ﺓﺭﻫﺎﻘﻟﺍ ﺔﻌﻤﺎﺠ ﺔﻴﺴﺎﻴﺴﻟﺍ ﻡﻭﻠﻌﻟﺍﻭ ﺩﺎﺼﺘﻗﻹﺍ ﺔﻴﻠﻜ ﺀﺎﺼﺤﻹﺍ ﻡﺴﻗ

Σχετικά έγγραφα
ΕΙΣΑΓΩΓΗ. 1.1 Εισαγωγή

Telephone: (+39) Fax: (+39) / Telex: or (Internet):

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

B R E A K. Day/Time Physiology Sunday. Histology

τατιςτική ςτην Εκπαίδευςη II

Παράγοντες που επηρεάζουν την καρδιαγγειακή λειτουργία υπέρβαρων/ παχύσαρκων παιδιών ηλικίας 9 14 ετών

PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI

LAMPIRAN. Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26

ΣΗΜΑΣΙΑ ΤΩΝ ΤΕΧΝΙΚΩΝ ΔΕΞΙΟΤΗΤΩΝ ΣΤΗΝ ΚΑΤΑΚΤΗΣΗ Ή ΑΠΩΛΕΙΑ ΣΕΤ ΣΤΗΝ ΠΕΤΟΣΦΑΙΡΙΣΗ ΑΝΔΡΩΝ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ.

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

ΤΕΙ ΠΕΙΡΑΙΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:

Εισαγωγή στην Ανάλυση Διακύμανσης

!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7

τατιστική στην Εκπαίδευση II

Ax = b. 7x = 21. x = 21 7 = 3.

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

$ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η.

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Μονομεταβλητή ανάλυση επιδημιολογικών δεδομένων

Where is the wisdom lost in knowledge? G.Eliott. Where is the knowledge lost in information?

جامعة النجاح الوطنية An-Najah National University كلية الاقتصاد والعلوم الادارية - قسم التسويق

Προσωπική Αλληλογραφία Επιστολή

ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ

Quadratic Expressions

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

: (1) ( ),, ;,,, (2),, :

11. Καταχώρηση και ανάλυση δεδοµένων σε ειδικό στατιστικό λογισµικό (software)

MÉTHODES ET EXERCICES

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο]

Bayesian Discriminant Feature Selection

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS. Θα επιλέξουμε Type in data ώστε να εισάγουμε νέα στοιχεία και θα επιλέξουμε ΟΚ.

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed

Ενότητα 3: Ανάλυση Διακύμανσης κατά ένα παράγοντα One-Way ANOVA

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

Table A.1 Random numbers (section 1)

Βαθιές Θεµελιώσεις Εισαγωγή

MATHACHij = γ00 + u0j + rij

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

ΜΕΘΟ ΟΛΟΓΙΑ ΕΚΠΑΙ ΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ

ΧΡΗΣΤΙΚΟ ΕΓΧΕΙΡΙΔΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

DEMOCRITUS UNIVERISTY OF THRACE Dept. of Physical Education and Sport Sciences Doctoral Program of Study COURSE OUTLINE

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:

ΠΑΝΕΠΙΣΤΗΜΙΟ+ΠΑΤΡΩΝ+ Τμήμα+Διοίκησης+Επιχειρήσεων+

Ιωάννης Τσαούσης, Πανεπιστήμιο Κρήτης Τμήμα Ψυχολογίας

Περιγραφή των εργαλείων ρουτινών του στατιστικού

X 1, X 2, X 3 0 ½ -1/4 55 X 3 S 3. PDF created with pdffactory Pro trial version

!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=

Καρδιακή Συχνότητα και Πρόσληψη Οξυγόνου Ατόμων Μέσης Ηλικίας κατά την Εκτέλεση Ελληνικών Παραδοσιακών Χορών

Personal Letter السي د ا حمد رامي ٣٣٥ شارع الجمهوري ة القاهرة ١١٥١١. Jeremy Rhodes 212 Silverback Drive California Springs CA 92926

א א. KOssuaries. א Eleazar L. Sukenik K. א Talpioth. No. 7: graffito in charcoal on the face: Ιησούς ιού (Jesus, woe!)

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ανάλυση Κυρίων Συνιστωσών (Principal-Component Analysis, PCA)

Jeux d inondation dans les graphes

Συστήματα Αυτόματου Ελέγχου

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων

Άσκηση 10, σελ Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

Μάθηµα 3 ο ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ LU και QR

)# * ' +," -.(. / ( 01(#(' ( 0 #('( +' ")# *'+,"+ (. 20#('( / )%34"5 "+56336"% (%1/ :8;434(

ΜΕΤΑΒΑΣΕΙΣ: - κατά τη διάρκεια της ζωής - στο χώρο της εκπαίδευσης Ν----» Δ. Διαχείριση των προβλημάτων 2. Άμεσα εμπλεκόμενοι

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

Οι νέοι και το περιβάλλον: Περιβαλλοντικές στάσεις και συµπεριφορά µαθητών Λυκείων και ΤΕΕ του Ν. Ροδόπης

Λυμένες Ασκήσεις για το μάθημα:

Μοντέλα Πολλαπλής Παλινδρόμησης

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Biostatistics for Health Sciences Review Sheet

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Παναγιώτης Μερκούρης ΕΚΠΑΙΔΕΥΣΗ

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1

Supplementary Information 1.

Σεμινάριο Προηγμένα Θέματα Στατιστικής. Dr. Nikolaos Mittas Dr. Theodosios Theodosiou

794 Appendix A:Tables

ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ. Παιεάο Δπζηξάηηνο

ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α

ΝΟΗΤΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ ΠΟΥ ΣΥΜΜΕΤΕΧΟΥΝ ΣΤΟΝ ΛΟΓΟ

LAMPIRAN. Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan. 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk.

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

Ανάλυση ποσοτικών δεδομένων. ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος

ΔΥΝΑΜΙΚΗ ΑΝΑΠΤΥΞΗΣ ΤΗΣ ΕΡΕΥΝΑΣ, ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑΣ ΣΤΗΝ ΑΤΤΙΚΗ SWOT ANALYSIS

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

SECTION II: PROBABILITY MODELS

Numerical Analysis FMN011

OLS. University of New South Wales, Australia

Bayesian SEM: A more flexible representation of substantive theory Web tables

Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ. 2NH + 3Cl N + 6HCl. 3 (g) 2 (g) 2 (g) (g) 2A + B Γ + 3. (g) (g) (g) (g) ποια από τις παρακάτω εκφράσεις είναι λανθασµένη;

ιαµέριση - Partitioning

The ε-pseudospectrum of a Matrix

The Impact of Oil Revenues Fluctuations on Macroeconomic Indicators and Financial Markets Performance of Arab-Gulf Countries

Καμπύλη Phillips (10.1, 11.5, 12.1, 12.5, 18.3, 18.8, 18.10)

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

(... )..!, ".. (! ) # - $ % % $ & % 2007

Αναγνώριση Προτύπων. Μη παραμετρικές τεχνικές Αριθμητικά. (Non Parametric Techniques)

The 6 th National Biotechnology Congress of Iran Aug, 2009, Milad Tower Conference Hall, Tehran-Iran

Transcript:

جامعة القاهرة كلية الا قتصاد والعلوم السياسية قسم الا حصاء استخدام برمجة الهدف لا ختيار المتغيرات في تحليل التمايز العنقودي بالتطبيق علي مشكلة توزيع السلع الغذاي ية المدعومة رسالة للحصول علي درجة دكتوراة الفلسفة في الا حصاء ا عداد محمد ا بو العنين ا حمد ا شراف ا.د نادية مكاري جرجس ا ستاذ الا حصاء بكلية الا قتصاد والعلوم السياسية جامعة القاهرة د. محمود مصطفي رشوان د. زينب يوسف محمود ا ستاذ الا حصاء المساعد - كلية الا قتصاد مدرس الا حصاء كلية الاقتصاد والعلوم السياسية جامعة القاهرة والعلوم السياسية جامعة القاهرة 2012

א א א א א 2 א 1433א א 23 אאא 2012 א א א א א : א א.. א א א א א.. אא א א א.. א א א.

א אא א א א א א א אא אא (٣٣ ٣٠)א

:א אא א ( א )א א

א א / א א א א א א א א א א אא אא א א א א.אא א א א/א א א א א א א א א א. א / א א א א א א א א א א אא א א א / א א א א א א א א אא א א א א א א / א א א א א א א א/א א אא א א אאאא אא אא א / אא א א א א א א א א א א א / / אא אא א א א א א א א א א א א

א المحتويات א 1... 2...1-1 3...א א 1-2 4...א1-3 א א א 7.. א א א א 8... CDAא אאא א 10...אאאא א א א... 27 28...א 3-1 33... א3-2 37... 3-3 39... Uniquenessאא3-4 40... א אא א3-5 41... אא3-6 א א א א א א א... 43 44... א א א 4-1 46... א א4-2 47...אא א4-3 48... א4-4 א א א א א א א א א א... 54 55...אא5-1 58....א א5-2 58... אאאאא א 5-3 61......א אא 5-4 66... א5-5 74...אא א א5-6 77...א אאאא(A) 82 אא א א (B) א א... א א... 93

א א

אא אאא א א א א א א א א א א א א א א א א א א אאא אא אא א.א א א א : 1-1 [41] :Discriminant Analysis (DA) א א אא א א אא DAא א. א..א א א א אאא א א א א א א אא א א אא אא dependent variablepredictors א א א א א א א. א אא א א אא א Discriminant function (DF) א א א א אא א. א א אCA) ) :[43] Cluster Analysis Clusters א א CAא א א אא א אא א א. 2

[42] : Clusterwise Discriminant Analysis (CDA)א א א אא אא א א א א א א אאאא א א א א א א.א א א א.א (א )א א( א ) א א א CDA א א א א א א א א א א א א א א א א א א א א א א א א א א א אא אא.א... :Selection of variablesאא א אא א אא א א א א א א א א א א. א אא א אא א א אא אאא א אא. אא אא א [35] א א א א. :א א1-2 אא א א אאא אאא 3

א א.CDAא אא אא א א אא אאא אא2009/2008א אא א אא א א א א () אא א א א אאא. א אא א א א א אאא א א אאאאא א א אא א א א א א א א א א א א א א א א א. א אא אא א 1-3 :א :א א א א א א א א א א א א א. א א : א א א אא אא אא א א א א. אא א אא א א א א א א א א אא א אא אא א א א א. 4

א א : א א א א א א א א א א א א א א א אאאא אא אא Lau אא א א א. א א א א 1999 א א א א 2001 אGlen א א א א א א Decision variable א אאאא. אא א.אא אא Uniqueness test א א א א א א Classification rule אאא א א א א א א א.אא א א א :א א א Simulationאאא א א א א אאאא א : :א א: א א א א א אא א 50א 20. 100 : א א א א א. 5

:א אאא א 5 אא :אא א א א 10א א א 15 א 60 א א א א א אא א א א א א אא 60 א א א א. Stepwise Discriminant א אא אא Analysis (SDA) א א א אSDA א א :א א א א א א א :א א א א :א א א א א א א :א א א א א א :א א א א א :א א א א א א א א א א. א א :א א א א א א א א א א א א א () אאא א א א א א אאאאאא SDAא א א א : א א א א א א אא א אא אא א א א א אא א א א אאא א א א א. אא 6

א א אא א

: א א א א א אא א א א א א אvariables א masking א א א א א א א א א א א א א א א א [35] א א א א א א א א א א א אDA.CAא א א א CDA א א א א א א א א א א א א א א א א א א א א א א א א א א א. א א א א א א א א CDA א א א DA א א א א א א.CA CDA א אאא א [42] 1999 Lau א א א א א א Lau א א א א א א א אא אא(heterogeneity)א א א א א א א א א א א א א א א א א א א א א 8

א א אCDA א Min s. t s א אא א א א א ( y i ) א א א א א א א א א א א categorical א א א א א א א א א א א א א א א א א א א א א א א א א א א א א. א א א א א Lau א א א Lau א א א א א א א א : : א א + z2is2i ) + ( z א א א + z ( z1 is1i 1i s1 i 2is2i ) i { yki = 1} i { y ki = 0} z ki s ki a kj ( 2 1) 3 a j= 1 3 a j= 1 kj kj x x ji ji + s s ki k i ε ε, k = 1,2, k = 1,2, i = 1,2,..., n, i = 1,2,..., n z z 1, i = 1,2,..., n z 1 i + 2 i = 1i, z2i 0 i = 1,2,..., n, k = 1, 2 { y ki ; y 1} for all i = ki { y ki ; y 0} for all i = ki ( 2 2) ( 2 3) ( 2 4) ( 2 5) 9

z ki 1 = 0 k א א i א א א א אא א א א א א א: א א k = 1,2 i = 1, 2,..., n i = 1,2,..., n k א אא א אאא א א א א א א j i = 1,2,3 k = 1,2 אא y i s ki a kj ε אאאא א אא א א אא אא א א א DA א א א א :CA [37] DA א אאא א: א אא אאא א אאא אאdependent variablepredictors א אאאא א א א א אאא א א. אאDA א אאא א א א א א א א א א א :א א א א א normal dist. א א אא Canonical א א Stepwiseא א א : אVariate 10

[37] Stepwise method א -1 אאאא א א א אא א Minitab SAS SPSSאא א א א א א א א א א א א א א : [37]The Forward Stepwise Processes א א : א א א א ( ).אאא א אאאא אא א א א א א א r א. א א א א א א א א DA א א א א א X X, X,..., X 1, 2 3 e r+1.123... r between-groups א r א א א א א h r+1.123... r X r+1 X r+ 1 א א within-group א Fr +.123... r = ( n E r) hr+ 1.123... r /( nh er+ 1.123... 1 r ) (2 6) k = 1,2,..., m α k א ( nh, ne r, α ) m א F n k n H n אא א א א אא = m 1 : E F = m k = 1 n k m א א א א א א x r+1 11

[37]The Backward Stepwise Processes א א : א אאא אא א א א א אא אא א א א א א א א אא א א א א א א א Combining Forward and א א א א א [37] :Backward Stepwise Processes : א אאא אא א אאא א א אאא אא א אא אא אאא א א אא א א אאא א א א אאאא א אאא א א א א אאאא א אאאא א אאא אא א[37]Sharma א א א א א. 12

The Canonical Variate Method א א א 2 א א[37] א א א א א א אאא א א א א א principal component אfactor analysis א א H א אא The Canonical Variateאאא E א א א א א א E 1 H א H א Within א א א E Eigen roots א א j = 1,2,..., s j אgroups between groups 1 λ ( E H ) אא א λ א E 1 H Eigen vectorsאא f discriminant j j א א א א j = 1,2,..., s λ f Ef = n t j X 1, X 2,..., j X p E j j (.) E 1 H 1, f 2 f s f,..., 1 א א ( ( E H א א אא canonical variates אאאfunction אאא א אאא :אא א א אא א א א א א א א א א ( f j א ) The Canonical Variate א א א א א א א. א א א.א א 13

אאאSmith and Huberty [37] א אאThe Canonical Variateאאא א. א א א א r א א 1982 McKay and Campbell Q = R r f j א א א R א א א א : H E א א אאא E E = E rr Qr E E rq QQ H rr H rq H = H Qr H QQ :אא E Q. r = E QQ E Qr E 1 rr E rq ( 2 7) H Q. r = 1 ( EQQ + H QQ ) ( EQr + H Qr )( Err + H rr ) ( ErQ + H rq ) EQr (2 : אא 8) W ( E + H E ) 1 Q. r = Q. r Q. r / Q. r ( 2 9) n H n E R F א א α ( nh, ne r, α ) א א א א א F א א F א א Q = R r א א א 14