Ανάλυση ποσοτικών δεδομένων. ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος
|
|
- Αγαθίας Αθανασίου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Ανάλυση ποσοτικών δεδομένων ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος
2 Εισαγωγή στη στατιστική Στατιστική: σύνολο αρχών και μεθοδολογιών που χρησιμοποιούνται για: Το σχεδιασμό της διαδικασίας συλλογής δεδομένων. Τη συνοπτική και αποτελεσματική παρουσίασή τους. Την ανάλυση και εξαγωγή αντίστοιχων συμπερασμάτων. Δύο βασικές μορφές: Περιγραφική στατιστική, η οποία ασχολείται με την περιγραφή των δεδομένων του δείγματος. Επαγωγική στατιστική, η οποία ασχολείται με την εξαγωγή χρήσιμων συμπερασμάτων για τον πληθυσμό. 2
3 Εισαγωγή στη στατιστική Μεταβλητές: Τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό. Τιμές μεταβλητής: Οι δυνατές τιμές που μπορεί να πάρει μια μεταβλητή. Κατηγορίες μεταβλητών: i. Ποιοτικές ή κατηγορικές: είτε ονομαστικού τύπου (οι τιμές αναφέρονται μόνο σε κατηγορίες, π.χ. ηλικιακή ομάδα), είτε διατακτικού τύπου (οι συγκρίσεις της μορφής «μεγαλύτερη», «μικρότερη», «ίση» έχουν νόημα, π.χ. σε ερωτηματολόγιο ικανοποίησης). ii. Ποσοτικές: βάσει μέτρησής τους διακρίνονται σε αυτές που μετρώνται σε κλίμακα διαστήματος - εκτός από τη διάταξη των τιμών τους μας ενδιαφέρει και η μεταξύ τους απόσταση, π.χ. έτη ζωής και σε αυτές που μετρώνται σε κλίμακα λόγου - εκτός από τη διάταξη και το μέγεθος του διαστήματος μεταξύ των τιμών έχει έννοια και ο λόγος των τιμών, π.χ. προϊόντα. 3
4 Εισαγωγή στη στατιστική Δειγματοληψία. 4 Βασικές τεχνικές δειγματοληψίας: i. Απλή τυχαία δειγματοληψία: Επιλέγουμε τυχαία στοιχεία ή μονάδες (μετακινούμενους) από το σύνολο του πληθυσμού. ii. Στρωματοποιημένη δειγματοληψία: Χωρίζουμε τον πληθυσμό σε στρώματα και στη συνέχεια επιλέγουμε τυχαία τα στοιχεία (μετακινούμενους) από κάθε στρώμα. iii. Δειγματοληψία κατά ομάδες: Χωρίζουμε τον πληθυσμό σε πολλές ομάδες (όχι στρώματα) με την κάθε ομάδα να περιέχει ένα πλήθος στοιχείων, και στη συνέχεια επιλέγουμε τυχαία ομάδες από το σύνολο των ομάδων και συμπεριλαμβάνουμε στο δείγμα όλες τις μονάδες των επιλεγμένων ομάδων. iv. Συστηματική δειγματοληψία: Επιλέγουμε τυχαία ένα στοιχείο και στη συνέχεια ακολουθώντας ένα (σταθερό) «βήμα» επιλέγουμε τα υπόλοιπα στοιχεία. 4
5 Δειγματοληψία. Πληθυσμός: i. Αντικειμενικός πληθυσμός: το σύνολο των ατόμων ή στοιχείων των οποίων ένα ή περισσότερα χαρακτηριστικά θέλουμε να εξετάσουμε. ii. iii. Εισαγωγή στη στατιστική Υπό μελέτη πληθυσμός: είναι υποσύνολο συνήθως του αντικειμενικού πληθυσμού, μπορεί και να ταυτίζεται. Δειγματοληπτικό πλαίσιο: είναι το σύνολο των ατόμων ή στοιχείων που έχουν τη πραγματικά δυνατότητα επιλογής στο δείγμα (η πηγή του δείγματος). 5
6 Βασικές έννοιες. Μέση τιμή ή αριθμητικός μέσος (mean, average): Διάμεσος (median): ένα δείγμα ν παρατηρήσεων το τοποθετούμε σε αύξουσα σειρά, αν το ν είναι περιττός η διάμεσος είναι η μεσαία παρατήρηση, αν το ν είναι άρτιος η διάμεσος είναι το ημιάθροισμα των δύο μεσαίων παρατηρήσεων. Επικρατούσα τιμή (mode): στην περίπτωση μη ομαδοποιημένων παρατηρήσεων είναι η παρατήρηση με τη μεγαλύτερη συχνότητα. Εισαγωγή στη στατιστική = + + = = n i i n n t t t m t X n = = = k i i i n n n n n x n x n X av n x X k k k
7 Εισαγωγή στη στατιστική Επαγωγική στατιστική 7
8 Εισαγωγή στη στατιστική Επαγωγική στατιστική 8
9 Εισαγωγή στη στατιστική Όταν το δείγμα είναι μικρό, και η κανονικότητα δεν είναι σίγουρη δημιουργούνται διαγράμματα P-P και Q-Q έλεγχοι Shapiro-Wilk W (N<=2000), Shapiro-Francia W (N<=5000), Kolmogorov-Smirnov D (N>2000), and Jarque-Bera. Αν η κανονικότητα δεν ισχύει, τότε χρησιμοποιούνται μηπαραμετρικές μέθοδοι Kolmogorov-Smirnov, Kruscal-Wallis, Wilcoxon Rank-Sum. 9
10 Εισαγωγή στη στατιστική Στη μηδενική υπόθεση H o : Ο έλεγχος one sample t-test ελέγχει αν η μέση τιμή του πληθυσμού είναι ίση με μία συγκεκριμένη τιμή Ο έλεγχος two sample dependent t-test (paired t-test) ελέγχει αν η διαφορά μεταξύ τιμών ζευγών είναι ίση με το μηδέν (π.χ. Πρινμετά). Οι δύο αυτοί έλεγχοι είναι ΙΔΙΟΙ. 10
11 Εισαγωγή στη στατιστική Όταν τα δείγματα προέρχονται από δύο πληθυσμούς χρησιμοποιείται ο έλεγχος independent sample t-test που ελέγχει τις μέσες τιμές των δύο δειγμάτων Όταν τα δύο δείγματα έχουν την ίδια διακύμανση χρησιμοποιείται ο έλεγχος independent samples t-test με pooled variance Αν διαφέρει και η διακύμανσή τους τότε χρησιμοποιείται ο έλεγχος folded F test. 11
12 Εισαγωγή στη στατιστική Ενώ ο έλεγχος independent sample t-test συγκρίνει μέσες τιμές δύο δειγμάτων, ο έλεγχος oneway ANOVA συγκρίνει περισσότερες, χρησιμοποιώντας F στατιστικούς υπολογισμούς. Ο έλεγχος t-test θεωρείται one-way ANOVA με σύγκριση δύο δειγμάτων και έναν βαθμό ελευθερίας Το μέγεθος t statistic είναι η τετραγωνική ρίζα του μεγέθους F statistic της ANOVA (F=t 2 ) Ο έλεγχος folded F test είναι διαφορετικός και χρησιμοποιείται όταν ελέγχεται η ισότητα δύο διακυμάνσεων. 12
13 Ανάλυση χ 2 13
14 Ανάλυση χ 2 Ονομαστικά δεδομένα Η ανάλυση χ 2 διερευνά τη συσχέτιση μεταξύ δυο ποιοτικών μεταβλητών. Μπορεί να επεκταθεί και σε πιο σύνθετες καταστάσεις Καθορίζει αν υπάρχει σημαντική διαφορά μεταξύ των αναμενόμενων συχνοτήτων και των παρατηρηθεισών συχνοτήτων σε μια ή περισσότερες κατηγορίες Διαφέρει ο αριθμός των ατόμων ή αντικειμένων που εμπίπτουν σε κάθε κατηγορία σημαντικά από τον αριθμό που θα περιμέναμε; Η διαφορά αυτή μεταξύ των αναμενόμενων-παρατηρηθεισών συχνοτήτων οφείλεται σε στατιστικό λάθος ή είναι πραγματική διαφορά; 14
15 Πίνακες συμπτώσεων Όταν έχουμε δεδομένα που κατηγοριοποιούνται βάσει περισσότερων της μιας μεταβλητής, μπορούμε να αποδώσουμε τα δεδομένα στη μορφή πίνακα σύμπτωσης. Το παρακάτω είναι ένας 2 (αριθμός σειρών) x 3 (αριθμός στηλών) πίνακας σύμπτωσης. Σε κάθε κελί του πίνακα αποδίδονται οι παρατηρηθείσες τιμές. 15
16 Έλεγχος υπόθεσης ΒΗΜΑ 1: H0: Μηδενική υπόθεση (καμιά διαφορά) H1: Εναλλακτική υπόθεση (αυτή είναι η ερευνητική υπόθεση) ΒΗΜΑ 2: ΒΗΜΑ 3: SPSS Υπολογισμός του Test Statistic. Έλεγχος κριτικών τιμών από πίνακες ΒΗΜΑ 4: Αποδοχή H0 ή απόρριψη H0 ΒΗΜΑ 5: Συμπέρασμα (σε λέξεις) 16
17 ΒΗΜΑ1: Υποθέσεις Διατύπωση μηδενικής και εναλλακτικής υπόθεσης. ορισμός α = 0.05 ή 5% επίπεδο σημαντικότητας H0: δεν υπάρχει συσχέτιση μεταξύ του φύλου πότη μπύρας και προτίμησης τύπου μπύρας. H1: υπάρχει πιθανή συσχέτιση μεταξύ του φύλου πότη μπύρας και προτίμησης τύπου μπύρας. 17
18 ΒΗΜΑ 2: υπολογισμός χ 2 O = E 2 x 2 ( ) calc όπου O είναι η παρατηρηθείσα συχνότητα, E Και E είναι η αναμενόμενη συχνότητα Προσοχή: αν η παρατηρηθείσα συχνότητα δεν διαφέρει από την αναμενόμενη συχνότητα, τότε η μηδενική υπόθεση μας είναι αληθινή (δεν υπάρχει συσχέτιση). 18
19 υπολογισμός Πρώτα υπολογίζουμε την αναμενόμενη τιμή για κάθε κελί Υπάρχουν 6 κελιά στο παράδειγμά μας Αναμενόμενη συχνότητα E = ( RowTotal ) x( Column Total GrandTotal ) Έτσι, η αναμενόμενη συχνότητα για το κελί(1,1): E 80x ( 1,1) = = 26,67 19
20 Υπολογισμός 20
21 υπολογισμός E 80x ( 1,1) = = 26,67 E(1,2)= E(2,1)= E(2,2)= E(2,3)= E(1,3)= 21
22 υπολογισμός (0 = E E 2 2 ) x calc 2 x calc ,67) (40 37,33) = + 26,67 37, 33 (
23 ΒΗΜΑ 3 Αναζήτηση της κρίσιμης τιμής χ 2 RESEARCH DESIGN AND DATA ANALYSIS Dr. REMOS ARMAOS 23
24 Πίνακες χ 2 df (v) = (αριθμός σειρών-1) x (αριθμός στηλών-1) = (2-1) x (3-1) = 2 Έτσι, η κρίσιμη τιμή είναι χ 2 (2, 0.05) =
25 ΒΗΜΑΤΑ 4 & 5 ΒΗΜΑ 4: Αποδοχή ή απόρριψη H 0. Απορρίπτουμε την H 0 στο 5% επίπεδο σημαντικότητας. υπολογισθείσα τιμή > κρίσιμη τιμή = σημαντική υπολογισθείσα τιμή < κρίσιμη τιμή = μη σημαντική δηλ. πιθανότητα χ 2 calc να προκύψει από τύχη είναι μικρότερη από 5%. ΒΗΜΑ 5: Αναφορά. το αποτέλεσμα μας είναι σημαντικό στο 5% επίπεδο. 25
26 Ενδεικτικό παράδειγμα χ 2 calc = 6.13 είναι μεγαλύτερη από την κρίσιμη τιμή = χ 2 crit (0.05,5.99) Έχουμε σημαντικό αποτέλεσμα χ 2 calc = 5.98 είναι μικρότερη από την κρίσιμη τιμή = χ 2 crit (0.05,5.99) Δεν έχουμε σημαντικό αποτέλεσμα 26
27 Εγκυρότητα του τεστ χ 2 Το τεστ χ 2 είναι έγκυρο μόνον όταν: 1. Όλες οι αναμενόμενες συχνότητες είναι > Όχι περισσότερα από το 20% των κελιών έχουν λιγότερες από 5 αναμενόμενες συχνότητες. 27
28 ANOVA 28
29 Τι είναι η ANOVA? ANOVA? ANalysis Of VAriance 29
30 One-way ANOVA: πότε τη χρησιμοποιούμε *ANOVA είναι μια επέκταση των t-test* Το χρησιμοποιούμε όταν έχουμε: 1) Μια κατηγορική ΑΜ με 2 ή περισσότερα επίπεδα (η ANOVA είναι ταυτόσημη με το t-test όταν η ΑΜ έχει 2 επίπεδα) 2) Μια ΕΜ που είναι φυσιολογικά κατανεμημένη και επιπέδου διαστημάτων είναι παραμετρικό τεστ 3) H ANOVA θα δείξει αν τουλάχιστον δύο μ.ο. διαφέρουν σημαντικά μεταξύ τους (σημαντικό F μέσου τετραγώνου επεμβάσεων) Το αντίστοιχο μη-παραμετρικό τεστ είναι το Kruskal-Wallis Test 30
31 Παραδείγματα Ο ερευνητής θέλει να διερευνήσει Την επίδραση των αναλγητικών (παρακεταμόλη / ibuprofen / μορφίνη / placebo) στην ανακούφιση του πόνου Την επίδραση των συμβουλευτικών θεραπειών (CBT / ψυχοδυναμική / ελέγχου) στην κατάθλιψη One-way ANOVA είναι κατάλληλα τεστ για αυτές τις μελέτες 31
32 Δυο βασικές αρχές της ANOVA Δυο βασικές έννοιες καθορίζουν το επίπεδο σημαντικότητας της ANOVA : Αρχή 1. διαχείριση ή αποτέλεσμα μεταξύ ομάδων Αυτό είναι μια ποσοτική μέτρηση των μ. ό. Των διαφορών σε όλες τις ομάδες ΤΟ ΜΕΓΑΛΥΤΕΡΟ ΕΙΝΑΙ ΚΑΛΥΤΕΡΟ Αρχή 2. Σφάλμα διασποράς- διακύμανση τιμών μέσα στην κάθε ομάδα (δηλ. διακύμανση που δεν μπορεί να ερμηνευτεί από την ΑΜ) ΤΟ ΜΙΚΡΟΤΕΡΟ ΕΙΝΑΙ ΚΑΛΥΤΕΡΟ 32
33 Δυο βασικές αρχές της ANOVA F = αποτέλεσμα σφάλμα 33
34 Υπολογισμός one-way ANOVA ΒΗΜΑ 1. ορίστε την μηδενική και εναλλακτική υπόθεση ΒΗΜΑ 2. Πίνακας ANOVA ΒΗΜΑ 3. έλεγχος κριτικής F τιμής από πίνακες ΒΗΜΑ 4. αποδοχή ή απόρριψη υπόθεσης ΒΗΜΑ 5. συγγραφή αποτελεσμάτων 34
35 ΒΗΜΑ 1. ορίστε τη μηδενική και την εναλλακτική υπόθεση H 0 : H 1 : καμιά διαφορά μεταξύ των ομάδων [Μηδενική υπόθεση] υπάρχει διαφορά μεταξύ των ομάδων [εναλλακτική υπόθεση] Ένα παράδειγμα: ο ερευνητής συγκρίνει τις επιπτώσεις της θεραπευτικής αγωγής (viagra / placebo / όχι φαρμακευτική ουσία) στη libido Καμία διαφορά μεταξύ των 3 παρεμβάσεων H 0 : H 1 : Υπάρχει διαφορά μεταξύ των 3 παρεμβάσεων 35
36 ΒΗΜΑ 2. Πίνακας ANOVA Source of Variation Between-groups ( treatment effect ) Error (variation within group) Sums of Squares SS SS effect degrees of freedom df df effect [=groups 1] Mean Square MS (=SS / df) MS effect [ =SS effect ] df effect SS error df error MS error [ =SS error ] df error F MS effect MS error Total SS total df total [=N-1] N=αριθμός συμμετεχόντων 36
37 ΒΗΜΑ 3. Έλεγχος/ διασταύρωση με κριτική τιμή F από πίνακες έχουμε μια παρατηρηθείσα τιμή του F για τα δεδομένα μας Η τιμή F θέλουμε να είναι όσο το δυνατόν πιο μεγάλη Στην πραγματικότητα, να είναι τουλάχιστον τόσο μεγάλη όσο και η κριτική τιμή F 37
38 ΒΗΜΑ 4. Αποδοχή ή απόρριψη H 0 Αν η F είναι μεγαλύτερη από F crit τότε απόρριψε την μηδενική υπόθεση (έχουμε δηλαδή στατιστικά σημαντικό αποτέλεσμα/διαφορά μεταξύ των ομάδων) 38
39 ΒΗΜΑ 5. Συγγραφή αποτελέσματος Υπάρχει σημαντικήδιαφορά μεταξύ των 3 προγραμμάτων θεραπείας στη libido, 2 12F (, ) 6.67 = p <
40 ANCOVA Αποτελεί επέκταση της ANOVA H ANOVA αναλύει την παραλλακτικότητα μεταξύ και εντός των επεμβάσεων. Η ANCOVA διερευνά περεταίρω την παραλλακτικότητα εντός των επεμβάσεων προσθέτοντας στην ανάλυση έναν η και περισσότερους συμπαράγοντες. 40
41 Mann-Whitney U-test Χρησιμοποιείται για τη σύγκριση διαφορών μεταξύ δύο ανεξάρτητων ομάδων Η εξαρτημένη μεταβλητή μπορεί να είναι διάταξης (ordinal) ή συνεχής (continuous) Τα δεδομένα της εξαρτημένης μεταβλητής δεν ακολουθούν κανονική κατανομή Οι κατανομές θα πρέπει ωστόσο να έχουν παρόμοια διάταξη (σχήμα) Είναι εν μέρει η μη παραμετρική προσέγγιση του t-test Μπορεί να χρησιμοποιηθεί για να μελετηθούν π.χ. οι προτιμήσεις διαφόρων ανθρώπων και πως επηρεάζονται ανά τοποθεσία. 41
42 Kruskal-Wallis H Test Μη παραμετρικό τεστ βασισμένο σε δεδομένα που είναι σε κατάταξη (π.χ. αύξουσα) Χρησιμοποιείται για να καθορίσει εάν υπάρχουν στατιστικά σημαντικές διαφορές μεταξύ δύο ή περισσοτέρων ομάδων μίας ανεξάρτητης μεταβλητής σε μία εξαρτημένη συνεχή μεταβλητή (continuous) ή μεταβλητή διάταξης (ordinal) Θεωρείται η μη παραμετρική προσέγγιση της ANOVA ή μια επέκταση του U-test καθώς επιτρέπει τη σύγκριση περισσότερων των δύο ομάδων 42
43 43
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS Πανεπιστήμιο Θεσσαλίας-Τμήμα Πολιτικών Μηχανικών Εργαστήριο Κυκλοφορίας, Μεταφορών και Διαχείρισης Εφοδιαστικής Αλυσίδας Αντικείμενα διάλεξης Σύντομη εισαγωγή
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...
Περιεχόμενα. Πρόλογος... 15
Περιεχόμενα Πρόλογος... 15 Κεφάλαιο 1 ΘΕΩΡΗΤΙΚΑ ΚΑΙ ΦΙΛΟΣΟΦΙΚΑ ΟΝΤΟΛΟΓΙΚΑ ΚΑΙ ΕΠΙΣΤΗΜΟΛΟΓΙΚΑ ΖΗΤΗΜΑΤΑ ΤΗΣ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ ΤΟΥ ΠΡΑΓΜΑΤΙΚΟΥ ΚΟΣΜΟΥ... 17 Το θεμελιώδες πρόβλημα των κοινωνικών επιστημών...
Η ΣΤΑΤΙΣΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΣΠΕΡΜΑΤΟΣ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΙΑTΡΙΚΗ ΣΧΟΛΗ Η ΣΤΑΤΙΣΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΣΠΕΡΜΑΤΟΣ Έλενα Κριτσέλη, MPH PhD Επιστημονικός Συνεργάτης Επιδημιολόγος Χρόνιων Παθήσεων, Α Πανεπιστημιακή Παιδιατρική
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών
Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17
Περιεχόμενα Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 1 Εισαγωγή 21 1.1 Γιατί χρησιμοποιούμε τη στατιστική; 21 1.2 Τι είναι η στατιστική; 22 1.3 Περισσότερα για την επαγωγική στατιστική 23 1.4 Τρεις
Ενότητα 3: Ανάλυση Διακύμανσης κατά ένα παράγοντα One-Way ANOVA
ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 3: One-Way ANOVA
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική
Εισαγωγή στη Βιοστατιστική Βασικές έννοιες Στατιστικής. Μαρία Γκριζιώτη Μsc Ιατρικής Ερευνητικής Μεθοδολογίας
Εισαγωγή στη Βιοστατιστική Βασικές έννοιες Στατιστικής Μαρία Γκριζιώτη Μsc Ιατρικής Ερευνητικής Μεθοδολογίας Σκοπός του μαθήματος Κατανόηση βασικών εννοιών της στατιστικής Δυνατότητα δημιουργίας βάσης
Περιγραφική Ανάλυση ποσοτικών μεταβλητών
Περιγραφική Ανάλυση ποσοτικών μεταβλητών Στο data file Worldsales.sav (αρχείο υποθετικών πωλήσεων ανά ήπειρο και προϊόν) Analyze Descriptive Statistics Frequencies Επιλογή μεταβλητής Revenue Πατάμε στο
Ασκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων
Ασκήσεις Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων ΑΣΚΗΣΗ 1: Έλεγχος για τη μέση τιμή ενός πληθυσμού Η αντικαπνιστική νομοθεσία υποχρεώνει τους καπνιστές που εργάζονται σε
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ
Στατιστική. Ανάλυση ιασποράς με ένα Παράγοντα. One-Way Anova. 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς
Στατιστική Ανάλυση ιασποράς με ένα Παράγοντα One-Way Anova Χατζόπουλος Σταύρος Κεφάλαιο 8ο. Ανάλυση ιασποράς 8.1 Εισαγωγή 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς 8.3 Ανάλυση ιασποράς με
ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές
Έλεγχος υποθέσεων ΙI ANOVA
Έλεγχος υποθέσεων ΙI ANOVA Μοντέλα στην Επιστήμη Τροφίμων 532Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας ή ανάλυση
Κεφάλαιο 12. Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t
Κεφάλαιο 12 Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t 1 Πώς δημιουργήθηκε W. S. Gosset (1908) Χημικός στη βιομηχανία Μπύρας Guiness Σύγκριση διαφόρων δειγμάτων μπύρας Δημοσίευση αποτελεσμάτων ως Student
Ερευνητική υπόθεση. Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές.
Ερευνητική υπόθεση Η ερευνητική υπόθεση αναφέρεται σε μια συγκεκριμένη πρόβλεψη σχετικά με τη σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές. Στα πειραματικά ερευνητικά σχέδια, η ερευνητική υπόθεση αναφέρεται
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το
ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ
Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras
ΜΗ ΠΑΡΑΜΕΤΡΙΚΕΣ ΣΥΓΚΡΙΣΕΙΣ
ΚΕΦΑΛΑΙΟ 16 ΜΗ ΠΑΡΑΜΕΤΡΙΚΕΣ ΣΥΓΚΡΙΣΕΙΣ Η ερευνητική πρακτική έχει δείξει ότι όταν υπάρχει σοβαρή παραβίαση (violation) της παραδοχής τής κανονικότητας (assumption of normality) ή και της παραδοχής τής
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...
Δοκιμές προτίμησης και αποδοχής
Δοκιμές προτίμησης και αποδοχής Χρησιμοποιείται συνήθως για: Επιλογή άριστου δείγματος ή άριστης επεξεργασίας Συγκριτική αξιολόγηση ποιοτικών χαρακτηριστικών Συγκριτική προτίμηση ομοειδών τροφίμων (διερεύνηση
Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR
Κλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας
Κλωνάρης Στάθης ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας Μέχρι τώρα ασχοληθήκαμε με τις τεχνικές εκτίμησης παραμέτρων για ένα πληθυσμό όπως: τον Μέσο µ και το ποσοστό p Θα συνεχίσουμε
Μη Παραμετρικοί Έλεγχοι & Η Δοκιμασία Χ 2
Μη Παραμετρικοί Έλεγχοι & Η Δοκιμασία Χ 2. Μη Παραμετρικοί Έλεγχοι Παραμετρικοί είναι οι κλασικοί έλεγχοι υποθέσεων της Στατιστικής οι οποίοι διεξάγονται κάτω από κάποιες προϋποθέσεις για τις παραμέτρους
Μεθοδολογία της Έρευνας και Εφαρμοσμένη Στατιστική
Μεθοδολογία της Έρευνας και Εφαρμοσμένη Στατιστική Μη παραμετρικοί στατιστικοί έλεγχοι Καθηγητής ΔΠΘ Κων/νος Τσαγκαράκης Δευτέρα 6 Μαρτίου 13:00-16:00 Ώρα για εξ αποστάσεως συνεργασία Τρίτη 7 Μαρτίου 12:00-14:00
Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation. Σταμάτης Πουλακιδάκος
Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation Σταμάτης Πουλακιδάκος Μερικά εισαγωγικά λόγια Οι έλεγχοι των ερευνητικών υποθέσεων πραγματοποιούνται με διάφορους στατιστικούς ελέγχους,
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς
T-tests One Way Anova
William S. Gosset Student s t Sir Ronald Fisher T-tests One Way Anova ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος Ρούσσος, Π.Λ., & Τσαούσης, Γ. (2002). Στατιστική εφαρμοσμένη στις κοινωνικές επιστήμες. Αθήνα: Ελληνικά
ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ
ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση
Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης
Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%
Αναλυτική Στατιστική
Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων
Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων
Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Mann Whitney U τεστ)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Mann Whitney U τεστ) Σε ορισμένες περιπτώσεις απαιτείται ο έλεγχος της ύπαρξης
Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα
Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια
Γ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης
Κεφάλαιο 13 Εισαγωγή στην Ανάλυση ιακύµανσης 1 Η Ανάλυση ιακύµανσης Από τα πιο συχνά χρησιµοποιούµενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές µέσων όρων, όπως και
Ιατρικά Μαθηματικά & Βιοστατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιατρικά Μαθηματικά & Βιοστατιστική Στατιστικοί έλεγχοι για συνεχή και κατηγορικά δεδομένα Διδάσκοντες: Ευάγγελος Ευαγγέλου, Kωνσταντίνος Τσιλίδης, Ιωάννης
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
09_Μη παραμετρικοί έλεγχοι υποθέσεων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.
Ν161_(6)_Στατιστική στη Φυσική Αγωγή 09_Μη παραμετρικοί έλεγχοι υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Όταν δεν υπάρχουν διαθέσιμες πληροφορίες για την κατανομή των πληθυσμών,
ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)
ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις
Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα
Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα Στατιστική είναι ο κλάδος των μαθηματικών που εμβαθύνει σε μεθόδους συλλογής δεδομένων, οργάνωσης, παρουσίασης των δεδομένων και εξαγωγής συμπερασμάτων
Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο
Εαρινό εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr
Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από
Είδη Μεταβλητών. κλίµακα µέτρησης
ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό
Βοήθημα Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων
Βοήθημα Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων 2 1. Περιγραφική Στατιστική Θα δίνονται το ιστόγραμμα των σχετικών συχνοτήτων και τα στατιστικά. 1. Να μπορείτε να εξάγετε
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΣΥΝΔΥΑΣΤΙΚΗ 1.1 ΒΑΣΙΚΗ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ... 13 1.2 ΠΡΟΣΘΕΤΙΚΗ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ... 15 1.3 ΔΙΑΤΑΞΕΙΣ..... 16 1.4 ΜΕΤΑΘΕΣΕΙΣ... 18 1.5 ΣΥΝΔΥΑΣΜΟΙ... 20 1.6 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΤΑΘΕΣΕΙΣ......
Ανάλυση διακύμανσης (Μονοδιάστατη) One-Way ANOVA
Ανάλυση διακύμανσης (Μονοδιάστατη) One-Way ANOVA Ανάλυση διακύμανσης Η μονοδιάστατη ανάλυση διακύμανσης εξετάζει εάν δύο ή περισσότεροι ανεξάρτητοι πληθυσμοί έχουν τον ίδιο ή διαφορετικό μέσο όρο. Στην
Συνάφεια μεταξύ ποιοτικών μεταβλητών. Εκδ. #3,
Συνάφεια μεταξύ ποιοτικών μεταβλητών Εκδ. #3, 19.03.2016 Ο έλεγχος ανεξαρτησίας χ 2 Ο έλεγχος ανεξαρτησίας χ 2 εφαρμόζεται για να εξετάσουμε τη συνάφεια μεταξύ δύο ποιοτικών μεταβλητών με την έννοια της
Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή
Στατιστικοί Έλεγχοι Υποθέσεων Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Τι θέλουμε να συγκρίνουμε; Δύο δείγματα Μέση αρτηριακή πίεση σε δύο ομάδες Πιθανότητα θανάτου με δύο διαφορετικά
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 7: Έλεγχοι σημαντικότητας πολλών ανεξάρτητων δειγμάτων Κωνσταντίνος Ζαφειρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ενότητα 1: Πληθυσμός και δείγμα Είδη Μεταβλητών - Περιγραφική στατιστική
ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 1: Πληθυσμός
Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 :
Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 : 1. Να χρησιμοποιηθεί το αρχείο gssft.sav για να γίνει έλεγχος της υπόθεσης ότι στους εργαζόμενους με πλήρη απασχόληση η τιμή του μέσου
ΕΙΣΑΓΩΓΗ. Βασικές έννοιες
ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις
Ιωάννης Ντζούφρας. Ενότητα 4 Συγκρίσεις για 1 & 2 είγματα. (II) Έλεγχοι υποθέσεων για 2 εξαρτημένα δείγματα. Ανάλυση εδομένων ιαφάνεια 4-30
Ιωάννης Ντζούφρας Ενότητα 4 Συγκρίσεις για 1 & 2 είγματα (II) Έλεγχοι υποθέσεων για 2 εξαρτημένα Ανάλυση εδομένων ιαφάνεια 4-30 Έστωότιέχουμεμετρήσειςγιαταίδιαάτομα Σε 2 παρόμοιες μεταβλητές (π.χ. Με ίδιες
Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό
Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.
7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου
Κεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά
Ενότητα 1: Εισαγωγή. ΤΕΙ Στερεάς Ελλάδας. Τμήμα Φυσικοθεραπείας. Προπτυχιακό Πρόγραμμα. Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο )
ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 1: Εισαγωγή Δρ. Χρήστος Γενιτσαρόπουλος Λαμία, 2017 1.1. Σκοπός και
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test) Σε ορισμένες περιπτώσεις απαιτείται ο έλεγχος της ύπαρξης στατιστικά
Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες
Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές
Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Όταν απαιτείται ο έλεγχος της ύπαρξης στατιστικά σημαντικών
3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές
ο Φυλλάδιο Ασκήσεων Εφαρμογές 2 ο Φυλλάδιο Ασκήσεων Εφαρμογή 1 ΣΥΓΚΡΙΣΗ ΤΗΣ ΗΛΙΚΙΑΣ ΤΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΣΕ ΔΥΟ ΕΠΙΧΕΙΡΗΣΕΙΣ Παρακάτω βλέπουμε τα ιστογράμματα και τα πολύγωνα των σχετικών (%) και σχετικών αθροιστικών
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,
2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3)
Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 2 ο Εξάμηνο του Ακαδημαϊκού Έτους 2015-2016 ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Αντώνης Κ.
ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
Έλεγχος υποθέσεων Ι z-test & t-test
Έλεγχος υποθέσεων Ι z-test & t-test Μοντέλα στην Επιστήμη Τροφίμων 53Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας
Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα Θέλοντας να εξετάσουμε τις μέσες τιμές δύο πληθυσμών πρέπει να διακρίνουμε κατά τα γνωστά από τη θεωρία δύο περιπτώσεις
Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ. Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών.
Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών. Η μέση τιμή ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό
Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες
Επαγωγική Στατιστική Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Πως μπορούμε να συγκρίνουμε μεταβλητές μεταξύ τους? Διαφορά συγκρίνοντας το μέσο μιας μεταβλητής (λόγος ή διάστημα) στις ομάδες πχ. t-test
Εισαγωγή στην Ανάλυση Δεδομένων
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός
Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test
1 Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου One-Sample t-test 2 Μια σύντομη αναδρομή Στα τέλη του 19 ου αιώνα μια μεγάλη αλλαγή για την επιστήμη ζυμώνονταν στην ζυθοποιία Guinness. Ο William Gosset
Βιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2017-2018 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που
Διάλεξη 1 Βασικές έννοιες
Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη
ΣΧ0ΛΗ ΤΕΧΝ0Λ0ΓΙΑΣ ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΕΡΓΑΣΤΗΡΙΟ: ΟΡΓΑΝΟΛΗΠΤΙΚΟΥ ΕΛΕΓΧΟΥ ΓΙΑΝΝΑΚΟΥΡΟΥ ΜΑΡΙΑ ΤΑΛΕΛΛΗ ΑΙΚΑΤΕΡΙΝΗ
ΣΧ0ΛΗ ΤΕΧΝ0Λ0ΓΙΑΣ ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΕΡΓΑΣΤΗΡΙΟ: ΟΡΓΑΝΟΛΗΠΤΙΚΟΥ ΕΛΕΓΧΟΥ ΓΙΑΝΝΑΚΟΥΡΟΥ ΜΑΡΙΑ ΤΑΛΕΛΛΗ ΑΙΚΑΤΕΡΙΝΗ ΕΙΣΑΓΩΓΗ Ο όρος «ποιότητα», είναι μια απλή έννοια που εκφράζεται
Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014
Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Περιγραφική και Επαγωγική Στατιστική Η περιγραφική στατιστική
ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )
Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε
ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
Εισαγωγή στη Στατιστική
Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων
Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης
Ν161_(262)_Στατιστική στη Φυσική Αγωγή 06_01_Έλεγχος_Υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Υπόθεση: "μπορεί ο αριθμητικός μέσος του δείγματος να είναι ίδιος με τον αριθμητικό
Βιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές
α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις
ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΙΕΘΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ IΙ ΕΙΣΗΓΗΤΡΙΑ: ΣΑΒΒΑΣ ΠΑΠΑ ΟΠΟΥΛΟΣ ΠΑΛΑΙΑ ΘΕΜΑΤΑ ********************************************************************
Βιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13
ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...
Κεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ Ενότητα # 7: Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
Στατιστικές Υποθέσεις
Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Στατιστικές Υποθέσεις Δρ. Αγγελίδης Π. Βασίλειος 2 Εισαγωγή Ίσως το σπουδαιότερο μέρος της Στατιστικής επιστήμης. Εξαγωγή συμπερασμάτων για τις τιμές των παραμέτρων
Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA)
Κεφάλαιο 7 Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA) 7.1 Γενικότητες Η ANOVA περιλαμβάνει μία ομάδα στατιστικών μεθόδων κατάλληλων για την ανάλυση δεδομένων που προκύπτουν από πειραματικούς
Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ
ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» ΑΝΑΛΥΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» ΑΝΑΛΥΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Γκριζιώτη Μαρία ΜSc Ιατρικής Ερευνητικής Μεθοδολογίας Αναλυτική στατιστική Σύγκριση ποιοτικών
Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού
Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 3 ο Εξάμηνο του Ακαδημαϊκού Έτους 2013-2014 ΟΔ 034 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Δευτέρα 10:00-13:00 Ώρες διδασκαλίας (3)