SEMINAR FIZICA SEM 2. Unitati de masura.sisteme de referinta. Vectori.Operatori

Σχετικά έγγραφα
UNITĂŢI Ţ DE MĂSURĂ. Măsurarea mărimilor fizice. Exprimare în unităţile de măsură potrivite (mărimi adimensionale)

Unităţi de măsură. Unităţi fundamentale

Procesul de măsurare

2 Mărimi, unități de măsură și relații de conversie

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Anexa 1 Marimi masurabile clasificate dupa gradul cu care acestea apar în legile electromagnetismului

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής

UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA. Facultatea de Electronică şi Telecomunicaţii EXAMEN LICENŢĂ SPECIALIZAREA ELECTRONICĂ APLICATĂ

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

CURS BIOFIZICĂ SEM 2. Istoric. Unitati de masura.sisteme de referinta. Vectori.Operatori

a. 11 % b. 12 % c. 13 % d. 14 %

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

Curs 4 Serii de numere reale

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Metode iterative pentru probleme neliniare - contractii

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Curs 1 Şiruri de numere reale

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

1. Unitati si prefixe SI

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

Integrala nedefinită (primitive)

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Subiecte Clasa a VIII-a

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Problema a II - a (10 puncte) Diferite circuite electrice

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Subiecte Clasa a VII-a

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

Metode de interpolare bazate pe diferenţe divizate

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

Profesor Blaga Mirela-Gabriela DREAPTA

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3


1. PROPRIETĂȚILE FLUIDELOR

Algebra si Geometrie Seminar 9

Sisteme diferenţiale liniare de ordinul 1

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =

MARCAREA REZISTOARELOR

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

UnităŃile de măsură pentru tensiune, curent şi rezistenńă

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.1. Noţiuni introductive

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

Unitate de măsură (Prefixe SI)

Capitolul 1. Noțiuni Generale. 1.1 Definiții

cateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC

TEST GRILĂ DE VERIFICARE A CUNOŞTINŢELOR LA MATEMATICĂ-FIZICĂ VARIANTA 1 MATEMATICĂ

Laborator biofizică. Noţiuni introductive

Laborator 11. Mulţimi Julia. Temă

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon

riptografie şi Securitate

Φυσικές και χημικές ιδιότητες

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

CAPITOLUL 1 MĂRIMI FIZICE ȘI UNITĂȚI DE MĂSURĂ

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Seminar 5 Analiza stabilității sistemelor liniare

NOȚIUNI GENERALE DE METROLOGIE

Seminar electricitate. Seminar electricitate (AP)

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1

FORMULE ŞI RELAŢII FOLOSITE ÎN ELECTROTEHNICĂ

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede

Sistemul de mărimi şi unităţi CGS (centimetru-gram-secundă)

5.4. MULTIPLEXOARE A 0 A 1 A 2

Asupra unei inegalităţi date la barajul OBMJ 2006

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

ENUNŢURI ŞI REZOLVĂRI 2013

3. Reguli si conventii de stil pentru exprimarea unitatilor de masura

CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1

Măsurări în Electronică şi Telecomunicaţii 3. Măsurarea tensiunilor şi a curenţilor electrici

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Circuite electrice in regim permanent

Clasa a IX-a, Lucrul mecanic. Energia

CURS MECANICA CONSTRUCŢIILOR

1.2.3 MIJLOACELE ELECTRICE DE MĂSURAT

I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Curs 2 Şiruri de numere reale

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =

PROBLEME DE ELECTRICITATE

Μετρήσεις. Η διαδικασία να μπορούμε να ποσοτικοποιήσουμε εκείνο για το οποίο μιλάμε και να το εκφράσουμε με αριθμούς ονομάζεται μέτρηση.

1.3 Baza a unui spaţiu vectorial. Dimensiune

Activitatea A5. Introducerea unor module specifice de pregătire a studenților în vederea asigurării de șanse egale

Transcript:

SEMINAR FIZICA SEM 2 Unitati de masura.sisteme de referinta. Vectori.Operatori

SISTEME DE UNITĂŢI. SISTEMUL INTERNAŢIONAL DE UNITĂŢI (SI) Mărimi fundamentale Unităţi de măsură Sistemul de unităţi Lungimea Masa Timpul Lungimea Masa Timpul Lungimea Forţa Timpul metrul (M) kilogramul (K) secunda (s) centimetrul (c) gramul (g) secunda (s) metrul (M) kilogram - forţă (Kf) secunda (s) MKS sau SI cgs MKfs

Pentru celelalte ramuri ale fizicii cele trei mărimi fundamentale s-au suplimentat cu încă patru mărimi: - temperatura cu unitatea de măsură Kelvin (K); - intensitatea curentului electric cu unitatea amperul (A); - intensitatea luminoasă cu unitatea candela (cd); - cantitatea de substanţă cu unitatea mol.

In Sistemul internaţional se disting trei clase de unităţi SI şi anume: - unităţi fundamentale; - unităţi derivate; - unităţi suplimentare.

Unităţi fundamentale a) Unitatea de lungime: metrul (m) este lungimea egală cu 1.650.763,73 lungimi de undă în vid ale radiaţiei care corespunde tranziţiei între nivelele de energie 2p10 şi 5d5 ale atomului de kripton-86. b) Unitatea de masă: kilogramul (kg) este masa prototipului internaţional al kilogramului. Acest prototip internaţional, confecţionat din platină - iridiu se păstrează la Biroul Internaţional de Măsuri şi Greutăţi. c) Unitatea de timp: secunda (s) este durata a 9.192.631.770 perioade ale radiaţiei care corespunde tranziţiei între cele două nivele de energie hiperfine ale stării fundamentale a atomului de cesiu 133. d) Unitatea de intensitate a curentului electric: amperul (A) este intensitatea unui curent constant care, menţinut în două conductoare paralele, rectilinii, cu lungime infinită şi cu secţiunea circulară neglijabilă, aşezate în vid la o distanţă de un metru unul de altul, ar produce între aceste două conductoare o forţă de 2.10-7 N, pe o lungime de un metru de conductor. e) Unitatea de temperatură termodinamică: kelvinul (K) este fracţiunea 1/273,16 din temperatura termodinamică a punctului triplu al apei. f) Unitatea de cantitate de substanţă: molul[1] (mol) este cantitatea de substanţă a unui sistem care conţine atâtea entităţi elementare de atomi câţi există în 0,012 kilograme de carbon 12. De câte ori se întrebuinţează molul, entităţile elementare trebuie specificate, ele putând fi atomi, molecule, ioni, electroni, alte particule sau grupuri specificate de asemenea particule. g) Unitatea de intensitate luminoasă: candela (cd) este intensitatea luminoasă, într-o direcţie dată, a unei surse care emite o rază monocromatică de frecvenţă v=540 1012 Hz, a cărei intensitate energetică în această direcţie este de 1/683 watt pe steradian. [1]In mod curent se foloseşte drept unitate de măsură kilomolul (kmol).

Unităţi SI derivate Putem distinge trei grupe de unităţi SI derivate: a) unităţi exprimate în funcţie de unităţile fundamentale, ca de exemplu: m/s pentru viteză, A/m pentru intensitatea câmpului magnetic, ş.a; b) unităţi derivate cu denumiri speciale, ca de exemplu: Hz pentru frecvenţă, J pentru energie, N pentru forţă, ş.a; c) unităţi derivate care se exprimă folosindu-se denumiri speciale, ca de exemplu: N.m pentru momentul forţei, V/m pentru intensitatea câmpului electric, ş.a.

Unităţi SI suplimentare Din unităţile suplimentare fac parte: radianul (rad) pentru plan şi steradianul (sr) pentru unghiul solid. Radianul este unghiul cuprins între două raze care delimitează pe circumferinţa unui cerc un arc de lungime egală cu cea a razei (Fig.1.1). Unghiul de un radian este egal cu unghiul de (180/π) grade sexazecimale adică 57 17'45". Steradianul este unghiul solid care, având vârful în centrul unei sfere, delimitează pe suprafaţa acestei sfere o arie egală cu a unui pătrat a cărui latură este egală cu raza sferei. Dacă din centrul unei sfere de rază r se trasează o suprafaţă conică) atunci această suprafaţă intersectează o parte din sferă, aria acestei suprafeţe fiind proporţională cu r 2 şi cu valoarea unghiului solid Ω.

Comitetul Internaţional de Măsuri şi Greutăţi (CIMG) a recunoscut în 1969 utilizarea unor unităţi care nu fac parte din SI, dar care joacă un rol important şi sunt larg răspândite. Denumirea Simbolul Valoarea în unităţi SI minut Min 1min = 60s oră H 1h = 60min = 3600s zi D 1d = 24h = 86400s grad 1 = (π/180) = rad minut ' 1' = (1/60) = (π/10800)rad secundă " 1" = (1/60)' = (π/64800)rad litru l 1l = 1dm 3 = 10-3 m 3 tona t 1t = 10 3 Kg

In afară de unităţile arătate mai sus, sunt admise şi câteva unităţi a căror folosire este utilă în diferite domenii de specialitate mai strictă: - Electron-voltul (ev) este energia cinetică câştigată de un electron, care traversează o diferenţă de potenţial de 1 volt în vid:1ev=1,60219 10-19J, aproximativ. - Unitatea de masă atomică (unificată), simbolul (u). Unitatea de masă atomică (unificată) este fracţiunea 1/12 din masa unui atom al nucleului 12C; 1u=1,66057 10-27Kg.

Multiplii şi submultiplii pentru unităţile SI Factorul de multiplicare Prefixul Simbolul 10 18 exa F 10 15 peta P 10 12 tera T 10 9 giga G 10 6 mega M 10 3 Kilo K 10 2 hecto h 10 1 deca da 10-1 deci d 10-2 centi c 10-3 mili m 10-6 micro μ 10-9 nano n 10-12 pico p 10-15 femto f 10-18 atto a

a = a x +a y +a z = a x i +a y j +a z k a +b = r

a +(-b)= r Atunci când înmulţim o mărime vectorială cu o altă mărime vectorială, trebuie să facem distincţie între produsul scalar şi produsul vectorial.

Produsul a doi vectori Produsul scalar a doi vectori a şi b este definit prin relaţia: a b = ab cos

Vectorul rezultant poate fi scris şi sub forma unui determinant

Divergenţa unui vector este o mărime scalară care în sistemul de coordonate carteziene se scrie:

Gradientul unei funcţii scalare este un vector care, în sistemul de coordonate carteziene, se scrie:

Rotorul unui vector este definit prin relaţia

Laplaceanul (sau operatorul lui Laplace) notat cu Δ, aplicat unei funcţii Ψ, este dat de expresia:

Operatorul (nabla)

Probleme 1. Să se determine viteza şi spatiul parcurs de un mobil a cărui acceleraţie depinde de viteza după legea a= - kv 2, cunoscând că la t=0 avem v=v 0 şi s=s 0. 2. Un mobil se mişcă pe un cerc de raza R astfel încat unghiul α dintre viteză si acceleraţie este constant. Cunoscând că v 0 = const, exprimaţi viteza în funcţie de timp.