Capitolul 1. Noțiuni Generale. 1.1 Definiții
|
|
- Παρασκευή Μιχαηλίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Capitolul 1 Noțiuni Generale 1.1 Definiții Forța este acțiunea asupra unui corp care produce accelerația acestuia cu condiția ca asupra corpului să nu acționeze şi alte forțe de sens contrar primeia. Forța este un vector. Timpul este o măsură a succesiunii unor evenimente. În mecanica newtoniană este o cantitate absolută. În mecanica relativistă timpul este relativ față de sistemul de referință în care se observă succesiunea de evenimente. Unitatea de măsură este secunda. Masa este o măsură cantitativă a inerției. Accelerația gravitațională Orice obiect care cade în vid într-o anumită locație de pe suprafața Pământului va avea aceeaşi accelerație g. Calcularea cu precizie a accelerației gravitaționale trebuie să ia în considerare rotația Pământului, aplatizarea din zona polilor şi altitudinea față de nivelul mării. Valoarea utilizată în mod curent este g = 9, 80665m/s 2. Greutatea este forța rezultantă de atracție ce acționează asupra masei unui corp datorită unui câmp gravitațional. Impulsul este produsul dintre masă şi viteza liniară a unui corp. Impulsul este un vector. Momentul cinetic Este produsul dintre momentul de inerție al unui corp şi viteza unghiulară, ambele măsurate față de o axă fixă. 9
2 10 CAPITOLUL 1. NOȚIUNI GENERALE 1.2 Sisteme şi unități de măsură În sistemul absolut de măsură, unitățile pentru lungime, masă şi timp sunt considerate unități fundamentale şi toate celelalte unități sunt exprimate în funcție de acestea (ex. pentru forță: 1N = 1Kg m/s 2 ). În sistemul gravitațional, unitățile pentru lungime, forță şi timp sunt considerate unități fundamentale şi toate celelalte unități sunt exprimate în funcție de acestea (ex. pentru masă: 1Kg = 1N s 2 /m). În sistemul internațional SI, unitatea de măsură pentru masă este kilogramul (Kg) şi pentru lungime metrul (m). O forță de un Newton (N) este forța care produce unui corp cu masa de 1Kg o accelerație de 1m/s Legile generale ale mecanicii Legile lui Newton: I. Dacă un sistem de forțe în echilibru acționează asupra unui punct material staționar, acesta va rămâne staționar. Dacă un sistem de forțe în echilibru acționează asupra unui punct material aflat în mişcare, acesta va rămâne în mişcare rectilinie neaccelerată. II. Dacă un sistem de forțe neechilibrat acționează asupra unui punct material, acesta va accelera proporțional cu mărimea şi direcția forței rezultante a sistemului. III. Dacă două particule exercită forțe una asupra celeilalte, atunci aceste forțe sunt egale ca mărime, opuse ca direcție şi coliniare. Ecuația fundamentală a mecanicii: Relația de bază dintre masă, accelerație şi forță este dată de legea a II-a a lui Newton: forța este egală cu produsul dintre masă şi accelerație. Aceasta este o ecuație vectorială deoarece direcția forței trebuie să coincidă cu direcția accelerației. Alternativa legii a II-a a lui Newton stipulează că forța rezultantă este egală cu derivata impulsului în funcție de timp: F = d(mv)/dt. Legea conservării masei Masa unui corp rămâne neschimbată (se conservă) în orice condiții fizice sau chimice la care acesta ar putea fi supus.
3 1.4. DIVIZIUNILE MECANICII 11 Legea conservării energiei Principiul conservării energiei stipulează că energia mecanică totală a unui sistem rămâne neschimbată dacă sistemul este supus doar unor forțe care depind de poziție or configurație. Legea conservării impulsului Impulsul unui sistem de corpuri rămâne neschimbat dacă asupra sistemului nu acționează nici o forță exterioară. De asemenea, momentul cinetic al unui sistem de corpuri față de o axă rămâne constant dacă nu există nici un moment exterior față de această axă. Legea atracției reciproce (Gravitația) Două corpuri se atrag cu o forță F proporțională cu masele lor (m 1 şi m 2 ) şi invers proporțională cu pătratul distanței r dintre ele. Altfel spus, F = km 1 m 2 /r 2, unde k este constanta gravitațională. Valoarea constantei 11 m3 gravitaționale este k = 6, kg s 2. EXEMPLU: Două sfere de oțel cu diametrul de 150mm cântăresc 7, 8kg fiecare la suprafața Pământului, forța de greutate fiind G = 76, 5N. Aceasta este forța de atracție dintre Pământ şi sfera de oțel. Forța de atracție reciprocă dintre cele două sfere dacă acestea se află în poziția în care se ating este F = 0, N = 1, N. 1.4 Diviziunile mecanicii Potrivit unei împărțiri clasice, mecanica se compune din următoarele trei părți: staica, cinematica şi dinamica. În statică se face abstracție de mişcare şi se studiază forțele care acționează asupra unui corp sau asupra unui sistem de corpuri, determinându-se clasa sistemelor de forțe echivalente. În particular, statica se ocupă cu subclasa sistemelor de forțe care îşi fac echilibru. Cinematica studiază mişcarea corpurilor, făcând abstracție de forțele care acționează asupra lor. Dinamica studiază mişcarea corpurilor sub acțiunea forțelor care acționează asupra lor.
4 12 CAPITOLUL 1. NOȚIUNI GENERALE
5 Capitolul 2 Statica Rigidului 2.1 Considerații generale Dacă forțele care acționează asupra unui corp rigid nu produc nici o accelerație, atunci ele se neutralizează, adică formează un sistem de forțe în echilibru. Echilibrul forțelor este stabil dacă, în urma unei deplasări foarte mici din poziția de echilibru, corpul sub acțiunea forțelor revine în poziția inițială. Echilibrul este instabil atunci când corpul tinde să se îndepărteze de poziția de echilibru atunci când este supus unei deplasări foarte mici față de poziția inițială. Echilibrul este neutru dacă forțele îşi mențin echilibrul şi după deplasarea corpului din poziția inițială. echilibru stabil echilibru instabil echilibru neutru 2.2 Forțe externe şi interne Forțele prin care particulele individuale ale unui corp acționează una asupra alteia se numesc forțe interne. Toate celelalte forțe se numesc forțe externe. Dacă un corp se sprijină pe alte corpuri şi estesupus unor forțe exterioare, în punctele de sprijin se produc deformații şi forțe interne, iar acestea sunt 13
6 14 CAPITOLUL 2. STATICA RIGIDULUI distribuite în interiorul corpului astfel încât să existe un achilibru, iar corpul se consideră a fi în una sau mai multe din următoarele stări: tensiune, compresiune sau forfecare. Forțele exercitate de corp asupra corpurilor pe care se sprijină se numesc reacțiuni. Dacă un corp este în repaus, forțele externe care acționează asupra sa formează un sistem de forțe în echilibru. 2.3 Compunerea, descompunerea şi echilibrul forțelor Rezultanta mai multor forțe cu acelaşi punct de aplicație (forțe concurente) este o forță ce va produce acelaşi efect ca forțele individuale acționând împreună. Rezultanta R a două forțe F 1 şi F 2 aplicate unui corp rigid în acelaşi punct este egală în magnitudine şi direcție cu diagonala paralelogramului format de forțele F 1 şi F 2. R F 2 α 1 α 2 α R = F F F 1 F 2 cosα F 1 sin α 1 = F 2 sin α R sin α 2 = F 1 sin α R O forță R poate fi descompusă în două forțe componente ce se intersectează în acelaşi punct cu R şi care acționează în acelaşi plan ca R prin inversarea procesului de calcul a rezultantei. Prin repetarea acestei operațiuni, forța R poate fi descompusă într-un număr oricât de mare de forțe componente cu acelaşi punct de aplicație şi acționând în acelaşi plan. Rezultanta unui sistem de forțe concurente aplicate unui corp rigid se află prin descompunerea fiecărei forțe F în componente pe trei axe de coordonate ortogonale. Dacă α, β şi γ sunt unghiurile față de axele Ox, Oy, Oz ale unei forțe F, componentele sale vor fi: F cos α de-a lungul axei Ox, F cosβ de-a lungul axei Oy şi F cosγ de-a lungul axei Oz. Rezultanta va fi: ( ) 2 ( ) 2 ( ) 2 R = X + Y + Z
7 2.4. CUPLURI DE FORȚE ŞI MOMENTE 15 Unghiurile rezultantei față de cele trei axe sunt date de: cosα r = X/R cosβ r = Y/R cosγ r = Z/R Condiția de echilibru static este R = 0 adică X = 0; Z = 0. Y = 0; 2.4 Cupluri de forțe şi momente Cuplul de forțe Două forțe paralele, necoliniare, egale şi acționând în direcții opuse formează un cuplu de forțe. F a F Un cuplu de forțe nu poate fi redus la o singurp forță. Momentul unui cuplu este acelaşi în orice punct din spațiu. Momentul unui cuplu de forțe este produsul dintre modulul uneia dintre forțe şi distanța dintre dreptele de-a lungul cărora acționează cele două forțe. M = F a Unitatea de măsură în sistem internațional este [N m]. Sensul momentului este considerat pozitiv dacă cuplul de forțe tinde să producă o rotație în sens trigonometric. Magnitudinea, direcția şi sensul momentului unui cuplu de forțe sunt reprezentate printr-un vector, perpendicular pe planul în care acționează forța sau forțele care-l produc, cu sensul dictat de regula mâinii drepte sau a şurubului drept (dacă forța acționează în plan orizontal şi tinde să producă o rotație în sens trigonometric, atunci direcția vectorului este orientată în sus). Momentul unui vector față de un punct Momentul unui vector V în raport cu un punct O este produsul vectorial dintre vectorul de poziție r al punctului de aplicație A al vectorului şi vectorul V, adică: M O = r V
8 16 CAPITOLUL 2. STATICA RIGIDULUI M O V r A α d B Rezultă că momentul unui vector în raport cu un punct este un vector a cărui direcție este perpendiculară pe planul P determinat de punct şi de suportul vectorului, al cărui sens este acela al şurubului drept şi al cărui modul este egal cu produsul r V sin α. Dar r sin α = d rezultă: M O = V d Momentele se pot compune prin însumarea vectorilor după regula paralelogramului, similar compunerii forțelor. 2.5 Forțele de reacțiune pentru sprijinul corpurilor Forțele externe, aflate în echilibru, ce acționează asupra unui corp pot fi static determinate sau static nedeterminate, în funcție de numărul de forțe necunoscute. Primul pas în rezolvarea problemelor de statică este determinarea tuturor forțelor de reacțiune. Pentru cunoaşterea completă a forțelor de reacțiune sunt necesare următoarele date: magnitudinea, direcția şi punctul de aplicație. În funcție de natura problemei, se pot cunoaşte niciuna, una sau două dintre aceste date. Un sistem se consideră a fi static determinat atunci când condițiile de echilibru static sunt suficiente pentru determinarea reacțiunilor.
9 Capitolul 3 Caracteristici masice şi geometrice ale corpurilor 3.1 Centrul de greutate Forțele care reprezintă greutățile punctelor materiale ale unui corp rigid se pot considera paralele, iar centrul acestor forțe se numeşte centrul de masă sau centrul de greutate al corpului. Coordonatele centrului de greutate sunt: x c = Gi x i Gi y c = Gi y i Gi z c = Gi z i Gi unde G reprezintă greutatea sistemului de puncte materiale, iar C centrul de greutate al sistemului. G 17
10 18 CAPITOLUL 3. CARACTERISTICI MASICE ŞI GEOMETRICE Deoarece G i = m i g rezultă că vectorul de poziție al centrului de greutate r c poate fi scris sub forma: r c = mi r i mi x x c = i ; y c = mi mi mi y i mi z ; z c = i ; mi mi Sau în formă continuă: r c = r dm xdm x c = ;... dm dm Centrul de greutate al unor linii Linii drepte (segmente rectilinii): mijlocul segmentului Arc de cerc de rază R cu unghiul la centru 2α: x c = R sin α α (fig.3.1) sau pentru exemplul din figura 3.2: x c = R sin β β y c = 2R sin2 β/2 β 2α β y c x c x c Figura 3.1: Figura 3.2:
11 3.2. MOMENTE DE INERȚIE Centrul de greutate al unor suprafețe Triunghi oarecare: intersecția medianelor Paralelogram: Sector de cerc de rază R cu unghiul la centru 2α (fig.3.3) : Segment de cerc de rază R cu unghiul la centru 2α (fig.3.4) : Suprafața unui sfert de elipsă (fig.3.5) : Jumătatea unui segment parabolic (fig.3.6) : intersecția diagonalelor x c = 2 3 R sinα α x c = 2 3 R x c = 4a 3π y c = 4b 3π x c = 3 5a y c = 3 8b sin 3 α α sinα cosβ Centrul de greutate al unor solide Paralelipiped: intersecția diagonalelor Prisma şi cilindrul: Piramida şi conul: Sector sferic de rază R şi înălțime H: Segment de sferă de rază R şi înălțime H (fig. 3.7) : mijlocul segmentului care leagă centrele de greutate ale suprafețelor bazelor la o pătrime de bază pe segmentul ce uneşte centrul de greutate al bazei cu vârful OC = 3 4 ( R H 2 OC = 3(2R H)2 4(3R H) ) 3.2 Momente de inerție Momentul de inerție al unui corp în raport cu o axă este suma produselor dintre masele particulelor elementare ale corpului şi pătratul distanței lor față de axă.
12 20 CAPITOLUL 3. CARACTERISTICI MASICE ŞI GEOMETRICE R 2α R C 2α C x c x c Figura 3.3: Figura 3.4: b C C y c b y c x c x c a a Figura 3.5: Figura 3.6: C H O Figura 3.7:
13 3.2. MOMENTE DE INERȚIE 21 I = m i yi 2 sau I = y 2 dm Dacă I = k 2 m, parametrul k se numeşte rază de inerție. Momentul de inerție al unei suprafețe față de o axă este suma produselor dintre suprafețele elementare în care se poate diviza suprafața şi pătratul distanței lor față de axă. I = y 2 da = k 2 A Momentul de inerție al unei suprafețe sau unui corp față de o axă este egal cu momentul de inerție față de o axă paralelă ce trece prin centrul de greutate plus pătratul distanței dintre cele două axe înmulțit cu aria suprafeței, respectiv cu masa corpului. Ex: A y 0 B y A x 0 I = I 0 + x 2 0A unde A - suprafaţa ABCD D y 0 C y y 0 y m x 0 I = I 0 + x 2 0m y 0 y Figura 3.8: Momentul de inerție polar al unei suprafețe se consideră față de o axă perpendiculară pe planul suprafeței. Se consideră o suprafață plană A situată
14 22 CAPITOLUL 3. CARACTERISTICI MASICE ŞI GEOMETRICE în planul xoy. Dacă I x şi I y sunt momentele de inerție ale suprafeței A față de xx şi yy, atunci momentul polar de inerție este egal cu suma momentelor de inerție față de cele două axe. I p = I x + I y
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότεραEcuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Διαβάστε περισσότερα3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
Διαβάστε περισσότεραProfesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Διαβάστε περισσότεραIII. Statica III. Statica. Echilibrul mecanic al corpurilor. 1. Sistem de forțe concurente. Sistemul de forțe
III. Statica III. Statica. Echilibrul mecanic al corpurilor. 1. Sistem de forțe concurente. Sistemul de forțe reprezintă totalitatea forțelor care acționează simultan asupra unui corp, Fig. 1. În Fig.
Διαβάστε περισσότερα2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Διαβάστε περισσότεραRĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Διαβάστε περισσότεραCURS MECANICA CONSTRUCŢIILOR
CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la
Διαβάστε περισσότεραCUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1
CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare
Διαβάστε περισσότερα2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Διαβάστε περισσότεραDefiniţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Διαβάστε περισσότεραAplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Διαβάστε περισσότεραCurs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότεραAlgebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότεραR R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Διαβάστε περισσότεραVectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.
liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia
Διαβάστε περισσότεραDISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Διαβάστε περισσότερα5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Διαβάστε περισσότεραDinamica. F = F 1 + F F n. si poarta denumirea de principiul suprapunerii fortelor.
Dinamica 1 Dinamica Masa Proprietatea corpului de a-si pastra starea de repaus sau de miscare rectilinie uniforma cand asupra lui nu actioneaza alte corpuri se numeste inertie Masura inertiei este masa
Διαβάστε περισσότεραCUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1
CURS 5 REDUCEREA SISTEMELOR DE FORŢE (CONTINUARE) CUPRINS 5. Reducerea sistemelor de forţe (continuare)...... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 5.1. Teorema lui Varignon pentru sisteme
Διαβάστε περισσότεραConice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότεραCUPRINS 2. Sisteme de forţe... 1 Cuprins..1
CURS 2 SISTEME DE FORŢE CUPRINS 2. Sisteme de forţe.... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 2.1. Forţa...2 Test de autoevaluare 1...3 2.2. Proiecţia forţei pe o axă. Componenta forţei
Διαβάστε περισσότεραI. Forţa. I. 1. Efectul static şi efectul dinamic al forţei
I. Forţa I. 1. Efectul static şi efectul dinamic al forţei Interacţionăm cu lumea în care trăim o lume în care toate corpurile acţionează cu forţe unele asupra altora! Întrebările indicate prin: * 1 punct
Διαβάστε περισσότεραIII. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Διαβάστε περισσότερα2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede
2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind
Διαβάστε περισσότεραCURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi
Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială
Διαβάστε περισσότεραLucrul si energia mecanica
Lucrul si energia mecanica 1 Lucrul si energia mecanica I. Lucrul mecanic este produsul dintre forta si deplasare: Daca forta este constanta, atunci dl = F dr. L 1 = F r 1 cos α, unde r 1 este modulul
Διαβάστε περισσότεραSubiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Διαβάστε περισσότεραCUPRINS 9. Echilibrul sistemelor de corpuri rigide... 1 Cuprins..1
CURS 9 ECHILIBRUL SISTEMELOR DE CORPURI RIGIDE CUPRINS 9. Echilibrul sistemelor de corpuri rigide........... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 9.1. Generalităţi. Legături intermediare...2
Διαβάστε περισσότεραConice - Câteva proprietǎţi elementare
Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii
Διαβάστε περισσότεραV.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Διαβάστε περισσότεραI. NOŢIUNI FUNDAMENTALE DIVIZIUNILE MECANICII. PRINCIPIILE MECANICII CLASICE SISTEME ŞI UNITĂŢI DE MĂSURĂ
I. NOŢIUNI FUNDAMENTALE DIVIZIUNILE MECANICII. PRINCIPIILE MECANICII CLASICE SISTEME ŞI UNITĂŢI DE MĂSURĂ 1.1 Noţiuni fundamentale Mecanica este una dintre ştiinţele fundamentale ale naturii, având ca
Διαβάστε περισσότεραa. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Διαβάστε περισσότερα1. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t = 1.
. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t.5t (m/s). Să se calculeze: a) dependența de timp a spațiului străbătut
Διαβάστε περισσότεραCurs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Διαβάστε περισσότεραGEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Διαβάστε περισσότεραSisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Διαβάστε περισσότεραCURS 9 MECANICA CONSTRUCŢIILOR
CURS 9 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA NOŢIUNI DE BAZĂ ÎN CINEMATICA Cinematica studiază mişcările mecanice ale corpurilor, fără a lua în considerare masa acestora şi
Διαβάστε περισσότερα7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează
TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014
Διαβάστε περισσότεραDreapta in plan. = y y 0
Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului
Διαβάστε περισσότεραCOLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Διαβάστε περισσότερα15. Se dă bara O 1 AB, îndoită în unghi drept care se roteşte faţă de O 1 cu viteza unghiulară ω=const, axa se rotaţie fiind perpendiculară pe planul
INEMTI 1. Se consideră mecanismul plan din figură, compus din manivelele 1 şi 2, respectiv biela legate intre ele prin articulaţiile cilindrice şi. Manivela 1 se roteşte cu viteza unghiulară constantă
Διαβάστε περισσότεραAnaliza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Διαβάστε περισσότερα5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Διαβάστε περισσότερα1. Introducere in Fizică
FIZICA se ocupă cu studiul proprietăţilor şi naturii materiei, a diferitelor forme de energie şi a metodelor prin care materia şi enegia interacţionează în lumea în care ne înconjoară.. Introducere in
Διαβάστε περισσότεραIntegrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Διαβάστε περισσότεραx 1 = x x 2 + t, x 2 = 2 x 1 + x 1 + e t, x 1 (0) = 1, x 2 (0) = 1; (c) Să se studieze stabilitatea soluţiei nule pentru sistemul
Seminar mecanică 1. Să se găsească soluţiile următoarelor probleme Cauchy şi să se indice intervalul maxim de existenţă a soluţiei: (a) x = 1 x, t 0, x(1) = 0; t (b) (1 t x) x = t + x, t R, x(0) = 0; (c)
Διαβάστε περισσότεραy y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =
Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului
Διαβάστε περισσότεραLucrul mecanic şi energia mecanică.
ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al
Διαβάστε περισσότεραGEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότεραI. BAZELE MECANICII CLASICE
Alexandru RUSU Spiridon RUSU CURS DE FIZICĂ I. BAZELE MECANICII CLASICE Ciclu de prelegeri Chişinău 014 UNIVERSITATEA TEHNICĂ A MOLDOVEI Facultatea Inginerie şi Management în Electronică şi Telecomunicaţii
Διαβάστε περισσότεραCapitolul 9. Geometrie analitică. 9.1 Repere
Capitolul 9 Geometrie analitică 9.1 Repere Vom considera spaţiile liniare (X, +,, R)în careelementelespaţiului X sunt vectorii de pe odreaptă, V 1, dintr-un plan, V sau din spaţiu, V 3 (adică X V 1 sau
Διαβάστε περισσότερα3. REPREZENTAREA PLANULUI
3.1. GENERALITĂŢI 3. REPREZENTAREA PLANULUI Un plan este definit, în general, prin trei puncte necoliniare sau prin o dreaptă şi un punct exterior, două drepte concurente sau două drepte paralele (fig.3.1).
Διαβάστε περισσότεραCurs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Διαβάστε περισσότεραCUPRINS 6. Centre de greutate... 1 Cuprins..1
URS 6 ENTRE DE GREUTATE UPRINS 6. entre de greutate...... 1 uprins..1 Introducere modul.1 biective modul....2 6.1. entre de greutate......2 6.2. Momente statice...4 Test de autoevaluare 1...5 6.3. entre
Διαβάστε περισσότεραCapitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
Διαβάστε περισσότεραTRIUNGHIUL. Profesor Alina Penciu, Școala Făgăraș, județul Brașov A. Definitii:
TRIUNGHIUL Profesor lina Penciu, Școala Făgăraș, județul rașov Daca, si sunt trei puncte necoliniare, distincte doua câte doua, atunci ( ) [] [] [] se numeste triunghi si se noteaza cu Δ. Orice Δ determina
Διαβάστε περισσότεραLectia VII Dreapta si planul
Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.
Διαβάστε περισσότεραLiviu BERETEU FUNDAMENTE DE INGINERIE MECANICA
Liviu BERETEU FUNDAMENTE DE INGINERIE MECANICA 200 .Momentul unei forţe în raport cu un punct şi în raport cu o axă. Cuplu de forţe Momentul unei forţe F în raport cu un punct O se defineşte ca fiind produsul
Διαβάστε περισσότεραDETERMINAREA COEFICIENTULUI DE FRECARE LA ROSTOGOLIRE
DETERMINAREA COEFICIENTULUI DE FRECARE LA ROSTOGOLIRE Scopul lucrării În lucrarea de faţă se determină valoarea coeficientului de frecare la rostogolire, utlizând un dispozitiv ce permite găsirea expresiei
Διαβάστε περισσότερα145. Sã se afle acceleraţiile celor trei corpuri din figurã. Ramurile firului care susţin scripetele mobil sunt verticale.
Tipuri de forţe 127. Un corp cu masa m = 5 kg se află pe o suprafaţã orizontalã pe care se poate deplasa cu frecare (μ= 0,02). Cu ce forţã orizontalã F trebuie împins corpul astfel încât sã capete o acceleraţie
Διαβάστε περισσότερα14. Grinzi cu zăbrele Metoda secţiunilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR GRINZI CU ZĂBRELE METODA SECŢIUNILOR CUPRINS. Grinzi cu zăbrele Metoda secţiunilor... Cuprins... Introducere..... Aspecte teoretice..... Aplicaţii rezolvate.... Grinzi cu zăbrele Metoda secţiunilor
Διαβάστε περισσότεραSeminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Διαβάστε περισσότεραFIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE
FIZICĂ Oscilatii mecanice ş.l. dr. Marius COSTACHE 3.1. OSCILAŢII. Noţiuni generale Oscilaţii mecanice Oscilaţia fenomenul fizic în decursul căruia o anumită mărime fizică prezintă o variaţie periodică
Διαβάστε περισσότεραClasa a IX-a, Lucrul mecanic. Energia
1. LUCRUL MECANIC 1.1. Un resort având constanta elastică k = 50Nm -1 este întins cu x = 0,1m de o forță exterioară. Ce lucru mecanic produce forța pentru deformarea resortului? 1.2. De un resort având
Διαβάστε περισσότεραLucian Maticiuc SEMINAR Conf. dr. Lucian Maticiuc. Capitolul VI. Integrala triplă. Teoria:
Capitolul I: Integrala triplă Conf. dr. Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Analiza Matematică II, Semestrul II Conf. dr. Lucian MATICIUC Teoria: SEMINAR 3 Capitolul I. Integrala
Διαβάστε περισσότεραGeometrie computationala 2. Preliminarii geometrice
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,
Διαβάστε περισσότερα13. Grinzi cu zăbrele Metoda izolării nodurilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...
SEMINAR GRINZI CU ZĂBRELE METODA IZOLĂRII NODURILOR CUPRINS. Grinzi cu zăbrele Metoda izolării nodurilor... Cuprins... Introducere..... Aspecte teoretice..... Aplicaţii rezolvate.... Grinzi cu zăbrele
Διαβάστε περισσότεραFORŢE: exprimă interacţiunea unui corp cu materia (alte corpuri sau câmpuri) descriere: d modul, direcţie şi sens măsurare: dinamometre etalonate cu
FORŢE Ţ ŞI VECTORI FORŢE: exprimă interacţiunea unui corp cu materia (alte corpuri sau câmpuri) descriere: d modul, direcţie şi sens măsurare: dinamometre etalonate cu ajutorul unei greutăţi standard însumare:
Διαβάστε περισσότεραMinisterul Educaţiei, Cercetării şi Inovării Centrul Naţional pentru Curriculum şi Evaluare în Învăţământul Preuniversitar
A. SUBIECTUL III Varianta 001 (15 puncte) O locomotivă cu puterea P = 480 kw tractează pe o cale ferată orizontală o garnitură de vagoane. Masa totală a trenului este m = 400 t. Forţa de rezistenţă întâmpinată
Διαβάστε περισσότεραBrutus Demşoreanu. Mecanica analitică. - Note de curs -
Brutus Demşoreanu Mecanica analitică - Note de curs - TIMIŞOARA 2003 Tehnoredactarea în L A TEX 2ε aparţine autorului. Copyright c 2003, B. Demşoreanu Cuprins I Mecanica newtoniană 7 1 Elemente de cinematica
Διαβάστε περισσότεραELEMENTE DE GEOMETRIE. Dorel Fetcu
ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială
Διαβάστε περισσότεραCap. I NOŢIUNI FUNDAMENTALE DESPRE VECTORI
Cap. I NOŢIUNI FUNDAMENTALE DESPRE VECTORI In mecanică există mărimi scalare sau scalari şi mărimi vectoriale sau vectori. Mărimile scalare (scalarii) sunt complet determinate prin valoarea lor numerică
Διαβάστε περισσότεραConcurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
Διαβάστε περισσότεραUNELE APLICAŢII ALE FORŢELOR DE INERŢIE
70 Metodica fizicii UNELE APLICAŢII ALE FORŢELOR DE INERŢIE Mircea COLPAJIU, UTM, Chişinău Stefan TIRON, USM, Chişinău În articolul precedent (Revista de fizică, nr. 2, 1995) s-a fost menţionat că atunci
Διαβάστε περισσότεραMARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Διαβάστε περισσότεραII. Dinamica (2) Unde F și F sunt forța de acțiune respectiv de reacțiune, Fig. 1.
II. Dinamica 1. Principiile mecanicii clasice (sau principiile mecanicii newtoniene, sau principiile dinamicii). 1.1 Principiul I, (al inerției): Un corp își păstrează starea de repaus relativ sau de mișcare
Διαβάστε περισσότερα3. Locuri geometrice Locuri geometrice uzuale
3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile
Διαβάστε περισσότεραToate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
Διαβάστε περισσότεραCurs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Διαβάστε περισσότερα1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
Διαβάστε περισσότεραOptica geometricǎ. Formula de definiţie
Tabel recapitulativ al marimilor fizice învǎţate în clasa a IX-a Optica geometricǎ Nr. crt. Denumire Simbol Unitate de mǎsurǎ Formula de definiţie 1 Indicele de n adimensional n=c/v refracţie 2 Formula
Διαβάστε περισσότερα6.CONUL ŞI CILINDRUL. Fig Fig. 6.2 Fig. 6.3
6.CONUL ŞI CILINDRUL 6.1.GENERALITĂŢI Conul este corpul geometric mărginit de o suprafaţă conică şi un plan; suprafaţa conică este generată prin rotaţia unei drepte mobile, numită generatoare, concurentă
Διαβάστε περισσότεραSă se arate că n este număr par. Dan Nedeianu
Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)
Διαβάστε περισσότεραSeminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Διαβάστε περισσότεραLucrul mecanic. Puterea mecanică.
1 Lucrul mecanic. Puterea mecanică. In acestă prezentare sunt discutate următoarele subiecte: Definitia lucrului mecanic al unei forţe constante Definiţia lucrului mecanic al unei forţe variabile Intepretarea
Διαβάστε περισσότερα5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Διαβάστε περισσότεραMetode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Διαβάστε περισσότερα2.3 Geometria analitică liniarăînspaţiu
2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea
Διαβάστε περισσότεραDETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE CU AJUTORUL UNUI PENDUL FIZIC
DETERMNAREA ACCELERAŢE GRAVTAŢONALE CU AJUTORUL UNU PENDUL FZC 1. Scopul lucrării În lucrare se studiază mişcarea oscilatorie a unui corp, montat astfel încât să constituie un pendul fizic; se determină
Διαβάστε περισσότεραCurs - programul Electrotehnică Versiunea Ș. L. Mihail-Ioan Pop
Fizică I Curs - programul Electrotehnică Versiunea 4.1.1 Ș. L. Mihail-Ioan Pop 2018 2 Cuprins Introducere 5 1 Mecanică 7 1.1 Opțional: Mărimi și unități de măsură. Sistemul Internațional (SI).... 7 1.2
Διαβάστε περισσότεραDEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0
DEFINITIVAT 1993 TIMIŞOARA PROFESORI I 1. a) Metodica predării noţiunii de derivată a unei funcţii. b) Să se reprezinte grafic funci a sinx, dacă x (0,2π] f : [0,2π] R, f(x) = x. 0, dacă x = 0 2. Fie G
Διαβάστε περισσότερα4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Διαβάστε περισσότεραCUPRINS 8. Statica solidului rigid... 1 Cuprins..1
CURS 8 STATICA SOLIDULUI RIGID CUPRINS 8. Statica solidului rigid.......... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 8.1. Generalităţi...2 8.2. Echilibrul solidului rigid liber...4 Test de
Διαβάστε περισσότεραCUPRINS 7. Statica punctului material... 1 Cuprins..1
CURS 7 STATICA UNCTULUI MATERIAL CURINS 7. Statica punctului material.......... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 7.1. Generalităţi...2 7.2. Echilibrul punctului material liber...3
Διαβάστε περισσότερα