Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 1 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός



Σχετικά έγγραφα
Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β

α) Αν Α, Β, Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα:

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

[ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] ΤΟ 2 ο ΘΕΜΑ

ΘΕΜΑ 2. 1 x < 4. (Μονάδες 9) 2. α) Να λύσετε την ανίσωση: β) Να λύσετε την ανίσωση: x (Μονάδες 9)

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΗΣ Τ.Θ.Δ.Δ. ΘΕΜΑ Β. B. Το αντίστοιχο διάγραμμα Venn είναι το παρακάτω:

B =, όπου ο x είναι πραγματικός αριθμός. x x α) Να αποδείξετε ότι για να ορίζονται ταυτόχρονα οι παραστάσεις Α, Β πρέπει: x 1 και x 0.

Εκφωνήσεις θεμάτων Άλγεβρας Τράπεζας θεμάτων ανά ενότητα. 2ο θέμα

Οι εκφωνήσεις των ασκήσεων της Τράπεζας θεμάτων στην Άλγεβρα Α ΓΕΛ ανά ενότητα

Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ

ΠΡΟΛΟΓΟΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ.

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

f (x) = x2 5x + 6 x 3 S 2 P 2 0

Τράπεζα Θεμάτων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Επιμέλεια Σταύρος Κόλλιας

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ

Τράπεζα Θεμάτων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Επιμέλεια Σταύρος Κόλλιας

-1- ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος

ΘΕΜΑ Α Να χαρακτηρίσετε τις παρακάτω προτάσεις ως αληθής (Α) ή ψευδής (Ψ)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

(Έκδοση: )

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 6 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )

1η έκδοση Αύγουστος2014

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 Πείραμα Τύχης - δειγματικός χώρος

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 2 Α ΛΥΚΕΙΟΥ

Άλγεβρα Α Λυκείου Επαναληπτικές ασκήσεις

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ»

5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ

1.2: Έννοια της Πιθανότητας

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Η πιθανότητα επομένως που ζητείται να υπολογίσουμε, είναι η P(A 1 M 2 ). Η πιθανότητα αυτή μπορεί να γραφεί ως εξής:

Εισαγωγή στα ΣΥΝΟΛΑ. Ε.1 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Α), αν είναι αληθείς ή με (Ψ), αν είναι ψευδής

3.2. Ασκήσεις σχ. βιβλίου σελίδας Α ΟΜΑ ΑΣ

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις:

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 4 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

Οι Ασκήσεις της Α Λυκείου

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 5 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

AΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ)

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ

Transcript:

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 1 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Άσκηση 1 Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και 2 γυναίκες: η Ειρήνη (Ε) και η Ζωή (Ζ). Επιλέγονται στην τύχη ένας άντρας και μια γυναίκα για να διαγωνιστούν και καταγράφονται τα ονόματά τους. α) Να βρεθεί ο δειγματικός χώρος του πειράματος. (Μονάδες 10) β) Να υπολογίσετε τις πιθανότητες των παρακάτω ενδεχομένων Α : Να διαγωνίστηκαν ο Κώστας ή ο Μιχάλης. Β : Να διαγωνίστηκε η Ζωή. Γ: Να μη διαγωνίστηκε ούτε ο Κώστας ούτε ο Δημήτρης. (Μονάδες 15)

Άσκηση 2 Από τους μαθητές ενός Λυκείου, το 25% συμμετέχει στη θεατρική ομάδα, το 30% συμμετέχει στην ομάδα ποδοσφαίρου και το 15% των μαθητών συμμετέχει και στις δύο ομάδες. Επιλέγουμε τυχαία ένα μαθητή. Αν ονομάσουμε τα ενδεχόμενα: Α: «ο μαθητής να συμμετέχει στη θεατρική ομάδα» και Β: «ο μαθητής να συμμετέχει στην ομάδα ποδοσφαίρου», α) να εκφράσετε λεκτικά τα ενδεχόμενα: i)α Β ii)α Β iii)β-α iv)α (Μονάδες 12) β) να υπολογίσετε τις πιθανότητες πραγματοποίησης των ενδεχομένων i) ο μαθητής που επιλέχθηκε να συμμετέχει μόνο στην ομάδα ποδοσφαίρου ii) ο μαθητής που επιλέχθηκε να μη συμμετέχει σε καμία ομάδα. (Μονάδες 13)

Άσκηση 3 Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 16. Επιλέγουμε μια μπάλα στην τύχη. Δίνονται τα παρακάτω ενδεχόμενα: Α: η μπάλα που επιλέγουμε είναι ΑΣΠΡΗ K: η μπάλα που επιλέγουμε είναι KOKKINH Π: η μπάλα που επιλέγουμε είναι ΠΡΑΣΙΝΗ α) Χρησιμοποιώντας τα Α, Κ και Π να γράψετε στη γλώσσα των συνόλων τα ενδεχόμενα: i)η μπάλα που επιλέγουμε δεν είναι άσπρη, ii) Η μπάλα που επιλέγουμε είναι κόκκινη ή πράσινη. (Μονάδες 13) β) Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος (α). (Μονάδες 12)

Άσκηση 4 Δίνονται δύο ενδεχόμενα A, B ενός δειγματικού χώρου Ω και οι πιθανότητες: α) Να υπολογίσετε την P( A B) 3 P ( A) =, 4 P( A B) 5 8 1 P B =. 4 = και ( ) β) i) Να παραστήσετε με διάγραμμα Venn και να γράψετε στη γλώσσα των συνόλων το (Μονάδες 9) ενδεχόμενο: «Α ή Β». (Μονάδες 7) ii) Να υπολογίσετε την πιθανότητα πραγματοποίησης του παραπάνω ενδεχομένου. (Μονάδες 9)

Άσκηση 5 Δίνεται ο πίνακας: 1 2 3 1 11 12 13 2 21 22 23 3 31 32 33 Επιλέγουμε τυχαία έναν από τους εννέα διψήφιους αριθμούς του παραπάνω πίνακα. Να βρείτε την πιθανότητα πραγματοποίησης των παρακάτω ενδεχομένων: Α: ο διψήφιος να είναι άρτιος (Μονάδες 7) Β: ο διψήφιος να είναι άρτιος και πολλαπλάσιο του 3 (Μονάδες 9) Γ: ο διψήφιος να είναι άρτιος ή πολλαπλάσιο του 3 (Μονάδες 9)

Άσκηση 6 Δίνεται το σύνολο Ω={1,2,3,4,5,6} και τα υποσύνολά του Α={1,2,4,5} και Β={2,4,6}. α) Nα παραστήσετε στο ίδιο διάγραμμα Venn, με βασικό σύνολο το Ω, τα σύνολα Α και Β. Κατόπιν, να προσδιορίσετε τα σύνολα Α Β, Α Β, Α και Β. (Μονάδες 13) β) Επιλέγουμε τυχαία ένα στοιχείο του Ω. Να βρείτε τις πιθανότητες των ενδεχομένων: (i) Να μην πραγματοποιηθεί το ενδεχόμενο Α. (Μονάδες 4) (ii) Να πραγματοποιηθούν συγχρόνως τα ενδεχόμενα Α και Β. (Μονάδες 4) (iii) Να πραγματοποιηθεί ένα τουλάχιστον από τα ενδεχόμενα Α, Β. (Μονάδες 4)

Άσκηση 7 Από τους σπουδαστές ενός Ωδείου, το 50% μαθαίνει πιάνο, το 40% μαθαίνει κιθάρα, ενώ το 10% των σπουδαστών μαθαίνει και τα δύο αυτά όργανα. Επιλέγουμε τυχαία ένα σπουδαστή του Ωδείου. Ορίζουμε τα ενδεχόμενα: Α: ο σπουδαστής αυτός μαθαίνει πιάνο Β: ο σπουδαστής αυτός μαθαίνει κιθάρα Να βρείτε την πιθανότητα πραγματοποίησης του ενδεχομένου: α) Ο σπουδαστής αυτός να μαθαίνει ένα τουλάχιστον από τα δύο παραπάνω όργανα. (Μονάδες 12) β) Ο σπουδαστής αυτός να μην μαθαίνει κανένα από τα δύο παραπάνω όργανα. (Μονάδες 13)

Άσκηση 8 Το 70% των κατοίκων μιας πόλης έχει αυτοκίνητο, το 40% έχει μηχανάκι και το 20% έχει και αυτοκίνητο και μηχανάκι. Επιλέγουμε τυχαία έναν κάτοικο αυτής της πόλης. Ορίζουμε τα ενδεχόμενα: Α: ο κάτοικος να έχει αυτοκίνητο Μ: ο κάτοικος να έχει μηχανάκι. α) να εκφράσετε λεκτικά τα ενδεχόμενα: i)α Μ ii)μ-α iii)μ (Μονάδες 9) β) Να βρείτε την πιθανότητα ο κάτοικος που επιλέχθηκε : i)να μην έχει μηχανάκι. (Μονάδες 7) ii)να μην έχει ούτε μηχανάκι ούτε αυτοκίνητο. (Μονάδες 9)

Άσκηση 9 Από τους 180 μαθητές ενός λυκείου, 20 μαθητές συμμετέχουν στη θεατρική ομάδα, 30 μαθητές συμμετέχουν στην ομάδα στίβου, ενώ 10 μαθητές συμμετέχουν και στις δύο ομάδες. Επιλέγουμε τυχαία έναν μαθητή του λυκείου. Ορίζουμε τα ενδεχόμενα: Α: ο μαθητής συμμετέχει στη θεατρική ομάδα Β: ο μαθητής συμμετέχει στην ομάδα στίβου α) να εκφράσετε λεκτικά τα ενδεχόμενα: i)α Β ii)β-α iii)α (Μονάδες 9) β) Να βρείτε την πιθανότητα ο μαθητής που επιλέχθηκε: i)nα μη συμμετέχει σε καμία ομάδα. (Μονάδες 9) ii)nα συμμετέχει μόνο στην ομάδα στίβου. (Μονάδες 7)

Άσκηση 10 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 200 είναι μαθητές της Α τάξης. Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 20%. Να βρείτε: α) Το πλήθος των μαθητών της Γ τάξης (Μονάδες 10) β) Το πλήθος των μαθητών της Β τάξης. (Μονάδες 5) γ) Την πιθανότητα ο μαθητής που επιλέξαμε να είναι της Β τάξης. (Μονάδες 10)