Πως η φύση παίρνει μορφή με χρυσές αναλογίες.

Σχετικά έγγραφα
ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

Project Α Λυκείου. Ομάδα 3 η Θέμα: Μαθηματικά στην Ακρόπολη Χρυσή τομή- ο αριθμός φ

Ο ΑΡΙΘΜΟΣ «Φ» Ο ΑΡΙΘΜΟΣ Φ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ PROJECT O ΑΡΙΘΜΟΣ Φ ΚΑΙ Η ΑΡΜΟΝΙΑ ΣΤΗ ΦΥΣΗ. ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΧΡΥΣΟΥ ΑΡΙΘΜΟΥ Φ.

Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ

Υποομάδα 3 Θέμα: Χρυσός Αριθμός Φ- Χρυσή Τομή

Λουλούδια και Αριθμοί. ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΒΑΣΙΛΕΙΟΥ ΣΤΡΟΒΟΛΟΥ Εργασία της Σοφίας Ευαγγέλου A 3 Καθηγήτρια : Ελένη Μελαχροινού

Κανονικά πολύγωνα Τουρναβίτης Στέργιος

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci»

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

Ο χρυσός αριθμός φ. Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Βασικές Γεωμετρικές έννοιες

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας

Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή»

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Ο Πυθαγόρας ήταν ο πρώτος που διατύπωσε τον μαθηματικό ορισμό της αναλογίας χρησιμοποιώντας δύο ευθύγραμμα τμήματα.

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του


Χρυσή τομή. 3.1 Εισαγωγή

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

Ιωάννης Σ. Μιχέλης Μαθηματικός

Η γεωμετρία της ζωής. Ερευνητική εργασία Α Λυκείου 2ου ΓΕΛ ΚΑΒΑΛΑΣ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α

Θέμα: «Κωνσταντίνος και Ελένη. Ήσαν Άγιοι και οι δύο.» (Κ + Ε = Α + 2). Την εποχή της Στερεομετρίας.

Ενδεικτικό Φύλλο Εργασίας 1. Επίπεδα και Ευθείες Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:...

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

6 Γεωμετρικές κατασκευές

Ο Βιτρούβιος Άντρας του Λεονάρντο Ντα Βίντσι

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

Μαθηματικά A Γυμνασίου

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

ΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα).

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

Ομάδες. 1 η ομάδα: Αρμονικά Κύτταρα Θέμα: Βιολογία Μαθητές: Μπάκου Εύα Μπούρλια Ελένη Πέττα Ελεονώρα Πρεβέντα Βάσω Τσόλη Στέλλα

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την

ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Γεωμετρικά σχήματα - Η περίμετρος. Ενότητα 8. β τεύχος

(ΤΑ ΑΓΑΘΑ ΚΟΠΟΙΣ ΚΤΩΝΤΑΙ)

3, ( 4), ( 3),( 2), 2017

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

1 ΘΕΩΡΙΑΣ...με απάντηση

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

Φυλλάδιο 1 - Σημεία Προσοχής στις Παραγράφους 1.1, 1.2 και 1.3

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

ΓΕΩΜΕΤΡΙΑ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ. 1. Να σχεδιάσετε ένα σκαληνό τρίγωνο με περίμετρο 10 cm. Πόσες λύσεις έχει το πρόβλημα;

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ένα παιχνίδι των πολυγώνων

επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων)

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

1. Ποια είναι τα κύρια στοιχεία ενός τριγώνου; 2. Ποια είναι τα δευτερεύοντα στοιχεία ενός τριγώνου;

Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΖΩΓΡΑΦΙΚΗ

Είδη τριγώνων ως προς τις πλευρές

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»

Σωστό -λάθος. 3) Δύο ευθείες κάθετες προς μία τρίτη ευθεία είναι μεταξύ τους παράλληλες.

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

Ιωάννης Σ. Μιχέλης Μαθηματικός

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο «ΑΛΓΕΒΡΑ»

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΜΟΥΣΙΚΗ & ΜΑΘΗΜΑΤΙΚΑ ΜΟΥΣΙΚΗ ΣΥΝΘΕΣΗ ΒΑΣΙΣΜΕΝΗ ΣΤΗΝ ΑΚΟΛΟΥΘΙΑ FIBONACCI

Ερωτήσεις: 1. Να αναγνωρίσετε και να ονομάσετε γεωμετρικά σχήματα στα παραπάνω στερεά.

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

1. Γενικά για τα τετράπλευρα

: :

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2016 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ. ΗΜΕΡΟΜΗΝΙΑ: Παρασκευή, 10 Ιουνίου 2016

ΑΣΚΗΣΕΙΣ ΣΤΗΝ LOGO ΓΙΑ ΤΗΝ Γ ΤΑΞΗ


ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 3 Β' Λυκείου. Ύλη: Αναλογίες- Ομοιότητα- Μετρικές σχέσεις

ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΜΠΥΛΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ 17. ΚΕΦΑΛΑΙΟ 1 25 Οι φυσικοί αριθμοί και η αναπαράστασή τους

ΔΙΑΘΛΑΣΗ ΚΑΙ ΦΟΡΤΙΟ. ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΟΙ ΟΥΡΑΝΟΙ. Του Αλέκου Χαραλαμπόπουλου

Transcript:

3 ο ΓΕΛ ΧΑΛΑΝΔΡΙΟΥ

Πως η φύση παίρνει μορφή με χρυσές αναλογίες.

Ομαδα1 Νικολόπουλος Βασίλης Παχής Θοδωρής Τσιάμης Θάνος Φλέγκας Κωνσταντίνος Ομαδα2 Μαγουλά Ολίνα Μακρή Άννα Πάλλη Ευσταρτία Ντίας Στέφανος Ομαδα3 Ζήβα Κατερίνα Πάλλας Ηλίας Παπαγιανόπουλος Ηλίας Μάρη Ιωάννα Ομαδα4 Βουσούρα Ουρανία Γαλιατσάτου Χρύσα Μακροπούλου Ολίνα Μονιώδης Μιχαήλ-Άγγελος Ομαδα5 Λαζαράτος Δημήτρης Μαραγκός Δημήτρης Μαντζώρος Στάθης Μάρκου Θάνος ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΗΤΡΙΑ Δημητρίου Ελένη (ΠΕ03)

Έχετε αναρωτηθεί ποτέ γιατί στο ξεφύλλισμα <<Μ ΑΓΑΠΑ- ΔΕΝ Μ ΑΓΑΠΑ>> μία κίτρινης μαργαρίτας το ότι ΣΕ ΑΓΑΠΑ έχει σχεδόν εξασφαλιστεί ή τουλάχιστον παίζει με μεγάλες πιθανότητες; Αυτό συμβαίνει γιατί οι κίτρινες μαργαρίτες έχουν 21 φύλλα. Το να έχει ένα άνθος 21 φύλλα δεν είναι ασυνήθιστο.

Δεν είναι τυχαία τα όμορφα σχέδια των λουλουδιών. Οι αρχαίοι Έλληνες βρήκαν ότι τα σχέδια των λουλουδιών βασίζονται σε γεωμετρική αναλογία.

Το πρόβλημα της τομής σε μέσο και άκρο λόγο

Ο Πυθαγόρας ήταν ο πρώτος που διατύπωσε τον μαθηματικό ορισμό αυτής της αναλογίας. Δηλαδή, χώρισε μια γραμμή σε δύο άνισα τμήματα, έτσι ώστε ο αριθμός που παίρνουμε αν διαιρέσουμε το μήκος του μεγάλου τμήματος με το μήκος του μικρού να ισούται με τον αριθμό που παίρνουμε αν διαιρέσουμε το μήκος ολόκληρης της γραμμής με το μήκος του μεγάλου. 1,618033988749... Την αναλογία αυτή ο Ευκλείδης στo βιβλίο του Στοιχεία την ονομάζει «Τομή σε μέσο και άκρο λόγο» και μεταγενέστερα ονομάστηκε «Θεία Αναλογία» και «Χρυσή Τομή»

Απόσπασμα από το βιβλίο των Στοιχείων του Ευκλείδη που αναφέρεται στην χρυσή τομή

Όπως είδαμε,από τη διαίρεση ενός τμήματος σε μέσο και άκρο λόγο είδαμε ότι προκύπτει ο ΑΡΡΗΤΟΣ αριθμός Ο οποίος ονομάστηκε «Χρυσός Αριθμός» 1, 618033988749...... «Θεία αναλογία» και Φ προς τιμήν του γλύπτη Φειδία.

Στην πραγματικότητα υπάρχουν δύο χρυσοί αριθμοί, ένας θετικός και ένας αρνητικός αλλά ο πρώτος, δηλαδή ο Φ έχει κλέψει όλη τη δόξα. Μια ιδιότητα του Φ είναι ότι αντίστροφός του και το τετράγωνό του έχουν το ίδιο δεκαδικό μέρος 1 1 και 2 1 Ακόμα, μπορούμε να τον εκφράσουμε το ως άπειρα διαδοχικά κλάσματα

Τι το ιδιαίτερο έχει, λοιπόν, αυτός ο αριθμός; Σε τι διαφέρει από τους άλλους; Όπως ο π εκφράζει το πιο τέλειο γεωμετρικό σχήμα, τη σφαίρα, έτσι και ο Φ είναι ο αριθμός της ομορφιάς, μέγεθος ή αριθμός εν δυνάμει και κατά τον Πλάτωνα βρίσκεται στον υπερουράνιο τόπο.

Η ακολουθία Fibonacci.

Ο Ιταλός μαθηματικός Fibonacci αφού μελέτησε ένα πρόβλημα αναπαραγωγής κουνελιών κατέληξε σε μια ακολουθία αριθμών όπου κάθε όρος της ισούται με το άθροισμα των δύο προηγούμενων 1 1 2=1+1, 3=2+1, 5=3+2, 8,13,21,34,55,89,144,233,377,610,987,1597 και συνεχίζει επ άπειρον. Η ακολουθία αυτή ονομάστηκε ακολουθία Fibonacci. Leonardo Pisano Bigollo (1170-1250)

Τι σχέση έχει όμως η ακολουθία Fibonacci με τον αριθμό Φ; Ο λόγος δύο διαδοχικών αριθμών της ακολουθίας Fibonacci προσεγγίζει την αποκαλούμενη Χρυσή αναλογία με μεγάλη ακρίβεια καθώς προχωράμε σε μεγαλύτερους όρους της ακολουθίας,

Χρυσά τρίγωνα, χρυσό ορθογώνιο και κανονικά πεντάγωνα, δεκάγωνα, δωδεκάεδρα και εικοσάεδρα

Χρυσό Τρίγωνο λέγεται κάθε ισοσκελές τρίγωνο στο οποίο ο λόγος της μεγάλης πλευράς προς τη μικρότερη είναι ίσος με Φ. Υπάρχουν δύο ειδών χρυσά τρίγωνα και τα δύο ισοσκελή, ένα αμβλυγώνιο και ένα οξυγώνιο. Τα δύο τρίγωνα συνδέονται μεταξύ τους γιατί διαιρώντας σε μέσο και άκρο λόγο μια από τις ίσες πλευρές στο οξυγώνιο ή την βάση στο αμβλυγώνιο προκύπτουν δύο μικρότερα χρυσά τρίγωνα ένα αμβλυγώνιο ή ένα οξυγώνιο αντίστοιχα.

Ένα ορθογώνιο τετράπλευρο του οποίου ο λόγος των πλευρών είναι ίσος με 1/φ ονομάζεται «Χρυσό» ορθογώνιο. Κάθε «Χρυσό» ορθογώνιο έχει μία ξεχωριστή ιδιότητα: Αν αφαιρέσουμε από την μία πλευρά το μεγαλύτερο δυνατό τετράγωνο απομένει ένα καινούργιο ορθογώνιο που είναι επίσης «Χρυσό» κοκ

Μια και η γωνιά της κορυφής του οξυγωνίου χρυσού τριγώνου είναι 36 ο, είναι φανερό ότι το κανονικό δεκάγωνο θα διαιρείται από τις ακτίνες του σε δέκα χρυσά τρίγωνα. Αλλά και το κανονικό πεντάγωνο χωρίζεται σε 10 χρυσά τρίγωνα

Ανάμεσα στα πέντε Πλατωνικά στερεά, υπάρχουν και δύο που συνδέονται με την χρυσή τομή. Είναι το κανονικό δωδεκάεδρο που οι έδρες του είναι κανονικά πεντάγωνα, και το δυϊκό του, το κανονικό εικοσάεδρο που ανά πέντε ισόπλευρα τρίγωνα ενώνονται για να σχηματίσουν ένα σχεδόν σφαιρικό πολύεδρο.

Οι πραγματικά ενδιαφέρουσες εφαρμογές του Φ ξεκινούν από την κατασκευή ενός άλλου γεωμετρικού σχήματος, που ονομάζεται Λογαριθμική Σπείρα ή Χρυσή Σπείρα. Υπάρχουν δύο είδη χρυσών σπειρών. Η μία βασίζεται σε διαδοχικά χρυσά ορθογώνια, που το ένα περιέχει το άλλο. και η άλλη σε διαδοχικά χρυσά οξυγώνια τρίγωνα, που και εδώ, το ένα περιέχει το άλλο.

στα λουλούδια, στα φρούτα και στα λαχανικά

Στα φυτά έχει βρεθεί ότι η χρυσή αναλογία εμφανίζεται κυρίως στην ανάπτυξη των βελόνων αρκετών ειδών ελάτου καθώς και στον αριθμό των πετάλων και στην διάταξή τους.

Σε όλα σχεδόν τα άνθη το πλήθος των πετάλων είναι ίσο με κάποιον από τους αριθμούς της ακολουθίας 3,5,8,13,21,34,55,89...

Υπάρχουν λουλούδια με: 1 ΠΕΤΑΛΟ (white calla lily ) 2 ΠΕΤΑΛΑ (Euphorbia ) 3 ΠΕΤΑΛΑ (Trillium )

5 ΠΕΤΑΛΑ (Columbine) 8 ΠΕΤΑΛΑ (Bloodroot) 13 ΠΕΤΑΛΑ (black-eyed susan)

21 ΠΕΤΑΛΑ (Μαργαρίτα shasta) 34 ΠΕΤΑΛΑ (Μαργαρίτες αγρού )

1 2 3 5 8 13 ΧΡΥΣΗ ΑΚΟΛΟΥΘΙΑ

Όμως υπάρχουν και άνθη που δεν ακολουθούν τον παραπάνω κανόνα. Όπως το εκατόφυλλο τριαντάφυλλο ή το τετράφυλλο τριφύλλι. Αυτά τα λουλούδια αποτελούν εξαίρεση του κανόνα ; Για να απαντήσετε σε αυτό το ερώτημα αρκεί να σκεφτείτε γιατί τα τετράφυλλα τριφύλλια είναι πολύ σπάνια, μπορεί γιατί το 4 δεν είναι όρος της ακολουθίας Fibonacci.

Με τον όρο φυλλοταξία εννοούμε στην βοτανική την διάταξη των φύλλων και των κλώνων στην ανάπτυξη ενός φυτού. Αν επρόκειτο να συνδέσετε τις άκρες των φύλλων ή των κλαδιών που έχουν αναπτυχθεί από τον κορμό, θα διαπιστώνατε ότι δημιουργούν ένα πολύ συγκεκριμένο σπειροειδές σχήμα γύρω από τον κεντρικό κορμό.

Στον μεγαλύτερο αριθμό των φυτών, ένα συγκεκριμένο κλαδί ή φύλλο θα μεγαλώσει από τον κορμό περίπου κατά 137,5 μοίρες γύρω από τον βλαστό σε σχέση με το προηγούμενο κλαδί. Η γωνία αυτή συνδέεται με τον αριθμό Φ αφού o 360 (2 ) 137,5 Αν κατανείμουμε τα φύλλα στο μίσχο σύμφωνα με το χρυσό αριθμό, όλα θα επωφελούνται στο μέγιστο βαθμό από το φως του ήλιου, χωρίς να κρύβει το ένα το άλλο. Τα λουλούδια, χάρη στο χρυσό αριθμό, προσελκύουν όσο το δυνατόν καλύτερα τα έντομα που μεταφέρουν τη γύρη.

Η ακολουθία Fibonacci στην ανάπτυξη των κλαδιών στη διάταξη των φύλλων

Ανακαλύπτουμε τους αριθμούς Fibonacci με την μορφή σπειρών πάνω στον μίσχο, τα πέταλα ή ακόμα και στα κλαδιά.

Για παράδειγμα στο μίσχο της μαργαρίτας παρατηρούμε ότι εμφανίζονται: 21 σπείρες δεξιόστροφα και 34 σπείρες αριστερόστροφα 34 21 21 και 34..συνεχόμενοι όροι της ακολουθίας Fibonacci

Η χρυσή τομή εμφανίζεται σε πολλά είδη φρούτων είτε μέσω των αριθμών Fibonacci είτε με την μορφή σπειρών. Για παράδειγμα Αν κόψουμε ένα αστερόφρουτο στη μέση θα παρατηρήσουμε ότι η οριζόντια διατομή του σχηματίζει ένα κανονικό πεντάγωνο. Το ίδιο συμβαίνει και σε ένα μήλο Αλλά και η οριζόντια διατομή μιας μπανάνας τη χωρίζει σε 3 μέρη. Ακόμα, οι κλίμακες του ανανά είναι διαμορφωμένες σε σπείρες

Η χρυσή αναλογία εκτός από τα φρούτα εμφανίζεται και στα λαχανικά. Για παράδειγμα Στο κουνουπίδι εμφανίζονται 5 σπείρες δεξιόστροφα 13 σπείρες αριστερόστροφα Στο Romanesque Broccoli εμφανίζονται (μια διασταύρωση μπρόκολου και κουνουπιδιού) 13 σπείρες δεξιόστροφα και 21 σπείρες αριστερόστροφα

στα οστρακοειδή, στα έντομα, στα ψάρια, στα πτηνά και στα θηλαστικά

Η «Ακολουθία Fibonacci» διέπει και το ζωικό βασίλειο. Εμφανίζεται στα οστρακοειδή, στα έντομα, στα θηλαστικά και στα πτηνά.

Στα έντομα εντοπίζουμε λόγους χρυσής τομής, για παράδειγμα στα φτερά της πεταλούδας στο σώμα και στον ιστό της αράχνης στο σώμα αλλά και στην κίνηση των μυρμηγκιών

Το γενεαλογικό δέντρο του κηφήνα σ ένα μελίσσι είναι μια ακολουθία Fibonacci! Επίσης στα μελίσσια, ο πληθυσμός των εργατριών μελισσών σε σχέση με τους κηφήνες, αναπτύσσεται με βάση την Ακολουθία Fibonacci, και ο λόγος τους τείνει στη «χρυσή αναλογία».

O αριθμός Φ εντοπίζεται και στο Βασίλειο των πτηνών όπως για παράδειγμα με τη μορφή χρυσών αναλογιών στους παπαγάλους στο σώμα του πιγκουίνου και στα φτερά του Blue Heron

Αυτό, όμως, που προκαλεί ιδιαίτερο ενδιαφέρον είναι ότι ο αριθμός Φ εμφανίζεται και στον τρόπο που πετάνε ορισμένα ήδη γερανών, όπως για παράδειγμα οι πετρίτες. Τα γεράκια εκμεταλλεύονται την ισογώνια ιδιότητα της χρυσής σπείρας και διατηρούν το στόχο τους στο οπτικό τους πεδίο ενώ μεγιστοποιούν την ταχύτητά τους.

Παραδείγματα καμπυλών με βάση λογαριθμική σπείρα μπορεί να δει κανείς σε ζώα όπως οι κατσίκες, οι αντιλόπες και τα κριάρια που έχουν κέρατα σε σπειροειδή μορφή στους χαυλιόδοντες των ελεφάντων και των εξαφανισμένων μαμούθ

Ο αριθμός Φ εμφανίζεται και με τη μορφή χρυσών αναλογιών σε ορισμένα ζώα όπως στα χαρακτηριστικά του προσώπου της τίγρης του κοάλα και στο σώμα του δελφινιού

Τα λεγόμενα χρυσά σπειροειδή, που βασίζονται στο φ, απαντώνται στις σπείρες οστρακοειδών όπως στο κέλυφος του Ναυτίλου. Αλλά και το κέλυφος των σαλιγκαριών ακολουθεί και αυτό την ακολουθία Fibonacci.

Χαρακτηριστικό παράδειγμα μορφής θαλάσσιας ζωής, πέρα του ναυτίλου, του οποίου η ανατομία διέπεται από την χρυσή τομή είναι ο αστερίας το σώμα του οποίου σχηματίζει ένα κανονικό πεντάγωνο. Χρυσοί λόγοι εμφανίζονται και στο χελιδονόψαρο ενώ μπορούμε να διακρίνουμε την χρυσή αναλογία και στον ιππόκαμπο και συγκεκριμένα στις ραβδώσεις του

στο πρόσωπο, το χέρι, το σώμα και στο ανθρώπινο DNA

Υπάρχουν πολλές εφαρμογές της Χρυσής Αναλογίας στο ανθρώπινο σώμα. Σχεδόν όλα τα μέρη του σώματός μας είναι κατασκευασμένα σύμφωνα με αυτήν. Από το κεφάλι μέχρι και τις πατούσες εμφανίζεται ο αριθμός φ.

Το ύψος ενός ανθρώπου προς την απόσταση από το κεφάλι μέχρι και την άκρη του μεσαίου δαχτύλου του αποτελεί ένα χρυσό ευθύγραμμο τμήμα. Το ίδιο και η απόσταση από το κεφάλι μέχρι και την άκρη του μεσαίου δαχτύλου προς την απόσταση από το κεφάλι μέχρι και τους αγκώνες. Η απόσταση από το κεφάλι μέχρι και τους αγκώνες προς την απόσταση από το κεφάλι μέχρι και τους ώμους, αποτελεί και αυτή ένα χρυσό ευθύγραμμο τμήμα. Όμοια και η απόσταση από το κεφάλι μέχρι και τους ώμους προς την απόσταση από την κορυφή του κεφαλιού μέχρι την άκρη του πιγουνιού, αποτελεί εξίσου ένα χρυσό ευθύγραμμο τμήμα.

Τα εκατοστά των οστών του χεριού μας αντιστοιχούν στους όρους της ακολουθίας. Έχοντας αυτό σαν δεδομένο το νύχι του μεσαίου δαχτύλου μας ισούται με ένα. Επιπροσθέτως, η παλάμη δημιουργεί τη χρυσή αναλογία σε σχέση με το υπόλοιπο χέρι.

Στα δόντια μας, παρατηρείται ότι τα δύο μπροστινά δόντια είναι εγγεγραμμένα σε ένα χρυσό ορθογώνιο, με μία χρυσή αναλογία του ύψους προς το πλάτος τους. Επιπλέον, η αναλογία του πλάτους από το πρώτο δόντι προς το πλάτος του δευτέρου είναι επίσης χρυσή. Τέλος, αν χαμογελάσουμε, θα παρατηρήσουμε πως το πλάτος του χαμόγελου προς το πλάτος που υπάρχει μέχρι το τρίτο δόντι, είναι ίση με Φ.

Το κεφάλι αποτελεί ένα χρυσό ορθογώνιο με την ευθεία που ορίζουν τα μάτια να το χωρίζει στη μέση. Το στόμα και η μύτη είναι το καθένα τοποθετημένο στη χρυσή τομή του ευθύγραμμου τμήματος Που ορίζεται ανάμεσα στα μάτια και στην άκρη του πιγουνιού.

Ακόμα και μια τομή του ανθρώπινου DNA, φαίνεται να ενσωματώνεται άψογα σε ένα χρυσό δεκάγωνο το οποίο είναι υπόδειγμα της χρυσής αναλογίας.

Κλείνοντας θα θέλαμε να τονίσουμε πως είναι καθήκον μας και δικαίωμα μας να μελετάμε και να καταλαβαίνουμε τον κόσμο και ο αριθμός Φ αποτελεί αναμφισβήτητα ένα χρήσιμο εργαλείο.

Ο μεγάλος γάλλος μαθηματικός Henri Poincare κάποτε είπε: «Ο επιστήμονας δεν μελετά τη φύση επειδή είναι χρήσιμο, αλλά επειδή αυτό τον ευχαριστεί. Και τον ευχαριστεί επειδή η φύση είναι όμορφη. Εάν η φύση δεν ήταν όμορφη, τότε δεν θα άξιζε τον κόπο να την γνωρίσουμε. Και εάν δεν άξιζε τον κόπο να την γνωρίσουμε, τότε δεν θα άξιζε να ζούμε»