά για την και μία φορά για τη διεύθυνση, όπως φαί ίνεται στο σχήμα: Σχήμα 4 Επομένως το συνολικό πλήθος τωνν παραλληλογράμμων εμβαδού είναι το πολύ s. Θα δείξουμε τώρα ότιι αν έχουμε 4 σημεία στο επίπεδο, ανά τρία μη συνευθειακά, τότε το πλήθος των διευθύνσεων είναι s. Πράγματι αςς πάρουμε τρία γειτονικά σημεία,, (σε κυρτή θέση) όπως στο σχήμα: Σχήμα 5 Το σημείο Α συνδέεται με τμήματα με τα υπόλοιπα σημεία. σ Όλαα αυτά τα τμήμα έχουν κοινό σημείο το Α, οπότε ορίζουν διαφορετικές διευθύνσεις. Επιπλέον το τμήμα ΒΓ δεν είναι παράλληλο σεε κανένα από αυτά τα τμήματα, αφού τα τέμνει όλα, άρα ορίζει μία ακόμη διεύθυνση. Επομένως έχουμε τουλάχιστον διαφορετικές διευθύνσεις, οπότε το πλήθος των παραλληλογράμμων είναι το πολύ. 4