ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ
|
|
- Τώβιας Κολιάτσος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 . Να βρείτε το δειγµατικό χώρο της ρίψης ενός ζαριού.. Επιλέγουµε ένα µαθητή Λυκείου και σηµειώνουµε το φύλο και την τάξη του. Να βρείτε το δειγµατικό χώρο Ω του πειράµατος. 3. Τραβάµε ένα φύλλο από µία τράπουλα και σηµειώνουµε το είδος του φύλλου. Ο δειγµατικός χώρος του παραπάνω πειράµατος είναι το σύνολο: {Σπαθί} {Κούπα} {Καρό} {Μπαστούνι} {Σπαθί Κούπα Καρό Μπαστούνι} 4. Ρίχνουµε ένα νόµισµα τρεις φορές και σηµειώνουµε κάθε φορά το αποτέλεσµα. Να βρείτε το δειγµατικό χώρο Ω του πειράµατος.. Από ένα δοχείο µε τρεις κόκκινες, δύο µαύρες και µία άσπρη σφαίρα, διαλέγουµε διαδοχικά τρεις σφαίρες (α) µε επανατοποθέτηση (β) χωρίς επανατοποθέτηση Να βρείτε το δειγµατικό χώρο Ω κάθε πειράµατος. 6. ύο παίκτες παίζουν τάβλι µέχρι κάποιος να συµπληρώσει τρεις νίκες. Να βρείτε το δειγµατικό χώρο κάθε πειράµατος. 7. Ένα ζευγάρι τεκνοποιεί µέχρι να αποκτήσει αγόρι ή να έχει τρία παιδιά. Να βρείτε το δειγµατικό χώρο. 8. Ενα πρατήριο πουκαµίσων πουλάει χονδρική ή λιανική, πληρώνεται µετρητοίς ή µε επιταγές ενός ή δύο µηνών και έχει µεγέθη : µεσαίο(μ), µεγάλο(l) και πολύ µεγάλο(xl). Θεωρούµε το πείραµα της κωδικοποίησης µιας πώλησης. Να γράψετε το δειγµατικό χώρο του πειράµατος. 9. Από µια τράπουλα τραβάµε διαδοχικά δύο φύλλα. Να βρείτε το ενδεχόµενο : Α:«και τα δύο φύλλα είναι άσσοι». 0. Τοποθετούµε στη σειρά µια κόκκινη, µια πράσινη και µια άσπρη µπάλα. (α) Να βρείτε τα παρακάτω ενδεχόµενα: Α:«η κόκκινη µπάλα είναι πρώτη» Β:«η άσπρη µπάλα είναι δεύτερη». (β) Να βρείτε και να περιγράψετε λεκτικά τα ενδεχόµενα : A B, A B, Α-Β, Α και Α Β. Ένα κατάστηµα έχει πέντε καλές και δύο χαλασµένες λάµπες. Τρεις πελάτες αγοράζουν από µία λάµπα. Να βρείτε τα παρακάτω ενδεχόµενα: Α:«οι δύο πρώτοι αγόρασαν καλές λάµπες» Β:«στο κατάστηµα έµεινε τουλάχιστον µία χαλασµένη λάµπα» Γ:«ο πρώτος πελάτης πήρε µία καλή λάµπα» :«ο τρίτος πελάτης πήρε µία χαλασµένη λάµπα» Και τα ενδεχόµενα: A B, A B, A, A και Γ.. Ρίχνουµε δύο ζάρια και σηµειώνουµε τις ενδείξεις τους. Να γράψετε τα ενδεχόµενα : Α: «το ένα ζάρι έφερε άρτιο» Β:«το δεύτερο ζάρι έφερε έξι» Γ: «το άθροισµά τους είναι 8» Και τα ενδεχόµενα: A B, A B, Α-Β, Γ B, Γ B,και Α Β Γ. Α Β = Α 3. Να αποδείξετε ότι: ( ) Β - -
2 4. Να γράψετε τα ενδεχόµενα που παριστάνονται στα παρακάτω διαγράµµατα του Venn : (α) Α Β (β) Α Β (γ) Α Β. Να γράψετε δίπλα σε κάθε νούµερο της αριστερής στήλης του παρακάτω πίνακα το γράµµα της δεξιάς στήλης ώστε το λεκτικό του ενδεχοµένου να αντιστοιχεί στο σωστό συµβολισµό: ΛΕΚΤΙΚΟ ΕΝ ΕΧΟΜΕΝΟΥ ΣΥΜΒΟΛΙΣΜΟΣ.Πραγµατοποιούνται αµφότερα τα Α και Β Α. Α Β. πραγµατοποιείται τουλάχιστον ένα από τα Α,Β Β. Α Β 3. δεν πραγµατοποιείται το Α ή το Β Γ. Α-Β 4. δεν πραγµατοποιείται ούτε το Α ούτε το Β. Α Β. πραγµατοποιείται το Α αλλά όχι το Β Ε. Α Β ΣΤ. Β-Α 6. Έστω ο δειγµατικός χώρος Ω= {ω,ω,ω 3,ω 4 } µε πιθανότητες των στοιχειωδών ενδεχοµένων που ικανοποιούν τις σχέσεις : Ρ(ω )=Ρ(ω ), Ρ(ω 3 )=4Ρ (ω 4 ) και Ρ(ω )+3Ρ(ω 4 )=Ρ(ω 3 ). Να υπολογίσετε τις πιθανότητες των στοιχειωδών ενδεχοµένων και την πιθανότητα του ενδεχοµένου Α={ω,ω 3 }. 7. Έστω ο δειγµατικός χώρος Ω= {ω, ω,ω 3,ω 4,ω } µε πιθανότητες των στοιχειωδών ενδεχοµένων που ικανοποιούν τις σχέσεις :Ρ(ω )= Ρ(ω )=3 Ρ(ω 3 )=4 Ρ(ω 4 )= Ρ(ω ). (α)η πιθανότητα Ρ(ω) ισούται µε : (β) Να υπολογίσετε την πιθανότητα του ενδεχοµένου Α={ω,ω } 3 8. Έστω ένας δειγµατικός χώρος µε τρία στοιχειώδη ενδεχόµενα µε πιθανότητες p, p και -3ρ. Να βρείτε τον πραγµατικό αριθµό ρ. 9. Έστω ο δειγµατικός χώρος Ω={0,,,,ν} µε ν θετικό ακέραιο. Αν οι πιθανότητες των στοιχειωδών i ενδεχοµένων,,,ν δίνονται από τον τύπο P ( i) = ( ) µε i=,,,ν, τότε : 3 (α) Η πιθανότητα Ρ(0) ισούται µε 0 ( ) v ( + ) 3 ν ν + 3 (β) Να υπολογίσετε την πιθανότητα του ενδεχοµένου Α={,3,,.,κ } όπου κ θετικός περιττός µικρότερος του ν. 0. Έστω ο δειγµατικός χώρος Ω={,,,ν} µε ν θετικό ακέραιο. Αν οι πιθανότητες των στοιχειωδών P( ) P() P(3) P(ν ) ενδεχοµένων,,,ν δίνονται από τον τύπο = = =... =, τότε : 3 ν i (α) Να αποδείξετε ότι : P ( i) = για κάθε i=,,,ν. ν ( ν + ) - -
3 (β) Να αποδείξετε ότι P( i) + P( ν i) = νp() για κάθε i=,,,ν. (γ) Αν P ( ) =, να υπολογίσετε το πλήθος των στοιχείων του δειγµατικού χώρου Ω.. Αν η πιθανότητα να πραγµατοποιηθεί το ενδεχόµενο Α είναι 90%, τότε η πιθανότητα να µην πραγµατοποιηθεί το Α είναι 0 0, 0,9 0 P( A ). Αν για το µη κενό ενδεχόµενο Α ισχύει =, τότε να υπολογίσετε την πιθανότητα του Α. P( A) 3 3. Αν για το µη κενό ενδεχόµενο Α ισχύει P( A) = p και P ( A ) = 0, + p, τότε να υπολογίσετε την πιθανότητα του Α. 4. Να αποδείξετε ότι : Ρ(Α)Ρ(Α ) για κάθε ενδεχόµενο Α. Πότε ισχύει το «=»; 4. Έστω τα ενδεχόµενα Α,Β µε Ρ(Α)=0,, Ρ(Β)= και P ( A B) =. Να βρείτε την πιθανότητα να 3 πραγµατοποιηθεί το Α ή το Β. 6. Έστω τα ενδεχόµενα Α,Β µε Ρ(Α)=Ρ(Β)= και P ( A B) =. Να βρείτε την πιθανότητα να 3 πραγµατοποιηθεί το ενδεχόµενο : (α)α (β) A B (γ) A B (δ) A B (ε) A B 7 7. Έστω τα ενδεχόµενα Α,Β µε Ρ(Α )=, P ( A B) = και P ( A B) =. Να βρείτε την πιθανότητα να πραγµατοποιηθεί το ενδεχόµενο : (α)α (β)β (γ)ταυτόχρονα τα Α,Β (δ)τουλάχιστον ένα από τα Α,Β (ε)µόνο το Α (στ) µόνο το Β (ζ)ακριβώς ένα από τα Α,Β (η)κανένα από τα Α,Β 8. Να αποδείξετε ότι : P ( A B Γ) = Ρ( Α) Β) Γ) Α Β) Β Γ) Γ Α) Α Β Γ) 9. Έστω τα ενδεχόµενα Α,Β µε P ( A B) =, P ( A B) = και P ( A B) =. Να βρείτε την πιθανότητα να πραγµατοποιηθεί το ενδεχόµενο : (α)α (β)β (γ) A B (δ) A B 30. Από τους κατοίκους µιας πόλης το 0% έχει γάτα, το 30% έχει σκύλο και το % έχει σκύλο και γάτα. Επιλέγουµε τυχαία ένα κάτοικο αυτής της πόλης. Ποια η πιθανότητα ο κάτοικος που επιλέχθηκε να (α) έχει σκύλο ή γάτα (β) να έχει µόνο σκύλο (γ)να έχει µόνο γάτα (δ) να έχει µόνο ένα ζώο (ε) να µην έχει κάποιο ζώο. 3. Το 60% των ενηλίκων µιας πόλης δεν χρησιµοποιεί κινητό τηλέφωνο το 70% δεν ξέρει να χρησιµοποιεί ηλεκτρονικό υπολογιστή και το % δεν χρησιµοποιεί κινητό τηλέφωνο ούτε υπολογιστή. Αν επιλέξουµε ένα ενήλικα της πόλης, να βρείτε την πιθανότητα (α) να χρησιµοποιεί κινητό και υπολογιστή (β)να χρησιµοποιεί µόνο ένα από τα δύο (γ)να χρησιµοποιεί τουλάχιστον ένα από τα δύο. 3. Να γράψετε ποια από τα παρακάτω ζευγάρια µη κενών ενδεχοµένων είναι ασυµβίβαστα: (α) το Α µε το Α (β) το Α-Β µε το Β-Α (γ)το Α-Β µε το A B (δ)το Α µε το A B - 3 -
4 33. Από µια τράπουλα τραβάµε τυχαία ένα φύλλο. Τα ενδεχόµενα «το φύλλο είναι σπαθί» και το «το φύλλο είναι ντάµα» είναι ξένα µεταξύ τους; 34. Έστω τα ενδεχόµενα Α,Β µε Ρ(Α)=0,4,Ρ(Β)=0,3 και P ( A B) = 0, 6. Να εξετάσετε αν τα ενδεχόµενα Α,Β είναι ασυµβίβαστα. 3. Να αποδείξετε ότι τα ενδεχόµενα Α,Β µε Ρ(Α)=0,8,Ρ(Β)=0,3 δεν είναι ασυµβίβαστα. 36. Έστω τα ενδεχόµενα Α,Β µε Ρ(Β)=0,7 και P ( B A) = 0, 7. Να εξετάσετε αν τα ενδεχόµενα Α,Β είναι ασυµβίβαστα. 37. Έστω τα ασυµβίβαστα ενδεχόµενα Α,Β µε Ρ(Α)=0, και P ( A B) = 0, 8. Να βρείτε την Ρ(Β). 38. Να αποδείξετε ότι : + R( A B) Ρ(Α)+Ρ(Β) για οποιαδήποτε ενδεχόµενα Α,Β. 39. Να διατάξετε τους αριθµούς Ρ(Α),Ρ( A B ) και Ρ( A B ) σε αύξουσα σειρά, όταν τα Α,Β δεν είναι τα αδύνατα ενδεχόµενα. 40. Να αποδείξετε ότι : Ρ(Α)+Ρ(Β)- P ( A B) Ρ(Α)+Ρ(Β) για οποιαδήποτε ενδεχόµενα Α,Β. 4. Μια τάξη έχει δέκα αγόρια και δώδεκα κορίτσια. Τα µισά αγόρια και εφτά κορίτσια φοράνε γυαλιά. Αν επιλέξουµε τυχαία ένα µαθητή της τάξης, να υπολογίσετε τις πιθανότητες των ενδεχοµένων: Α: «ο µαθητής είναι αγόρι», Β «ο µαθητής φοράει γυαλιά» Γ: «ο µαθητής είναι αγόρι ή φοράει γυαλιά» :«ο µαθητής είναι κορίτσι που δε φοράει γυαλιά» Ε: «ο µαθητής είναι αγόρι µε γυαλιά ή κορίτσι». 4. Τραβάµε στην τύχη ένα φύλλο από µια τράπουλα. Να βρείτε τις πιθανότητες των παρακάτω ενδεχοµένων: (α) Α: «το φύλλο που επιλέχθηκε είναι ντάµα µπαστούνι» (β) Β: «το φύλλο που επιλέχθηκε είναι άσσος» (γ) Γ: «το φύλλο που επιλέχθηκε δεν είναι κούπα» (δ) : «το φύλλο που επιλέχθηκε δεν είναι άσσος» (ε) Ε: «το φύλλο που επιλέχθηκε είναι τρία κούπα ή άσσος σπαθί» (στ) Η: «το φύλλο που επιλέχθηκε είναι σπαθί ή άσσος» (ζ) Ζ: «το φύλλο που επιλέχθηκε δεν είναι ούτε άσσος ούτε κούπα» 43. Τραβάµε µια σφαίρα από ένα δοχείο µε εφτά κόκκινες, δύο µπλε και έξι άσπρες σφαίρες. Να βρείτε την πιθανότητα η σφαίρα που επιλέξαµε να (α) είναι κόκκινη (β) είναι άσπρη (γ) µην είναι µαύρη (δ) µην είναι µπλε (ε)µην είναι κόκκινη ούτε µπλε. 44. Σε ένα ράφι υπάρχουν 8 λάµπες των 30W, 0 των 60W, 0 των 00W και των 0W. Παίρνουµε τυχαία µια λάµπα από το ράφι. (α)να βρείτε τις πιθανότητες των παρακάτω ενδεχοµένων: Α: η λάµπα είναι 30W Β: η λάµπα δεν είναι 30W Γ: η λάµπα είναι 30W ή 0W : η λάµπα δεν είναι ούτε των 30W ούτε των 0W Ε: η λάµπα είναι τουλάχιστον 00W (β) Αν η λάµπα που πήραµε τοποθετηθεί σε ένα ντουί που αντέχει έως 60W, να βρείτε την πιθανότητα να καεί το ντουί
5 4. Από 000 λαχνούς που είναι αριθµηµένοι από το µηδέν έως το 999, διαλέγουµε έναν. (α) Να υπολογίσετε την πιθανότητα των παρακάτω ενδεχοµένων: Α: ο λαχνός έχει το νούµερο. Β: ο λαχνός έχει άρτιο αριθµό Γ: ο αριθµός του λαχνού λήγει σε πέντε : ο λαχνός έχει αριθµό τουλάχιστον 00 Ε: ο αριθµός του λαχνού λήγει σε πέντε ή είναι πολλαπλάσιο του Ζ: τα ψηφία του αριθµού είναι διαδοχικοί αριθµοί. ΣΗΜΕΙΩΣΗ: ο αριθµός του λαχνού γράφεται µε τρία ψηφία (β) Αν κάποιος αγοράσει εκατό λαχνούς, να βρείτε την πιθανότητα να κερδίσει. 46. Ένα τεστ αποτελείται από τέσσερις ερωτήσεις σωστού-λάθους. Κάποιος µαθητής απαντά στην τύχη τις ερωτήσεις του τεστ. Να υπολογίσετε τις πιθανότητες των παρακάτω ενδεχοµένων: Α: όλες οι απαντήσεις είναι σωστές Β: όλες οι απαντήσεις είναι λάθος Γ: τρεις απαντήσεις σωστές : τουλάχιστον µία απάντηση είναι σωστή Ε: το πολύ µία απάντηση να είναι σωστή 47. Θεωρούµε το δειγµατικό χώρο Ω={-,-,0,,} και διαλέγουµε τυχαία ένα αριθµό λ µε λ Ω. Να βρείτε την πιθανότητα του ενδεχοµένου «η εξίσωση x + ( λ + ) x + = 0 να έχει µια διπλή ρίζα» 48. Έστω το σύνολο Ω={0,,,,ν} όπου ν θετικός ακέραιος. Αν ν το πλήθος των παρατηρήσεων του δείγµατος µε πίνακα κατανοµής τον παρακάτω πίνακα ν i fi ΑΝΤΡΕΣ 6 ΓΥΝΑΙΚΕΣ 0,4 x 4, αν x και η συνάρτηση f ( x) = x 4 a + a, αν x = Αν επιλέξουµε τυχαία ένα αριθµό α Ω, να βρείτε την πιθανότητα να η f να είναι συνεχής. 49. Έστω ο δειγµατικός χώρος Ω={-,0,,,3,4,} για τον οποίο γνωρίζουµε ότι ισχύει : Ρ(-)=Ρ(0)=Ρ()=Ρ()=Ρ(3)=Ρ(4)=Ρ(). Ορίζουµε τα ενδεχόµενα Α={,3, x x 3 }, Β={,x+,-x+, x + x } όπου x πραγµατικός αριθµός. (α) Να βρεθούν οι πιθανότητες των απλών ενδεχοµένων του Ω. (β) Να βρεθεί η µοναδική τιµή του x για την οποία ισχύει A B = {,3 }. 7 3 (γ) Για x=- να δείξετ ότι: Ρ(Α)=, Ρ(Β)=, Ρ( A B )= και στη συνέχεια να υπολογιστούν οι πιθανότητες Ρ(Α-Β) και Ρ( A B ). ΘΕΜΑ
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. Ρίχνουµε ένα νόµισµα τρείς φορές (i) Να βρείτε τον δειγµατικό χώρο του πειράµατος τύχης. (ii) Να βρείτε την πιθανότητα των ενδεχοµένων: Α: Οι τρεις ενδείξεις είναι ίδιες. Β:
5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ
1 5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΘΕΩΡΙΑ 1. Ισοπίθανα απλά ενδεχόµενα Είναι τα απλά ενδεχόµενα για τα οποία κάποιο εξ αυτών δεν έχει πλεονέκτηµα έναντι των άλλων όσον αφορά την επιλογή του. Με άλλα λόγια
ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος
ΠΙΘΑΝΟΤΗΤΕΣ.Ένα κουτί περιέχει τέσσερις λαχνούς αριθμημένους από το εώς το 4. Εκλέγουμε έναν λαχνό στην τύχη,σημειώνουμε το αποτέλεσμα και δεν ξανατοποθετούμε τον λαχνό στο κουτί. Επαναλαμβάνουμε το πείραμα
1.1 Πείραμα Τύχης - δειγματικός χώρος
1. ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Πείραμα Τύχης - δειγματικός χώρος Κάθε πείραμα στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό πείραμα. Τέτοια πειράματα
1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.
ο Κεφάλαιο : Πιθανότητες. Δειγματικοί χώροι. Διαγράμματα Venn Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. Κλασικός ορισμός πιθανότητας 4. Κανόνες λογισμού πιθανοτήτων η Κατηγορία : Δειγματικοί χώροι ) Ρίχνουμε
ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ
κεφ - ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ Σε ένα συρτάρι υπάρχουν δύο κάρτες, μία άσπρη και μία κόκκινη Παίρνουμε στην τύχη μία κάρτα από το συρτάρι, καταγράφουμε το χρώμα της και την ξαναβάζουμε
Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ
Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ 1. Ο Γυμναστής ενός λυκείου προκειμένου να στελεχώσει την ομάδα μπάσκετ του λυκείου ψάχνει στην τύχη μεταξύ των μαθητών να βρει τρεις κοντούς (Κ) και τρεις ψηλούς (Ψ). Να
ΕΡΓΑΣΗΡΙ ΑΛΓΕΒΡΑΣ ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ
ΕΡΓΑΣΗΡΙ ΑΛΓΕΒΡΑΣ ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Αθήνα 2012-0- Στόχοι 1. Η αναγνώριση ενός πειράµατος φαινοµένου ως πείραµα τύχης (στοχαστικό) 2. Ο προσδιορισµός του δειγµατικού χώρου και ενδεχοµένων αυτού, µε
ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ
ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ Οµάδα η. Αν Ω={ω,ω,,ω 6 } είναι ο δ.χ ενός πειράµατος τύχης να βρείτε τις πιθανότητες Ρ(ω ),,Ρ(ω 6 ) αν είναι γνωστό ότι αυτές αποτελούν διαδοχικούς όρους αριθµητικής προόδου µε
2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση
00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-
3.2 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ. Σχετική συχνότητα ενδεχοµένου Α : 2. Ιδιότητες της f, λ το πλήθος απλών ενδεχοµένων :
3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΘΕΩΡΙΑ. Σχετική συχνότητα ενδεχοµένου Α : Είναι το πηλίκο f κ A = ν ενδεχόµενου Α σε ν το πλήθος εκτελέσεις του πειράµατος όπου κ το πλήθος των πραγµατοποιήσεων του. Ιδιότητες
3.2. Ασκήσεις σχ. βιβλίου σελίδας 154 156 Α ΟΜΑ ΑΣ
. Ασκήσεις σχ. βιβλίου σελίδας 54 56 Α ΟΜΑ ΑΣ. Από µία τράπουλα µε 5 φύλλα παίρνουµε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχοµένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν είναι 5 i) εχόµαστε
ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ
ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ Συχνότητα Σχετική συχνότητα Αν σε ν εκτελέσεις ενός πειράματος ένα ενδεχόμενο Α πραγματοποιείται va φορές,τότε va ο αριθμός va λέγεται συχνότητα του ενδεχομένου
3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ
ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με
Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Πιθανότητες Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 7 / 0 / 0 6 Γενικής κεφάλαιο 3 94 ασκήσεις και τεχνικές σε 8 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.
ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.
1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει
2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8
1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 5 και Ρ(Β) = Ρ(Α ). Αν τα Α, Β είναι ασυµβίβαστα, να εξετάσετε αν είναι ασυµβίβαστα και τα Α, Β 5 i είξτε ότι Ρ(Α Β)=
ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ
ΑΛΓΕΒΡΑ - Α ΛΥΚΕΙΟΥ ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιμέλεια: Παπαδόπουλος Παναγιώτης Πείραμα τύχης 1 η δραστηριότητα Ρίξτε ένα κέρμα 5 φορές και καταγράψτε την πάνω όψη του: 1 η ρίψη:, 2 η ρίψη:, 3 η ρίψη:
ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ
ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως
Εισαγωγή στα ΣΥΝΟΛΑ. Ε.1 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Α), αν είναι αληθείς ή με (Ψ), αν είναι ψευδής
Εισαγωγή στα ΣΥΝΟΛΑ Ε. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Α), αν είναι αληθείς ή με (Ψ), αν είναι ψευδής i) Αν Α= {0,5,8,3,89}, τότε το Α. ii) Αν Α = {, {,5}, 8, 0}, τότε το Α. iii) Τα σύνολα
1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ
. ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ασκήσεις σχ. βιβλίου σελίδας 7 9 Α ΟΜΑΔΑΣ. Από μία τράπουλα με 5 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α Ερώτηση θεωρίας α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; =. β) Για δύο συμπληρωματικά ενδεχόμενα Α και Α να αποδείξετε
1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ
ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με
ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ
ΛΓΕΡ ΛΥΚΕΙΟΥ ΠΙΘΝΟΤΗΤΕΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙ 1 Tα πειράματα των οποίων δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνονται (φαινομενικά τουλάχιστον) κάτω από τις ίδιες συνθήκες
5.2 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝ ΕΧΟΜΕΝΑ
1 5.2 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝ ΕΧΟΜΕΝΑ ΘΕΩΡΙΑ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος
4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το
ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ
ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ Πιθανότητες Πραγματικοί αριθμοί Εξισώσεις Ανισώσεις Πρόοδοι Βασικές έννοιες των συναρτήσεων Μελέτη βασικών συναρτήσεων ΑΛΓΕΒΡΑ Α
ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.
ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα
Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.
Πιθανότητες Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Πιθανότητες Εφαρμογές στον ορισμό πιθανότητας. Ρίχνουμε ένα νόμισμα τρεις φορές. Ποια είναι η πιθανότητα να φέρουμε και τις
ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,
Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι
3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε
ΠΙΘΑΝΟΤΗΤΕΣ Π ε ι ρ α μ α τ υ χ η ς - Δ ε ι γ μ α τ ι κ ο ς χ ω ρ ο ς. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε το αποτελεσμα,.
3.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ. 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα.
1 3.1 ΕΙΓΜΤΙΚΟΣ ΧΡΟΣ - ΕΝ ΕΧΟΜΕΝ ΘΕΡΙ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων του πειράµατος
ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο
ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον
3 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 21. (1)
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α. Το 50% των κατοίκων µιας πόλης διαβάζουν την εφηµερίδα (α), ενώ το 30% των κατοίκων διαβάζουν την εφηµερίδα (α) και δε διαβάζουν την εφηµερίδα (β). Ποια είναι η πιθανότητα ένας
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΠΙΘΑΝΟΤΗΤΕΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα
5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ
ΜΕΡΟΣ Α 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ-ΕΝΔΕΧΟΜΕΝΑ 69 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ Πείραμα τύχης- Δειγματικός χώρος Ένα πείραμα το οποίο όσες φορές και αν το επαναλάβουμε, δεν μπορούμε να προβλέψουμε το αποτέλεσμα
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και γυναίκες:
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil
1.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ
1 1.1 ΕΙΓΜΤΙΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝ ΘΕΩΡΙ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ
Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα:
1 Η Έννοια της Πιθανότητας Η Έννοια της Πιθανότητας 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: α) Να εμφανιστεί περιττός αριθμός κατά την ρίψη ενός ζαριού. (1/2) β) Να εμφανιστεί τουλάχιστον
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό
ΠΙΘΑΝΟΤΗΤΕΣ ΜΕΡΟΣ Α. ΘΕΩΡΙΑ
Γενικό Λύκειο Νεστορίου Μαθηµατικά Γενικής Παιδείας-Πιθανότητες ΠΙΘΑΝΟΤΗΤΕΣ ΜΕΡΟΣ Α. ΘΕΩΡΙΑ Πείραµα Τύχης Κάθε πείραµα κατά το οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89 Ον/μο:.. Α Λυκείου Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις 6-0- Θέμα ο : Α.. Να δώσετε τον ορισμό της εξίσωσης ου βαθμού (μον.) Α.. Αν, ρίζες της εξίσωσης 0, να αποδείξετε ότι
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να
3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.
3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 1 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 1 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Άσκηση 1 Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες:
ΠΙΘΑΝΟΤΗΤΕΣ. 8. * Αν Ω είναι ο δειγµατικός χώρος ενός πειράµατος τύχης,
3ο Κεφάλαιο ΠΙΘΑΝΟΤΗΤΕ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν Ω είναι δειγµατικός χώρος ενός πειράµατος τύχης, τότε Ρ (Ω) = 1. 2. * Αν Α είναι ενδεχόµενο ενός πειράµατος τύχης τότε, 0 Ρ (Α) 1. 3. *
ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.
ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος
Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn.
Άσκηση 1 Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn. B) Αν ( ), ( ), ( ), να εκφράσετε τις πιθανότητες
Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους
Πιθανότητες Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους «Πείραμα» Tύχης Οτιδήποτε συμβαίνει και δεν γνωρίζουμε από πριν το ακριβές αποτέλεσμά του. Απασχόλησαν
α) Αν Α, Β, Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα:
ΘΕΜΑ 2 (479) α) Αν Α, Β, Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα: i) A B ii) B Γ iii) (A B) Γ iv) A (Μονάδες 12) β) Στο παρακάτω
ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 5 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
Οι Ασκήσεις της Α Λυκείου
Οι Ασκήσεις της Α Λυκείου ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 0-0 Οι Ασκήσεις της Α Λυκείου ΣΥΝΟΛΑ. Σε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Α, αν ο ισχυρισμός είναι αληθής
Οι εκφωνήσεις των ασκήσεων της Τράπεζας θεμάτων στην Άλγεβρα Α ΓΕΛ ανά ενότητα
Οι εκφωνήσεις των ασκήσεων της Τράπεζας θεμάτων στην Άλγεβρα Α ΓΕΛ ανά ενότητα Ιούνιος 04 . Έννοια της πιθανότητας GI_A_ALG 497 Ένα τηλεοπτικό παιχνίδι παίζεται µε ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι
5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ
ΜΕΡΟΣ Α. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ 77. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ Κλασικός ορισμός πιθανότητας Αν ένα στοιχείο του συνόλου του δειγματικού χώρου επιλέγεται στην τύχη και δεν έχει κανένα πλεονέκτημα έναντι των άλλων,
ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος
.Ένα κουτί περιέχει τέσσερις λαχνούς αριθμημένους από το εώς το 4. Εκλέγουμε έναν λαχνό στην τύχη,σημειώνουμε το αποτέλεσμα και δεν ξανατοποθετούμε τον λαχνό στο κουτί. Επαναλαμβάνουμε το πείραμα άλλες
Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-
3. Εξισώσεις ου Βαθμού 3. Η εξίσωση 3.3 Εξισώσεις ου Βαθμού Διδακτικό υλικό Άλγεβρας Α Λυκείου (Κεφάλαιο 3 ο ) Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς ρωτήσεις αντικειμενικού τύπουθέμα Α- Εξεταστέα ύλη
Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β
Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β 1. Δίνονται δύο ενδεχόμενα A, B ενός δειγματικού χώρου και οι πιθανότητες: 3 5 1 P( A), P( A B) και P( B) 4 8 4 α) Να υπολογίσετε την P( A B) β) i) Να παραστήσετε με διάγραμμα Venn
Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β
ΘΕΜΑ Β 1. Δίνονται δύο ενδεχόμενα A, B ενός δειγματικού χώρου και οι πιθανότητες: 3 5 1 P( A), P( A B) και P( B) 4 8 4 α) Να υπολογίσετε την P( A B) β) i) Να παραστήσετε με διάγραμμα Venn και να γράψετε
Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου
Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 εσµευµένη Πιθανότητα Πολλαπλασιαστικός Νόµος Ανεξάρτητα Γεγονότα Θεώρηµα Ολικής Πιθανότητας Κανόνας Bayes
Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ
Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A
ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ [Δεν είναι σκόπιμο να αποκαλύψεις στο παιδί σου ότι οι μεγάλοι άντρες δεν είχαν ιδέα από άλγεβρα] ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ Μ. ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ
ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου
Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Θέµα Α A1. Για δυο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ( Α Β) = Ρ(Α) + Ρ(Β) Ρ( Α Β) Α. Πότε µια συνάρτηση f µε
ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος»
ΠΙΘΑΝΟΤΗΤΕ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν είναι δειγματικός χώρος ενός πειράματος τύχης, τότε Ρ () = 1. 2. * Αν Α είναι ενδεχόμενο ενός πειράματος τύχης τότε, 0 Ρ (Α) 1. 3. * Για το αδύνατο
Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).
Νίκος Σούρµπης - - Γιώργος Βαρβαδούκας ΘΕΜΑ ο Α. α) ίνεται η συνάρτηση F()=f()+g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F ()=f ()+g (). β)να γράψετε στο τετράδιό σας τις παραγώγους
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
ΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου
ΓΕΛ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : 013-014 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου Ω, τότε να αποδείξετε
ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,
Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι
Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας
Α ΕΝΟΤΗΤΑ Πιθανότητες Α.1 (1.1 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα Α.2 (1.2 παρ/φος σχολικού βιβλίου) Η έννοια της πιθανότητας Α.1 Δειγματικός Χώρος. Ενδεχόμενα. Απαραίτητες γνώσεις
Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ
Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Π ι θ α ν ό τ η τ ε ς : Ο τομέας των Εφαρμοσμένων Μαθηματικών, που ασχολείται με την αξιολόγηση κατάλληλων στοιχείων έτσι ώστε να είναι μετρήσιμη η προσδοκία μας για την πραγματοποίηση
Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ
Συνδυαστική Απαρίθµηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση Υπολογισµός
ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 19 ΟΚΤΩΒΡΙΟΥ 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Όνομα/Επίθετο: Ζήτημα 1ο Να γράψετε στη γλώσσα των συνόλων και λεκτικά ποιο ενδεχόμενο παριστάνει κάθε ένα
Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016
Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 06 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου
Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΑΠΡΙΛΙΟΥ 203 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Α. Για δυο ασυµβίβαστα ενδεχόµενα
ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 η εκάδα
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η εκάδα. Στην αρχή της σχολικής χρονιάς, οι 50 µαθητές της τρίτης τάξης ενός λυκείου ρωτήθηκαν σχετικά µε τον αριθµό των βιβλίων που διάβασαν την περίοδο των διακοπών τους. Τα δεδοµένα
Θεωρία Πιθανοτήτων και Στατιστική
Θεωρία Πιθανοτήτων και Στατιστική 2 ο Εξάμηνο Ασκήσεις Πράξης 1 Θεωρία Συνόλων - Δειγματικός Χώρος Άσκηση 1: Να βρεθούν και να γραφούν με συμβολισμούς της Θεωρίας Συνόλων οι δειγματοχώροι των τυχαίων πειραμάτων:
ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις:
ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Γ ΛΥΚΕΙΟΥ... ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ... ΝΟΕΜΒΡΙΟΣ 013 ΘΕΜΑ 1 Ο 1Α. α). Πότε λέμε ότι μια συνάρτηση f
Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου
Άλγεβρα Α Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Άλγεβρα Α Λυκείου Οι πράξεις των πραγματικών αριθμών και οι ιδιότητες τους Αν οι αριθμοί α,β είναι αντίστροφοι, να αποδείξετε ότι: 7 4 : 8 0 7 Να
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ ΛΥΚΕΙΟΥ 4 ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ-ΕΝΔΕΧΟΜΕΝΑ Πράξεις ενδεχομένων-γλωσσική περιγραφή 1) Να γράψετε με τη βοήθεια των συνόλων Α,Β,Γ,Α,Β,Γ τα ενδεχόμενα που
ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.
ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του
Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4
Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Na λυθούν οι εξισώσεις : α) 2 3x 1 x 8 x 1 (απ.: x = -2) β) γ) 2x 7 x 1 (απ.: x = -12) 4 3 4 5 x 2 x 4 2 x (απ.: x = 1) 4 5 δ) x 1
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ
ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (.,.2) Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ).. Αν Ω είναι δειγματικός χώρος ενός πειράματος τύχης,
Μαθηματικά στην Πολιτική Επιστήμη:
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 4.4 : Πιθανότητα Δεσμευμένη Πιθανότητα- Όρια (ΙV). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ Αριθµητικός Μέσος: όπου : αριθµός παρατηρήσεων ιάµεσος: εάν άρτιος εάν περιττός M + + M + Παράδειγµα: ηλ.: Εάν :,,, M + + 5 + +, 5 Εάν :,, M + Επικρατούσα Τιµή:
Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς
Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες
ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΩΡΙΑ--ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΩΡΙΑ--ΑΣΚΗΣΕΙΣ ΟΡΙΣΜΟΙ ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ Δειγματικός Χώρος: Ενδεχόμενο: Το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος τύχης καλείται δειγματικός χώρος. Συμβολίζεται
Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου
Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Εισαγωγικά Βασικοί Ορισµοί Πράξεις Γεγονότων Σχεδιάγραµµα της Υλης Βασικές Εννοιες της Θεωρίας Πιθανοτήτων
ΑΝΕΣΤΗΣ ΤΣΟΜΙΔΗΣ - ΜΑΘΗΜΑΤΙΚΟΣ
ΑΝΕΣΤΗΣ ΤΣΟΜΙΔΗΣ - ΜΑΘΗΜΑΤΙΚΟΣ 1) ΣΤΑΤΙΣΤΙΚΗ 1. Οι παρακάτω αριθμοί παρουσιάζουν τις ενδείξεις ενός ζαριού το οποίο ρίξαμε 20 φορές. 5 5 5 1 2 5 4 3 2 3 1 3 6 4 1 4 6 6 5 4 i) Να κατασκευάσετε πίνακα α)
(α > β και γ > δ)=> αγ > βδ. τύπο S. άνισες. Δίνεται η συνάρτηση f με τύπο f( χ )= y j x »/ Ç + 3. παρακάτω προτάσεις: ΜΟΝΑΔΕΣ 2x5=10
ΓΕ.Λ. ΛΙΒΑΔΕΙΑΣ ΖΗΤΗΜΑ A ΑΊ. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 05 ΛΙΒΑΔΕΙΑ 4 ΜΑΪΟΥ 05 ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) κάθε μία
κανένα από τα παραπάνω
Το παρακάτω ερωτηµατολόγιο απευθύνεται σε προπτυχιακούς φοιτητές µη µαθηµατικών τµηµάτων και έχει ως στόχο να καταγράψει τις µαθηµατικές γνώσεις που απαιτούνται για την παρακολούθηση ενός εισαγωγικού µαθήµατος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-1: Πιθανότητες - Χειµερινό Εξάµηνο 01 ιδάσκων : Π Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /10/01 Ηµεροµηνία Παράδοσης : /11/01
Α Λυκείου. Άλγεβρα Μίλτος Παπαγρηγοράκης Χανιά
Α Λυκείου Άλγεβρα 07-08 Μίλτος Παπαγρηγοράκης Χανιά Άλγεβρα Ταξη: Α Γενικού Λυκείου Άλγεβρα Έκδοση 707 Η συλλογή αυτή διανέμεται δωρεάν σε ψηφιακή μορφή μέσω διαδικτύου προορίζεται για σχολική χρήση και
P( n, k) P(5,5) 5! 5! 10 q! q!... q! = 3! 2! = 0! 3! 2! = 3! 2!
HY118- ιακριτά Μαθηµατικά Φροντιστήριο στη Συνδυαστική (#8) Άσκηση 1 Με πόσους τρόπους µπορούµε να δηµιουργήσουµε συµβολοσειρές που αποτελούνται από τρεις παύλες και δύο τελείες; Άσκηση 1, 1 η προσέγγιση
1. Να εξετάσετε αν καθεµία από τις παρακάτω γραφικές παραστάσεις είναι γραφική
Μαθηµατικά & Στοιεία Στατιστικής Γ Ενιαίου Λυκείου Γενικής Παιδείας Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ 1. Να εξετάσετε αν καθεµία από τις παρακάτω γραφικές παραστάσεις είναι γραφική παράσταση συνάρτησης
ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ
1 ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1.ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Σε ένα σχολείο με 00 μαθητές, οι 90 έχουν ποδήλατο, 36 έχουν «παπί», ενώ 84 άτομα δεν έχουν ούτε ποδήλατο ούτε παπί. Διαλέγουμε
1.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ
1 1.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Ασκήσεις σχ. βιβλίου σελίδας 26 28 Α ΟΜΑΔΑΣ 1. Ένα κουτί έχει τρεις μπάλες, μια άσπρη, μια μαύρη και μια κόκκινη. Κάνουμε το εξής πείραμα : παίρνουμε από το κουτί μια