Fourier Analysis of Waves

Σχετικά έγγραφα
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Math221: HW# 1 solutions

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Chapter 6 BLM Answers

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx.

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

CRASH COURSE IN PRECALCULUS

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

D Alembert s Solution to the Wave Equation

Section 8.3 Trigonometric Equations

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Spherical Coordinates

1 String with massive end-points

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx.

Section 7.6 Double and Half Angle Formulas

PARTIAL NOTES for 6.1 Trigonometric Identities

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Homework 8 Model Solution Section

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Trigonometric Formula Sheet

Homework#13 Trigonometry Honors Study Guide for Final Test#3

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Differentiation exercise show differential equation

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Example Sheet 3 Solutions

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Areas and Lengths in Polar Coordinates

Ολοκλήρωση. Ολοκληρωτικός Λογισμός μιας μεταβλητής Ι

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.

Seirèc Fourier A. N. Giannakìpouloc, Tm ma Statistik c OPA

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Σειρές Fourier και Προβλήματα Συνοριακών Τιμών

Second Order Partial Differential Equations

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1)

Parametrized Surfaces

Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε

Areas and Lengths in Polar Coordinates

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ 2011 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

Solution to Review Problems for Midterm III

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

( y = 2, x R) και ( y = 0, x R ) ή ισοδύναμα πάνω στην ευθεία z = 2

ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

Answer sheet: Third Midterm for Math 2339

Εφαρμοσμένα Μαθηματικά ΙΙ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Solutions to Exercise Sheet 5

Section 8.2 Graphs of Polar Equations

11.4 Graphing in Polar Coordinates Polar Symmetries

Inverse trigonometric functions & General Solution of Trigonometric Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Not for reproduction

Rectangular Polar Parametric

Λύσεις στο Επαναληπτικό Διαγώνισμα 2

Name: Math Homework Set # VI. April 2, 2010

Διαφορικές Εξισώσεις.

MathCity.org Merging man and maths

Κεφάλαιο ΙV : Εργαστηριακές ασκήσεις που αφορούν πίνακες και µεθόδους στη Java.

Διαφορικές Εξισώσεις.

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός


MATH 150 Pre-Calculus

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Cursul 14 ) 1 2 ( fg dµ <. Deci fg L 2 ([ π, π]). Prin urmare,

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις)

Solutions to Mock IIT Advanced/Test - 3[Paper-2]/2013

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας 1

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

6.4 Superposition of Linear Plane Progressive Waves

ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ., x 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ιαφορικές Εξισώσεις µε Μερικές Παραγώγους, Απαντήσεις-Παρατηρήσεις στην Τελική Εξέταση Περιόδου Ιουνίου.

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Uniform Convergence of Fourier Series Michael Taylor

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ

SPECIAL FUNCTIONS and POLYNOMIALS

f(x) dx. f(x)dx = 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riemann Α Οµάδα

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Trigonometry 1.TRIGONOMETRIC RATIOS

Ανασκόπηση-Μάθημα 17 Κανόνας αλυσίδας - Παράγωγος κατά κατεύθυνση

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

Transcript:

Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman Lectures on Physics by Richard Feynman, Robert Leighton, Matthew Sands, et al. 36 Fourier Analysis of Waves. Refer to The Feynman Lectures on Physics Vol. I, Chapter 5. Fourier series over a period P where x is contained in the half-open interval [x, P). f(x) = a 2 + [a n cos ( 2nx P ) + b n sin ( 2nx P )] n= x +P a n = 2 P x x +P f(x) cos (2nx P ) dx b n = 2 P x f(x) sin (2nx P ) dx Euler s equation used to derive trigonometric identities. e i(θ±φ) = cos(θ ± φ) + i sin(θ ± φ) = e iθ e ±iφ = (cos θ + i sin θ)(cos φ ± i sin φ) = cos θ cos φ sin θ sin φ + i(cos θ sin φ ± sin θ cos φ) cos(θ ± φ) = cos θ cos φ sin θ sin φ sin(θ ± φ) = cos θ sin φ ± sin θ cos φ 2cos θ cos φ = cos(θ φ) + cos(θ + φ) 2sin θ cos φ = sin(θ + φ) sin(θ φ) e ix e ix = e = 1 = (cos x + i sin x)(cos x i sin x) = (cos x) 2 + (sin x) 2 e 2ix = cos 2x + i sin 2x = e ix e ix = (cos x + i sin x)(cos x + i sin x) = (cos x) 2 (sin x) 2 + i(cos x sin x + sin x cos x) cos 2x = (cos x) 2 (sin x) 2 = 1 (sin x) 2 (sin x) 2 = 1 2(sin x) 2 1

36.1 (a) y(x) = const. (b) y(x) = sin x <= x <= 2 * pi. (a) (sin x) 2 = 1 (1 cos 2x) 2 sin 2x = 2 cos x sin x y(x) = C x [, P] x +P a n = 2C P cos (2nx P ) dx x a n = 2C P P 2n x=x +P sin (2nx P )] x=x = C n sin [2n(x + P) ] C P n sin (2nx P ) sin [ 2n(x + P) ] = cos ( 2nx P P ) sin(2n) + sin (2nx P ) cos(2n) = sin (2nx P ) a n = C n [sin (2nx P ) sin (2nx P )] = x +P b n = 2C P sin (2nx P ) dx x b n = 2C P P 2n x=x +P cos (2nx P )] x=x = C n {cos [2n(x + P) ] cos ( 2nx P P )} = C n [cos (2nx P ) cos(2n) sin (2nx P ) sin(2n) cos (2nx P )] = C n [cos (2nx P ) cos (2nx P )] = a 2 = C a = 2C (b) y(x) = sin x x [,2] x =, P = 2 2 a = 1 sin x dx = 1 cos x] x= x=2 = 1 [cos(2) cos()] = 1 (1 1) = 2

2 a n = 1 sin x cos nx dx = 1 2 2 2 2 [ sin(x + nx)dx sin(x nx)dx] = 1 { sin[(1 + n)x] dx sin[(1 n)x] dx 2 = 1 2 = 1 2 { cos[(1 + 2n)x] 1 + 2n { cos[(1 + 2n)x] 1 + 2n ] ] 2 x=2 x= x=2 x= + cos[(1 2n)x] ] 1 2n cos[(1 2n)x] 2n 1 ] } x=2 x= x=2 x= } = } = 36.2 2 b n = 1 sin x sin nx dx = n > 1 2 b 1 = 1 (sin x)2 dx = 1 (1 cos 2x)dx = 1 2 2 2 +1 x [, ] f(x) = { 1 x (, 2) a n = 1 ( cos nx dx cos nx dx) = 1 n (sin nx] x= x= sin nx] x=2 x= ) = (a) b n = 1 ( sin nx dx sin nx dx) = 1 n (cos nx] x= x= cos nx] x= 2 = 1 [cos n + cos n 2] n b 2n+1 = 4( 1)2n+1 (2n + 1) = 4( 1)2n+2 (2n + 1) = 4 (2n + 1) f(x) = 4 sin[(2n + 1)x] (2n + 1) n= x=2 ) f ( 2 ) = 4 sin[(2n + 1) 2 ] (2n + 1) n= sin[(2n + 1) 2] = sin(n + 2) = cos n sin( 2) + sin n cos( 2) = ( 1) n 3

(b) (c) n= 1 = 4 ( 1)n (2n + 1) n= ( 1)n = (2n + 1) 4 n= ( 1)n ( 1)m (2n + 1) (2m + 1) = ( 4 )2 = 2 16 m= ( 1)n+m = 1 (2n + 1)(2m + 1) 2 1 (2n + 1) 2 = 2 16 n= m= n= 1 (2n + 1) 2 = 2 8 n= 4 n n= = 1 1 1 = 4 3 4 1 (2n + 1) 2 1 4 m = (2n + 1) 2 4 m n= m= n= m= = 4 3 2 8 = 2 6 36.3 2 2 g(x) = { 1 + x x [, ) x x [, 2) a = 1 g(x) dx = 1 2 x dx + 1 dx + 1 dx 1 2 x dx 2 = 2 2 2 + 2 1 (2 ) 2 2 [(2)2 2 ] = 1 2 + 2 3 2 = 1 a n = 1 g(x) cos nx dx = 1 x cos nx dx + 1 cos nx dx + 1 cos nx dx 1 x cos nx dx 2 2 2 d(uv) = udv + vdu 2 d(uv) = uv = udv + vdu 2 2 2 4

x cos nx dx = x n sin nx] 1 sin nx x= n 2 x= 2 = (2n + 1) 2 x cos nx dx = x n sin nx] x= 2 x=2 = 1 n 2 [1 ( 1)n ] = udv = uv vdu u(x) = x dv = cos nx dx cos nx dx = 1 sin nx n 2 1 sin nx n dx = 1 n 2 cos nx] x= x= = 1 n 2 (cos n 1) = 1 n 2 [( 1)n 1] 2 (2n + 1) 2 dx = 1 n 2 cos nx] x= x=2 = 1 (cos 2n cos n) n2 2 a 2n+1 = (2n + 1) 2 2 2 (2n + 1) 2 2 = 4 (2n + 1) 2 2 b n = 1 g(x) sin nx dx = 1 x sin nx dx + 1 sin nx dx + 1 sin nx dx 1 x sin nx dx 2 2 2 2 u(x) = x dv = sin nx dx sin nx dx = 1 cos nx n x sin nx dx = x n cos nx] 1 cos nx x= n x sin nx dx = x n cos nx] x= x=2 x= 2 1 cos nx n 2 dx = 2( 1)n n dx = 2 n 2( 1)n n b n = 1 n 2 [( 1)n + ( 1) n 2] 2 1 (cos 2n cos n) = n n 2 [4( 1)n 4] 2 n [1 ( 1)n ] 8 b 2n+1 = (2n + 1) 2 + 4 (2n + 1) = 4 (2n + 1) (1 2 ) g(x) = 1 2 4 4 (2n + 1) 2 cos[(2n + 1)x] + 2 (2n + 1) (1 2 ) sin[(2n + 1)x] n= n= 2 5

(a) (b) g() = g(2) = = 1 2 4 (2n + 1) 2 2 n= n= 2 1 (2n + 1) 2 = 8 [ 1 (2n + 1) 2 ] n= 2 = 4 64 (1 + 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + ) (1 + 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + ) = 1 + 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + + 1 3 2 (1 + 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + ) + 1 5 2 (1 + 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + ) + 1 7 2 (1 + 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + ) + 1 9 2 (1 + 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + ) = s + 1 (2n + 1) 4 1 (2n + 1) 4 n= = 4 64 s n= s = 2 [ 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + + 1 3 2 ( 1 5 2 + 1 7 2 + 1 9 2 + ) + ] s.573266774348711 = 4 64 4 s 1.5221747462888181938198261.573266774348711 64 = 1.146937362897181938198261 4 δ 1.146937362897181938198261 δ 95.998832628296223472948144984649 δ = 96 (1) 1 (2n + 1) 4 n= 6 = 4 96 1 (2n + 1) 4 + 1 (2n + 2) 4 = 1 n 4 n= n= n=

(2) 1 (2n + 2) 4 = 1 16 1 (n + 1) 4 n= 1 16 dx (x + 1) 4 1 n 4 n= n= = 1 16 dy y 4 = 1 48 1 = 4 96 + t t = 1 16 1 (n + 1) 4.676452216928815 n= 4 4 + t = 96 9 t = 4 9 4 96 1.8232323371113819151636965412 1.14678316419254546253465573.676452216946136969752313382 4 96 16 15 = 4 6 16 15 = 4 9 t = 1 16 1 (n + 1) 4 = 1 16 ( 1 1 4 + 1 2 4 + 1 3 4 + 1 4 4 + ) = 1 16 1 m 4 = ζ(4) 16 n= m=1 = 64 864 = 4 144 = 1 16 4 9 36.4 Evaluate the following integral: ζ(4) = 4 9 x3 dx e x = x3 e x dx 1 1 e x 1 1 e x = 1 + e x + e 2x + e 3x + = (e x ) n 7 n= x3 e x dx 1 e x = x 3 e (n+1)x dx n= u(x) = x 3 dv = e (n+1)x dx v(x) = e (n+1)x dx = e (n+1)x n + 1 = e nx n=

x 3 e (n+1)x dx = 3 n + 1 x2 e (n+1)x dx u(x) = x 2 dv = e (n+1)x dx v(x) = e (n+1)x dx = e (n+1)x n + 1 x 2 e (n+1)x dx = 2 n + 1 x e (n+1)x dx u(x) = x dv = e (n+1)x dx 36.5 x v(x) = e (n+1)x dx = e (n+1)x n + 1 e (n+1)x dx = 1 n + 1 1 e (n+1)x dx = (n + 1) 2 x3 e x dx 1 e x = 6 1 (n + 1) 4 n= = 6ζ(4) = 64 9 = 4 15 y(x, t) = 8h 2 ( 1)n+1 1)x (2n 1)at sin [(2n ] cos [ ] (2n 1) 2 2 2 y (1, 2 a ) = 8h 2 ( 1)n+1 1) sin [(2n ] cos[(2n 1)] = 8h (2n 1) 2 2 2 ( 1)n+1 ( 1) n+1 ( 1) n+1 (2n 1) 2 36.6 = 8h 2 ( 1)3n+3 (2n 1) 2 = 8h 2 ( 1)n+1 (2n 1) 2 = 8h 2 (1 1 3 2 + 1 5 2 1 7 2 + ) y(1,) = 8h 2 ( 1)n+1 1) sin [(2n ] = ( 1)n+1 ( 1) n+1 (2n 1) 2 2 (2n 1) 2 = 8h 2 4 = 2h = 8h 2 ( 1)2n+2 (2n 1) 2 = 8h 2 1 (2n 1) 2 = 8h 2 (1 + 1 3 2 + 1 5 2 + 1 7 2 + ) = A 1 A = 1, A 2 A =, A 3 A = 1 3 2 = 1 9 8

2 a n = 1 h(x) cos nx = dx = 1 2 2 h(x) = x x [,2) 2 x cos nx dx = x 2 n sin nx] x= x=2 2 1 sin nx n dx = 1 n 2 cos nx] x=2 x= Conjecture: 2 2 b n = 1 h(x) sin nx x sin nx dx = x n cos nx] x= 2 dx = 1 2 x=2 b n = 1 n a = 1 h(x) dx = 1 2 2 x 2 2 x sin nx dx 2 2 h(x) = 1 2 1 sin nx n 1 cos nx dx = 2 n n dx = 1 2 2 1 2 x2 ] x=2 x= = 1 36.7 h ( 2 ) = 1 2 1 sin (n 2 ) = 1 n 2 1 ( 1)n+1 = 1 (2n 1) 2 1 (1 1 3 + 1 5 1 7 + ) =.25 = 1 4 2 4 = ( 1)n+1 = (2n 1) 4 = tan 1 1 S 2 y x 2 σ 2 y t 2 = S tension and σ mass density x A x [, x x p ] p y(x, ) = A (1 x x p ) x (x { L x p, L] p y (x, ) = A amplitude, L the length of the string 9

y(x, t) = sin ( nx L ) [a n sin ( nct L ) + b n cos ( nct L )] y (x, t) = nc sin (nx L L ) [a n cos ( nct L ) b n sin ( nct L )] c = S σ y(x, ) = 8A 2 a n = 2L 2 sin ( nx p b n = A L ) n 2 2 x p (L x p ) y(x, t) = 2A L2 sin ( nx p L ) sin (nx n 2 2 x p (L x p ) L ) cos ( nct L ) y(x, ) = 2A L2 sin ( nx p L ) sin (nx n 2 2 x p (L x p ) L ) T = 2L c = 2L σ S y(x, t) = 8A 1 n 2 sin (nx 2 L ) cos ( nct L ) 1 sin (nx n2 L ) = 8A 2 [sin (x L ) + 1 sin (2x 4 L ) + 1 sin (3x 9 L ) + ] T 2 = L c y (x, L c ) = 8A 1 n 2 sin (nx 2 L ) cos(n) = 8A 2 [ sin (x L ) + 1 sin (2x 4 L ) 1 sin (3x 9 L ) + ] 36.8 y ( L 2, L c ) = 8A 2 ( 1)n+1 n 2 f(x) = sin x x [, ) f(x) = a 2 + [a n cos(2nx) + b n sin(2nx)] 1

a = 2 sin x dx = 2 cos x} x= x= = 2 ( 1 1) = 4 1.273239544735162686151716981 a n = 2 sin x cos(2nx) dx = 2 { sin[(1 + 2n)x] dx sin[(1 n)x] dx} = 1 = 1 cos[(1 + 2n)x] { ] 1 + 2n { cos[(1 + 2n)x] 1 + 2n ] x= x= x= x= + cos[(1 2n)x] ] 1 2n cos[(1 2n)x] 2n 1 ] x= x= x= x= } = a 1 = 1 cos(3) [ + 1 3 3 + cos 1] = 1 (2 3 2) = 1 (2 3 6 3 ) = 4 3.4244131815783875625356723267 a 2 = 1 cos(5) [ + 1 5 5 + cos(3) 1 3 3 ] = 2 (1 5 1 3 ) = 2 ( 3 15 5 15 ) = 4 15.8488263631567751241713446534 a 2 = 1 cos(7) [ + 1 7 7 + cos(5) 1 5 5 ] = 2 (1 7 1 5 ) = 2 ( 5 35 7 35 ) = 4 35.363782727671893389357448515 b n = 2 sin x sin(2nx) dx sin x = ( 1)n x 2n+1 (2n + 1)! n= = x x3 3! + x5 5! sin x sin(2nx) dx = x sin(2nx) dx 1 3! x3 sin(2nx) dx + 1 5! x5 sin(2nx) dx u(x) = x dv = sin(2nx) dx v(x) = 1 2n cos(2nx) x sin(2nx) dx = x x= 2n cos(2nx)] + 1 x= 2n cos(2nx) dx = 1 n 2 sin(2nx)] = x= u(x) = x 3 dv = sin(2nx) dx } x= 11

v(x) = 1 2n cos(2nx) x 3 sin(2nx) dx = x3 x= 2n cos(2nx)] + 3 2n x2 cos(2nx) dx x= u(x) = x 2 dv = cos(2nx) dx Conjecture: (a) x 2 cos(2nx) v(x) = 1 2n sin(2nx) dx = x2 x= 2n sin(2nx)] x= x 2n+1 sin(2nx) dx = b n = 1 x sin(2nx) dx = n 1 f(x) 2 dx = a 2 + a n 2 (b) 2 = 8 2 + 16 2 (1 9 + 1 225 + 1 1225 + ) = 2a + a 2 ( 1 9 + 1 225 + 1 1225 + ) a 2 = 4 15 = a 15 Fourier coefficients and graph for Exercise 36.1 (a) for f(x) = 1 for all x in the half-open interval [x, P). 12

13

14

Fourier coefficients and graph for Exercise 36.1 (b) f(x) = sin x for all x in the half-open interval [, 2). 15

16

Fourier coefficients and graph for Exercise 36.2, the square wave. 17

18

19

2

21

Fourier coefficients and graph for Exercise 36.3, the triangle wave. 22

23

24

25

26

Fourier coefficients and graph for Exercise 36.6, the sawtooth wave. 27

28

Fourier coefficients and graph for Exercise 36.8, the rectified sine wave. 29

3