Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )"

Transcript

1 Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι κατά πόσο µεταβάλλεται η εξαρτηµένη µεταβλητή y για γνωστή µεταβολή της ανεξάρτητης µεταβλητής. Εστω ότι από x 0 που ήταν αρχικά η ανεξάρτητη µεταβλητή γίνεται x. Μεταβάλλεται εποµένως κατά x = x x 0. Τότε η αντίστοιχη µεταβολή της εξαρτηµένης µεταβλητής ϑα είναι : y = f(x) f(x 0 ), ή y = f(x 0 + x) f(x 0 ). Το πηλίκο y x = f(x) f(x 0) = f(x 0 + x) f(x 0 ) x x 0 x ονοµάζεται µέσος ϱυθµός µεταβολής της συνάρτησης στο διάστηµα (x 0, x 0 + x). Η µέση µεταβολή είναι ένα µέτρο της µεταβολής της y στο διάστηµα (x 0, x 0 + x). Αν το διάστηµα αυτό γίνει εξαιρετικά µικρό, η αντίστοιχη µέση µεταβολή ϑα µπορεί να ϑεωρηθεί ως µέτρο της µεταβολής της y στο σηµείο x 0. Αυτό πετυχαίνεται παίρνοντας το όριο του µέσου ϱυθµού µεταβολής όταν x x 0 ή ισοδύναµα όταν x 0. Το όριο αυτό συµβολίζεται µε f (x 0 ) και 27

2 28 ΚΕΦΑΛΑΙΟ 3. ΠΑΡΑΓΩΓΟΣ ονοµάζεται ϱυθµός µεταβολής ή παράγωγος αριθµός της συνάρτησης στο σηµείο x 0. Είναι εποµένως f (x 0 ) = lim x x0 f(x) f(x 0 ) x x 0 = lim x 0 f(x 0 + x) f(x 0 ). x Η τιµή της παραγώγου της f(x) στο σηµείο x 0 είναι ίση µε την εφαπτοµένη της γωνίας που σχηµατίζεται από τον άξονα των x και την εφαπτοµένη της καµπύλης στο σηµείο (x 0, f(x 0 )). ηλαδή ο παράγωγος αριθµός ισούται µε το συντελεστή διεύθυνσης (κλίση) της εφαπτοµένης της καµπύλης της f(x) στο σηµείο (x 0, f(x 0 )). Εξίσωση εφαπτοµένης καµπύλης : y y 0 = f (x 0 )(x x 0 ). Παράδειγµα : Να ϐρεθεί η εξίσωση της εφαπτοµένης της καµπύλης y = x 3 3x + 2 στο σηµείο x = Παράγωγος συνάρτησης Ορισµός Μία συνάρτηση y = f(x) ορισµένη στο κλειστό διάστηµα [a, b] λέγεται παραγωγίσιµη στο σηµείο x 0 (a, b), αν υπάρχει ο παράγωγος αριθµός f (x 0 ) = lim x 0 f(x 0 + x) f(x 0 ), x και είναι πεπερασµένος. Η y = f(x) λέγεται παραγωγίσιµη στο (a, b), αν είναι παραγωγίσιµη x (a, b). Παράδειγµα : Να δείξετε ότι η συνάρτηση f(x) = 3 x δεν είναι παραγωγίσιµη στο x 0 = 0. Εστω y = f(x) : A R, µία συνάρτηση ορισµένη στο σύνολο A και A A το σύνολο των σηµείων στα οποία η συνάρτηση είναι παραγωγίσιµη. Αντιστοιχώντας σε κάθε σηµείο x 0 A τον παράγωγο αριθµό f (x 0 ), ορίζουµε µία νέα συνάρτηση. Η συνάρτηση αυτή λέγεται παράγωγος της f(x) και συµβολίζεται µε f (x). Είναι δηλαδή f (x) = lim x 0 f(x + x) f(x). x

3 3.2. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ 29 Συµβολισµοί της παραγώγου : Η παράγωγος της f στο σηµείο x 0 συµ- ϐολίζεται µε ( ) df f (x 0 ),, df dx x 0 dx ενώ η παράγωγος σ ένα τυχαίο σηµείο x A (δηλαδή η παράγωγος συνάρτηση) συµβολίζεται µε f df (x), dx. Πλευρική παραγώγιση : Η παράγωγος από δεξιά της f(x) στο σηµείο x 0 του πεδίου ορισµού της ορίζεται από τη σχέση f +(x 0 ) = lim x x + 0 x0 f(x) f(x 0 ) x x 0, αν το όριο αυτό υπάρχει και είναι πραγµατικός αριθµός. Οµοίως, η παράγωγος από αριστερά της f(x) στο σηµείο x 0 του πεδίου ορισµού της ορίζεται από τη σχέση f (x 0 ) = lim x x 0 f(x) f(x 0 ) x x 0, αν το όριο αυτό υπάρχει και είναι πραγµατικός αριθµός. Μία συνάρτηση f(x) έχει παράγωγο στο x = x 0, αν και µόνον αν υπάρχουν οι πλευρικές παράγωγοι στο σηµείο αυτό και είναι ίσες µεταξύ τους. ηλαδή ισχύει η σχέση f (x 0 ) = f +(x 0 ) = f (x 0 ). Πρόταση Αν µία συνάρτηση f(x) είναι παραγωγίσιµη στο σηµείο x 0, τότε ϑα είναι και συνεχής στο σηµείο αυτό. Προσοχή : Η πρόταση δεν ισχύει αντίστροφα. ηλαδή, αν µία συνάρτηση f είναι συνεχής σ ένα σηµείο x 0, τότε δεν είναι υποχρεωτικά και παραγωγίσιµη στο x 0. Για παράδειγµα η συνάρτηση f(x) = x είναι συνεχής στο x 0 = 0, ενώ δεν είναι παραγωγίσιµη σ αυτό. Αν όµως δεν είναι συνεχής στο x 0, τότε αναγκαία δεν είναι παραγωγίσιµη στο x 0. Παράδειγµα : Να ϐρεθεί η παράγωγος της συνάρτησης f(x) = x x 2 + 1,

4 30 ΚΕΦΑΛΑΙΟ 3. ΠΑΡΑΓΩΓΟΣ στο σηµείο x 0 = 3. Παράδειγµα : Να ϐρεθεί η παράγωγος της συνάρτησης f(x) = sin 3 (x 2), στο σηµείο x 0 = 2. Παράδειγµα : Να εξετάσετε αν είναι παραγωγίσιµη στο x 0 = 1, η συνάρτηση x, 0 x 1 f(x) = 2x 1, 1 < x 2 Παράδειγµα : ίνεται η συνάρτηση x 2 + (2λ + λ 2 + 2)x, x < 0 f(x) = λx 2 + x, x 0 Να ϐρεθεί ο λ R ώστε η f να είναι παραγωγίσιµη στο x 0 = Κανόνες Παραγώγισης Πρόταση Αν οι συναρτήσεις f και g είναι ορισµένες και παραγωγίσιµες στο διάστηµα I = (a, b), τότε και η συνάρτηση f + g είναι παραγωγίσιµη στο I και ισχύει [f(x) + g(x)] = f (x) + g (x), x I. Η παραπάνω πρόταση γενικεύται για n συναρτήσεις και ισχύει [f 1 (x) + f 2 (x) f n (x)] = f 1(x) + f 2(x) f n(x), x I. Πρόταση Αν οι συναρτήσεις f και g είναι ορισµένες και παραγωγίσιµες στο διάστηµα I = (a, b), τότε και η συνάρτηση f g είναι παραγωγίσιµη στο I και ισχύει [f(x) g(x)] = f (x)g(x) + f(x)g (x), x I. Η παραπάνω πρόταση γενικεύται για n συναρτήσεις και ισχύει [f 1 (x)f 2 (x)... f n (x)] = n [f 1 (x)... f i 1 (x)f i(x)f i+1 (x)... f n (x)], x I. i=1

5 3.3. ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ 31 Πρόταση Αν η συνάρτηση f είναι ορισµένη και παραγωγίσιµη στο διάστηµα I = (a, b), τότε έχουµε [ (f(x)) k] = k (f(x)) k 1 f (x), x I, k N. Πρόταση Αν οι συναρτήσεις f και g είναι ορισµένες και παραγωγίσιµες στο διάστηµα I = (a, b) και ισχύει g(x) 0, για κάθε x I, τότε και η συνάρτηση f g είναι παραγωγίσιµη στο I και ισχύει [ ] f(x) = f (x)g(x) f(x)g (x), x I. g(x) g 2 (x) Πρόταση Η παράγωγος µιας σταθερής συνάρτησεις είναι ίση µε µηδέν, δηλαδή (c) = 0, c σταθερά. Χρησιµοποιώντας την προηγούµενη πρόταση και την πρόταση προκύπτει ότι [cf(x)] = cf (x). Επίσης αν στην πρόταση πάρουµε f(x) = 1, τότε παίρνουµε [ ] 1 = g (x), x I. g(x) g 2 (x) Πρόταση Η συνάρτηση f(x) = x n είναι παραγωγίσιµη στο R και ισχύει (x n ) = nx n 1, x R. Με τη ϐοήθεια των παραπάνω προτάσεων, εύκολα µπορεί να αποδείξει κανείς ότι : 1. ( x) = 1 2 x, x > 0 2. (sin x) = cos x 3. (cos x) = sin x 4. (tan x) = 1 cos 2 x, x (2k + 1) π 2, k Z

6 32 ΚΕΦΑΛΑΙΟ 3. ΠΑΡΑΓΩΓΟΣ 5. (cot x) = 1 sin 2 x, x kπ, k Z 6. (arctan x) = x 2 7. (arcsin x) = 8. (e x ) = e x 1 1 x 2 9. (ln x) = 1 x 10. (a x ) = a x ln a Παράδειγµα : Να ϐρεθεί η παράγωγος των συναρτήσεων f(x) = (x 2 + 1)(x 4 + 3), g(x) = x x Παραγώγιση σύνθετης, αντίστροφης και πεπλεγµένης συνάρτησης Θεώρηµα Αν η συνάρτηση f είναι παραγωγίσιµη στο σηµείο x 0 του πεδίου ορισµού της και η g είναι παραγωγίσιµη στο u 0 = f(x 0 ), τότε και η σύνθετη συνάρτηση h = g f είναι παραγωγίσιµη στο x 0 και µάλιστα ισχύει h (x 0 ) = g (f(x 0 )) f (x 0 ). Η παράγωγος εποµένως της σύνθετης συνάρτησης h(x) = g(f(x)) ϑα είναι : h (x) = g (f(x)) f (x). Αν χρησιµοποιήσουµε το συµβολισµό dy για την παράγωγο η παραπάνω dx σχέση γράφεται dy dx = dy du du dx. Η σχέση αυτή λέγεται και κανόνας της αλυσίδας. Παράδειγµα : Να ϐρεθεί η παράγωγος των συναρτήσεων f(x) = sin(x 2 1), g(x) = ln 2 (ln x),

7 3.5. ΠΑΡΑΓΩΓΟΙ ΑΝΩΤΕΡΗΣ ΤΑΞΗΣ 33 h(x) = e 3x2 +x, s(x) = 1 + x 2 + 2x. Πρόταση Ας είναι f : [a, b] [c, d] µία 1 1 και επί συνάρτηση και f 1 : [c, d] [a, b] η αντίστροφή της συνάρτηση. Αν η f είναι παραγωγίσιµη στο σηµείο x 0 [a, b] και είναι f (x 0 ) 0, τότε και η f 1 είναι παραγωγίσιµη στο y 0 = f(x 0 ) και ισχύει (f 1 ) (y 0 ) = 1 f (x 0 ). Από την παραπάνω πρόταση προκύπτει ότι αν η συνάρτηση f είναι παραγωγίσιµη για κάθε x [a, b], τότε και η αντίστροφή της είναι παραγωγίσιµη και είναι (f 1 ) (y) = 1 f (x), y = f(x) [c, d]. Παράδειγµα : Να ϐρεθεί η παράγωγος της αντίστροφης της συνάρτησης y = sin x, δηλαδή της συνάρτησης y = arcsin x. Ορισµός Ας είναι x, y δύο µεταβλητές που συνδέονται µεταξύ τους µε µία σχέση της µορφής F (x, y) = 0. Τότε η συνάρτηση y = y(x) που καθορίζεται από µία τέτοια σχέση λέγεται πεπλεγµένη συνάρτηση. Παράδειγµα : Να ϐρεθεί η παράγωγος της πεπλεγµένης συνάρτησης που ορίζεται από τη σχέση x 3 + y 3 3xy = Παράγωγοι ανώτερης τάξης Οπως είδαµε η παράγωγος y µιας συνάρτησης y = f(x) είναι και αυτή µία συνάρτηση. Αν αυτή η συνάρτηση είναι παραγωγίσιµη τότε την παραγωγό της τη λέµε παράγωγο δεύτερης τάξης ή δεύτερη παράγωγο της y = f(x) και συµβολίζουµε y ή f (x) ή d2 f dx 2. Οµοια την παράγωγο της δεύτερης παραγώγου τη λέµε τρίτη παράγωγο της y = f(x) και συµβολίζουµε y ή f (x) ή d3 f dx 3.

8 34 ΚΕΦΑΛΑΙΟ 3. ΠΑΡΑΓΩΓΟΣ Γενικότερα ορίζουµε σαν παράγωγο n τάξης ή n-οστή παράγωγο της y = f(x), την παράγωγο της (n 1)-οστής παραγώγου και την συµβολίζουµε y (n) ή f (n) (x) ή dn f dx n. Παράδειγµα : Να ϐρεθεί η δεύτερη παράγωγος των συναρτήσεων 1. y = e 3x+x2 2. x 3 + y 3 3xy = ιαφορικό συνάρτησης - Προσεγγίσεις Εστω y = f(x) µία παραγωγίσιµη συνάρτηση. παραγώγου έχουµε f y (x) = lim x 0 x. Εποµένως µπορούµε να γράψουµε ότι Τότε από τον ορισµό της y x = f (x) + ε, όπου ε τέτοιο ώστε Ετσι έχουµε lim ε = 0. x 0 y = f (x) x + ε x. Ορισµός Η ποσότητα f (x) x, η οποία ισούται κατά προσέγγιση µε την αντίστοιχη της x µεταβολή y, λέγεται διαφορικό της συνάρτησης y = f(x) στο σηµείο x και συµβολίζεται µε dy ή df(x). Ετσι, dy = f (x) x. Το διαφορικό της συνάρτησης f(x) = x, επειδή η παράγωγός της είναι παντού 1, ϑα είναι dx = x. Ετσι το διαφορικό µιας συνάρτησης y = f(x), γράφεται dy = f (x)dx.

9 3.7. ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΤΟΥ ΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 35 Το διαφορικό µιας συνάρτησης χρησιµοποιείται εκτός των άλλων και για τον υπολογισµό προσεγγιστικών τιµών. Από τον ορισµό του διαφορικού έχουµε y dy, από την οποία παίρνουµε f(x + x) f(x) f (x)dx, ή f(x + x) f(x) + f (x)dx. Παράδειγµα : Να υπολογιστεί κατά προσέγγιση η τιµή 3 27, Βασικά ϑεωρήµατα του διαφορικού λογισ- µού Στην παράγραφο αυτή παρουσιάζουµε δύο ϐασικά ϑεωρήµατα του διαφορικού λογισµού, το Θεώρηµα Rolle και το Θεώρηµα Μέσης Τιµής. Θεώρηµα ( Rolle) Αν η συνάρτηση f(x) είναι συνεχής στο κλειστό διάστηµα [a, b] και παραγωγίσιµη στο ανοικτό διάστηµα (a, b) και αν f(a) = f(b), τότε υπάρχει ένα τουλάχιστον σηµείο ξ στο διάστηµα (a, b) τέτοιο ώστε f (ξ) = 0. Γεωµετρική ερµηνεία : Αν f(x) είναι συνεχής και παραγωγίσιµη συνάρτηση η οποία παίρνει την ίδια τιµή σε δύο σηµεία του άξονα x, τότε υπάρχει ανάµεσά τους τουλάχιστον ένα σηµείο στο οποίο η εφαπτοµένη είναι παράλληλη προς των άξονα των x. Παράδειγµα : Για τη συνάρτηση f : [ 1, 1] R µε x 2 + ax + b, x [ 1, 0) f(x) = cx 2 + 4x + 4, x [0, 1] να ϐρεθούν οι πραγµατικοί αριθµοί a, b, c ώστε η f να ικανοποιεί τις υποθέσεις του Θεωρήµατος Rolle.

10 36 ΚΕΦΑΛΑΙΟ 3. ΠΑΡΑΓΩΓΟΣ Πόρισµα Αν η εξίσωση f(x) = 0 έχει δύο πραγµατικές ϱίζες a και b, µε a < b, και η συνάρτηση f είναι συνεχής στο [a, b] και παραγωγίσιµη στο (a, b), τότε ξ (a, b) : f (ξ) = 0. Πόρισµα Για µία πολυωνυµική συνάρτηση ικανοποιούνται οι προϋπο- ϑέσεις του Θεωρήµατος Rolle, έτσι µεταξύ δύο ϱιζών a και b ενός πολυωνύµου p(x) µε πραγµατικούς συντελεστές υπάρχει τουλάχιστον µία πραγµατική ϱίζα του p (x). Παράδειγµα : Να δειχθεί ότι αν η εξίσωση a 0 x n + a 1 x n a n 1 x = 0, (a 0, a 1,..., a n R) έχει µία ϱίζα x = x 0, τότε και η εξίσωση na 0 x n 1 + (n 1)a 1 x n a n 1 = 0, έχει µία ϑετική ϱίζα µικρότερη του x 0. Θεώρηµα ( Θεώρηµα Μέσης Τιµής) Αν η συνάρτηση f(x) είναι συνεχής στο κλειστό διάστηµα [a, b] και παραγωγίσιµη στο ανοικτό διάστηµα (a, b), τότε υπάρχει ένα τουλάχιστον σηµείο ξ στο διάστηµα (a, b) τέτοιο ώστε f (ξ) = f(b) f(a). b a Γεωµετρική ερµηνεία : Αν f(x) είναι συνεχής και παραγωγίσιµη συνάρτηση σ ένα διάστηµα [a, b] και A(a, f(a)), B(b, f(b)) τα σηµεία της καµπύλης που αντιστοιχούν στα άκρα του διαστήµατος, τότε υπάρχει τουλάχιστον ένα σηµείο της καµπύλης P (ξ, f(ξ)) µεταξύ των A, B, µε ξ (a, b), όπου η εφαπτοµένη στο σηµείο αυτό είναι παράλληλη προς τη χορδή AB. Άµεση συνέπεια του Θεωρήµατος Μέσης Τιµής είναι τα επόµενα πορίσ- µατα. Πόρισµα Αν η παράγωγος µιας συνάρτησης f(x) είναι 0 σε όλα τα σηµεία ενός διαστήµατος [a, b], τότε η f(x) είναι σταθερή στο διάστηµα αυτό. ηλαδή f (x) = 0 f(x) = c, x [a, b].

11 3.8. ΚΑΝΟΝΑΣ ΤΟΥ LHOSP IT AL - ΠΟΛΥΩΝΥΜΟ T AY LOR 37 Πόρισµα Αν f(x) και g(x) έχουν ίσες παραγώγους σε όλα τα σηµεία ενός διαστήµατος [a, b], τότε η διαφορά τους είναι σταθερή στο διάστηµα αυτό. ηλαδή f (x) = g (x) f(x) g(x) = c, x [a, b]. Πόρισµα Αν η f(x) είναι συνεχής στο κλειστό διάστηµα [a, b] και ισχύει f (x) > 0, για κάθε x (a, b) (αντίστοιχα f (x) < 0, για κάθε x (a, b)), τότε η f(x) είναι γνησίως αύξουσα (αντίστοιχα γνησίως ϕθίνουσα) στο διάστηµα [a, b]. Παράδειγµα : Να δεχθεί ότι ισχύει x 1 + x < ln(1 + x) < x, x > Κανόνας του L Hospital - Πολυώνυµο T aylor Θεώρηµα (Κανόνας του L Hospital) Αν f(x), g(x) δύο συνεχείς και παραγωγίσιµες συναρτήσεις και x 0 R {, + } και lim x x 0 f(x) = lim x x0 g(x) = 0(± ), τότε ισχύει f(x) lim x x 0 g(x) = lim f (x) x x 0 g (x). Με το κανόνα του L Hospital υπολογίζουµε τα όρια των απροσδιόριστων µορφών 0 0 ή. Ο κανόνας ισχύει και όταν x + ή x. Παράδειγµα : Να υπολογιστούν τα όρια ln(cos x) a) lim x 0 x x b) lim( x 1 x 1 1 ln x ). Θεώρηµα Αν η συνάρτηση f έχει παραγώγους µέχρι n-οστής τάξης, όπου n N, σε µία περιοχή του σηµείου x 0, τότε υπάρχει ένα, και µόνο ένα, πολυώνυµο p(x) µε ϐαθµ. p(x) n που ικανοποιεί τις συνθήκες p(x 0 ) = f(x 0 ), p (x 0 ) = f (x 0 ),..., p (n) (x 0 ) = f (n) (x 0 ).

12 38 ΚΕΦΑΛΑΙΟ 3. ΠΑΡΑΓΩΓΟΣ Το πολυώνυµο αυτό είναι το p(x) = f(x 0 ) + (x x 0) 1! f (x 0 ) + (x x 0) 2 2! f (x 0 ) (x x 0) n f (n) (x 0 ). n! Το παραπάνω πολυώνυµο p(x) λέγεται πολυώνυµο του Taylor ή και προσεγγιστικό πολυώνυµο της συνάρτησης f στην περιοχή του σηµείου x 0. Το πολυώνυµο Taylor για x 0 = 0, δηλαδή το πολυώνυµο p(x) = f(0) + (x 0) f (0) + 1! (x 0)2 f (0) ! (x 0)n f (n) (0), n! λέγεται πολυώνυµο του Mac Laurin της συνάρτησης f. Οταν προσεγγίζουµε την f µε το πολυώνυµο Taylor (της f) τότε το σφάλµα που κάνουµε είναι R(x) = f(x) p(x). Μπορεί να δειχθεί ότι R(x) = (x x 0) n+1 f (n+1) (ξ), (n + 1)! όπου ξ κάποιος αριθµός µεταξύ του x 0 και του x. Αν συµβεί το σφάλµα R(x) να τείνει στο µηδέν όταν το n τείνει στο άπειρο, τότε το πολυώνυµο Taylor ϑα τείνει να ταυτιστεί µε τη συνάρτηση f(x). Το όριο στο οποίο τείνει το πολυώνυµο Taylor λέγεται σειρά Taylor της f(x) ή ανάπτυγµα Taylor της f(x) στην περιοχή του σηµείου x 0. Ετσι, η σειρά Taylor της f(x) στο x 0 είναι f(x) = f(x 0 )+ (x x 0) 1! f (x 0 )+ (x x 0) 2 2! f (x 0 )+...+ (x x 0) n f (n) (x 0 )+.... n! Παράδειγµα : Να ϐρεθεί το ανάπτυγµα Taylor της συνάρτησης f(x) = e x, στην περιοχή του σηµείου x 0 = Ακρότατα - Σηµεία καµπής Λέµε ότι η συνάρτηση y = f(x), που είναι ορισµένη σε ένα σύνολο A, έχει τοπικό µέγιστο (αντίστοιχα τοπικό ελάχιστο) στο σηµείο x = x 0, αν για όλα τα σηµεία x (x x 0 ) µιας περιοχής του x 0 ισχύει

13 3.9. ΑΚΡΟΤΑΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ 39 f(x) f(x 0 ) (αντίστοιχα f(x) f(x 0 )). Ο αριθµός M (αντίστοιχα m) λέγεται ολικό µέγιστο (αντίστοιχα ολικό ελάχιστο) της συνάρτησης f(x) στο A, αν υπάρχει x 0 στο A, τέτοιο ώστε f(x) f(x 0 ) = M (αντίστοιχα f(x) f(x 0 ) = m), x A. Λέµε ότι η y = f(x) έχει τοπικό ακρότατο στο σηµείο x = x 0, αν έχει σ αυτό τοπικό µέγιστο ή τοπικό ελάχιστο. Θεώρηµα Αν x 0 είναι σηµείου τοπικού ακροτάτου τότε ή f (x 0 ) = 0 ή δεν υπάρχει η παράγωγος f (x 0 ). Τα σηµεία που µηδενίζουν την παράγωγο και εκείνα στα οποία δεν υπάρχει παράγωγος λέγονται στάσιµα ή κρίσιµα σηµεία της συνάρτησης. Προσοχή : εν ισχύει το αντίστροφο του ϑεωρήµατος. ηλαδή ένα σηµείο όπου f (x 0 ) = 0, δεν είναι υποχρεωτικά σηµεία τοπικού ακροτάτου. Παράδειγµα : Να δείξετε ότι το σηµείο x = 0, είναι κρίσιµο σηµείο της συνάρτησης f(x) = x 3, όχι όµως τοπικό ακρότατο. Κριτήριο 1ης παραγώγου για τοπικά ακρότατα : Ας είναι y = f(x) µία συνάρτηση ορισµένη στο [a, b] και x 0 (a, b) ένα κρίσιµο σηµείο της f. Αν υπάρχει περιοχή (x 0 ε, x 0 + ε) του σηµείου x 0 τέτοια ώστε να είναι : f (x) > 0, x (x 0 ε, x 0 ) και f (x) < 0, x (x 0, x 0 + ε), τότε στο σηµείο x = x 0 η συνάρτηση f έχει τοπικό µέγιστο f (x) < 0, x (x 0 ε, x 0 ) και f (x) > 0, x (x 0, x 0 + ε), τότε στο σηµείο x = x 0 η συνάρτηση f έχει τοπικό ελάχιστο f (x) < 0, x (x 0 ε, x 0 +ε), x x 0 ή f (x) > 0, x (x 0 ε, x 0 +ε), x x 0, τότε στο σηµείο x = x 0 η συνάρτηση f δεν έχει τοπικό ακρότατο. Κριτήριο 2ης παραγώγου για τοπικά ακρότατα : Ας είναι y = f(x) µία συνάρτηση ορισµένη στο [a, b], παραγωγίσιµη στο (a, b) και x 0 ένα κρίσιµο σηµείο της f, στο οποίο υπάρχει η δεύτερη παράγωγος της f και είναι διάφορη του µηδενός. Τότε :

14 40 ΚΕΦΑΛΑΙΟ 3. ΠΑΡΑΓΩΓΟΣ αν f (x 0 ) > 0, η f έχει τοπικό ελάχιστο στο x 0 αν f (x 0 ) < 0, η f έχει τοπικό µέγιστο στο x 0. Παράδειγµα : Να ϐρεθούν τα τοπικά ακρότατα της συνάρτησης f(x) = (x 1)(x + 2) 2. Παράδειγµα : Βρείτε τα µέγιστα και τα ελάχιστα της συνάρτησης f(x) = 4x 3 48x x, χρησιµοποιώντας το κριτήριο της δεύτερης παραγώγου. Για την καµπύλη c µιας συνάρτησης y = f(x), λέµε ότι στρέφει τα κοίλα προς τα πάνω (είναι κυρτή), αν η καµπύλη ϐρίσκεται πάνω από την εφαπτοµένη σε κάθε σηµείο της, ενώ λέµε ότι στρέφει τα κοίλα προς τα κάτω (είναι κοίλη), αν η καµπύλη ϐρίσκεται κάτω από την εφαπτοµένη σε κάθε σηµείο της. Σηµεία καµπής µιας καµπύλης ονοµάζονται τα σηµεία στα οποία η καµπύλη αλλάζει κυρτότητα (από κυρτή γίνεται κοίλη ή το αντίστροφο). Θεώρηµα Ας είναι c : y = f(x), x [a, b], µία καµπύλη και x 0 (a, b). Υποθέτουµε ότι υπάρχει η παράγωγος f (x) σε µία περιοχή (x 0 ε, x 0 + ε) και η δεύτερη παράγωγος f (x 0 ) στο σηµείο x 0. Τότε : αν f (x 0 ) > 0 η καµπύλη c στρέφει τα κοίλα προς τα πάνω στο σηµείο της P (x 0, f(x 0 )) αν f (x 0 ) < 0 η καµπύλη c στρέφει τα κοίλα προς τα κάτω στο σηµείο της P (x 0, f(x 0 )) αν το σηµείο P (x 0, f(x 0 )) είναι σηµείο καµπής της καµπύλης c, τότε είναι υποχρεωτικά f (x 0 ) = 0. Παράδειγµα : οποία η καµπύλη Να ϐρεθούν τα σηµεία καµπής και τα διαστήµατα στα c : f(x) = x 4 12x x 2 50, στρέφει τα κοίλα προς τα άνω ή προς τα κάτω.

15 3.10. ΑΣΚΗΣΕΙΣ Ασκήσεις Ασκηση 3.1. Να ϐρεθούν οι παράγωγοι των συναρτήσεων i) y = cos(3x) ii) y = e x iii) y = tan(5x) iv) y = e sin x v) y = sin 2 (x 2 + 1) vi) y = cos 2 [sin(3x)] vii) y = ln 2 (ln x) viii) y = x ix) y = x sin x Ασκηση 3.2. Να ϐρεθεί η παράγωγος της πεπλεγµένης συνάρτησης y = y(x) που ορίζεται από τη σχέση xy = arctan( x y ). Ασκηση 3.3. Βρείτε το διαφορικό της συνάρτησης y = ln(1+e 10x )+arctan(e 5x ). Υπολογίστε την τιµή του διαφορικού στο x = 0 και την αύξηση y της y προσεγγιστικά αν dx = Ασκηση 3.4. Να δειχθεί ότι η συνάρτηση f(x) = 2 x2 x 4, παίρνει ίσες τιµές στα άκρα του διαστήµατος [ 1, 1]. Στην συνέχεια να δειχθεί ότι η παράγωγός της δεν µηδενίζεται σε κανένα εσωτερικό σηµείο του διαστή- µατος αυτού και να εξηγηθεί γιατί δεν εφαρµόζεται το Θεώρηµα Rolle. Ασκηση 3.5. Να ϐρεθούν οι παράγωγοι των συναρτήσεων i) y = 3 x + 1 x 2 ii) y = x2 + 1 x x iii) y = 1 3x iv) y = ex x 2 v) y = x x vi) y = sin[cos(3x)] Ασκηση 3.6. Να αποδείξετε ότι η συνάρτηση y = arcsin x 1 x 2, ικανοποιεί τη σχέση (1 x 2 )y xy = 1.

16 42 ΚΕΦΑΛΑΙΟ 3. ΠΑΡΑΓΩΓΟΣ Ασκηση 3.7. Να ϐρείτε την παράγωγο της συνάρτησης f(x) = x 1 + x. Ασκηση 3.8. Να εξετάσετε αν η συνάρτηση f µε τύπο { x f(x) = 3 sin( 1), x 0 x 0, x = 0 είναι δύο ϕορές παραγωγίσιµη. Ασκηση 3.9. Να ϐρείτε a, b R ώστε η ευθεία y = 2x+5 να είναι εφαπτοµένη της γραφικής παράστασης C της συνάρτησης f µε f(x) = x 2 + ax + b, στο x 0 = 1. Ασκηση Βρείτε την πρώτη και τη δεύτερη παράγωγο της y ως προς x στο (1, 1), αν x 2 xy + y 2 = 3. Ασκηση Να υπολογιστεί κατά προσέγγιση η τετραγωνική ϱίζα (2.037) 2 1 (2.037) Ασκηση Να ϐρεθεί το πολυώνυµο Taylor 4ου ϐαθµού της συνάρτησης f(x) = ln x, στην περιοχή του σηµείου x 0 = 1. Ασκηση ίνεται η συνάρτηση f(x) = 1 x 2. Να ϐρεθούν α) τα τοπικά ακρότατα της συνάρτησης ϐ) τα σηµεία καµπής γ) τα ολικά ακρότατα της συνάρτησης στο [0, 3]. Ασκηση Βρέθηκε ότι η ταχύτητα µετάδοσης ενός σήµατος µέσω ενός καλωδίου είναι ανάλογη της ποσότητας ln x, όπου x (σε cm) το πάχος της µόνωσης του καλωδίου. Πόσο πρέπει να είναι το πάχος της µόνωσης έτσι ώστε να x 2 εξασφαλίσουµε τη µέγιστη ταχύτητα µετάδοσης ; Ασκηση Για τον υπολογισµό τετραγωνικών ϱιζών αριθµών από 0 µέχρι 1, χρησιµοποιείται ο προσεγγιστικός τύπος x 4 5 (x ). Ποιο είναι το µέγιστο σφάλµα του τύπου ;

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

5 Παράγωγος συνάρτησης

5 Παράγωγος συνάρτησης 5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Η ύλη της εργασίας είναι οι ενότητες 5, 6 και 7 από τον Λογισµό µιας Μεταβλητής Η άσκηση αφορά στην έννοια

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής

Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής. * Έστω µια συνάρτηση f για την οποία ισχύουν οι υποθέσεις του θεωρήµατος του Rolle στο διάστηµα [α, β]. Τότε θα υπάρχει ξ (α, β), ώστε η εφαπτοµένη της C f στο (ξ, f (ξ))

Διαβάστε περισσότερα

f (x) g(h) = 1. f(x + h) f(x) f(x)f(h) f(x) = lim f(x) (f(h) 1) = lim = lim = lim f(x)g(h) g(h) = f(x) lim = f(x) 1 = f(x)

f (x) g(h) = 1. f(x + h) f(x) f(x)f(h) f(x) = lim f(x) (f(h) 1) = lim = lim = lim f(x)g(h) g(h) = f(x) lim = f(x) 1 = f(x) Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - Λύσεις 2ης Σειράς Ασκήσεων Ασκηση 1. Για κάθε a,b και x 2, η f είναι παραγωγίσιµη.

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος». * Αν µια συνάρτηση f είναι συνεχής στο διάστηµα [α, β], παραγωγίσιµη στο διάστηµα (α, β) και f (α) = f (β), τότε υπάρχει τουλάχιστον

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 4 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Παράγωγος Συνάρτησης 4.1 Έννοια Παραγώγου Ορισμός f(x) f(x 0 ) Μια συνάρτηση f ονομάζεται παραγωγίσιμη στο x 0 Df αν υπάρχει

Διαβάστε περισσότερα

Άσκηση 1. i) ============================================================== Πρέπει αρχικά να είναι συνεχής στο x = 1: lim. lim. 2 x + x 2.

Άσκηση 1. i) ============================================================== Πρέπει αρχικά να είναι συνεχής στο x = 1: lim. lim. 2 x + x 2. http://elearn.maths.gr/, maths@maths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ 008-009: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν η συνάρτηση f είναι παραγωγίσιµη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β).. * Αν η συνάρτηση f

Διαβάστε περισσότερα

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010 Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3//00 Θέµα ( µονάδα) Θεωρούµε το σύνολο B = {x Q : x < 5}. είξτε ότι sup B = 5. Απάντηση : Για να δείξουµε ότι sup B = 5 αρκεί να δειχθεί ότι α) Το 5 είναι

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

********* Β ομάδα Κυρτότητα Σημεία καμπής********* ********* Β ομάδα Κυρτότητα Σημεία καμπής********* 5 Για την δύο φορές παραγωγίσιμη στο R συνάρτηση ισχύει: e για κάθε R. Να αποδείξετε ότι η γραφική παράσταση της δεν παρουσιάζει σημείο καμπής. Υποθέτουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b) 1 ΑΝΑΛΥΣΗ ΙΙ Μερική Παράγωγος Μερικές Παράγωγοι Ορισμός 1: a) Εστω f(x y) : U R R μία συνάρτηση δύο μεταβλητών και (a b) ένα σημείο του U. Θεωρούμε ότι μεταβάλλεται μόνο το x ένω το y παραμένει σταθερό

Διαβάστε περισσότερα

f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,

f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx, Διάλεξη 7: Παράγωγοι συναρτήσεων 1 Γενικά Πρόοδος μαθήματος Σάββατο 24/11 στις 14:00 2 Παράγωγος ως συνάρτηση Η παράγωγος της f (x) ως προς x, είναι η συνάρτηση f (x) και η οποία ισούται με f (x) = lim

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #16: Βασικά Θεωρήματα του Διαφορικού Λογισμού Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος

Διαβάστε περισσότερα

= df. f (n) (x) = dn f dx n

= df. f (n) (x) = dn f dx n Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Ο Α1. Έστω η συνάρτηση f ( x,,1. Nα αποδείξετε ότι η f είναι παραγωγίσιμη στο. v v 1 και ισχύει : x vx A2. Να διατυπώσετε και να ερμηνεύσετε γεωμετρικά το Θεώρημα Bolzano.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 18 Φεβρουαρίου 005. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

Ερωτήσεις-Απαντήσεις Θεωρίας

Ερωτήσεις-Απαντήσεις Θεωρίας 1 ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΡΟΣ Β 2 ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l.

f (x) = l R, τότε f (x 0 ) = l. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα 1. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης

ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης ΘΕΩΡΙΑ ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ. Να δώσετε τον ορισμό της συνάρτησης Συνάρτηση από το σύνολο Α στο Β λέγεται μια διαδικασία με την οποία κάθε στοιχείο x του Α, αντιστοιχίζεται

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα

Διαβάστε περισσότερα

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim. Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ uiopasdfghjklzxcvbnmqwertyui ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x A3. ΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ. εύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σηµεία καµπής ΠΑΡΑΡΤΗΜΑ 7. εύτερη πλεγµένη παραγώγιση 8.Χαρακτηρισµός

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις

ΜΑΘΗΜΑ ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις 1 ΘΕΩΡΙΑ ΜΑΘΗΜΑ 4.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις 1. Ορισµός Έστω συνεχής σε διάστηµα και παραγωγίσιµη στο εσωτερικό του. Θα λέµε ότι η στρέφει

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Θεωρούμε μια συνάρτηση f συνεχή σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ. α) Θα λέμε ότι η f είναι κυρτή ή στρέφει τα κοίλα άνω στο Δ, αν η f

Διαβάστε περισσότερα

9 εύτερη παράγωγος κι εφαρµογές

9 εύτερη παράγωγος κι εφαρµογές 9 εύτερη παράγωγος κι εφαρµογές Εστω ότι η y = f x είναι παραγωγίσιµη σε κάποιο διάστηµα το οποίο περιέχει τον x 0 και ότι η f x η οποία ορίζεται στο διάστηµα αυτό έχει µε την σειρά της παράγωγο στο x

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν ΘΕΜΑ Α Α. Θεώρημα σχολικό βιβλίο

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 6: Παράγωγοι Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ MSc PROGRAM ΑΝΑΣΚΟΠΗΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Ι Ι ΚΟΥΓΙΑΣ ΚΑΘΗΓΗΤΗΣ ΑΝΤΙΡΡΙΟ 0-0 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΚΕΦΑΛΑΙΟ ο ΣΥΝΑΡΤΗΣΕΙΣ Το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α Α Σ Κ Η Σ Ε Ι Σ 1. Να υπολογιστεί το ολοκλήρωμα: Ι ΑΠ. 36 2. Να δείξετε ότι: i) Για κάθε x (0, + ), 2x e x + e x -1 > 0 ii) Θεωρώ την συνάρτηση f(x) = 2x e x + e x - 1 iii. Αρκεί

Διαβάστε περισσότερα

Λύσεις του διαγωνίσματος στις παραγώγους

Λύσεις του διαγωνίσματος στις παραγώγους Λύσεις του διαγωνίσματος στις παραγώγους Θέμα ο Α Έστω ότι f ), για κάθε α, ), β) Επειδή η f είναι συνεχής στο θα είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα α, ] και [, β) Επομένως, για ισχύει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 9 Φεβρουαρίου 5. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου 5.

Διαβάστε περισσότερα

Κοιλότητα. Διαφορικός Λογισμός μιας μεταβλητής Ι

Κοιλότητα. Διαφορικός Λογισμός μιας μεταβλητής Ι Κοιλότητα Διαφορικός Λογισμός μιας μεταβλητής Ι Κυρτή & Κοίλη συνάρτηση Ορισμός: Έστω y=f(x): f (x), λέμε ότι : η f(x) στρέφει (1) τα κοίλα άνω στο (α, β) ανοικτό αν y = f (x) (γνησίως) αύξουσα στο (α,

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 Βιομαθηματικά BIO-156 Παραγώγιση Ντίνα Λύκα Εαρινό Εξάμηνο, 213 lika@biology.uoc.gr Μια συνάρτηση είναι παραγωγίσιμη στο αν και μόνο αν το όριο lim h + h h υπάρχει. Αν το όριο υπάρχει θα το ονομάζουμε

Διαβάστε περισσότερα

x R, να δείξετε ότι: i)

x R, να δείξετε ότι: i) ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Έστω μια συνάρτηση f παραγωγίσιμη στο R για την οποία ισχύουν: f ( ), f ( ) για κάθε R και f ( ) f ( ) α) Να βρείτε τον τύπο της f για κάθε R g( ) β) Αν g είναι

Διαβάστε περισσότερα

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών Σπουδών Οικονομίας -Πληροφορικής Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις Επιμέλεια: Μπάμπης Στεργίου / Παπαμικρούλης Δημήτρης (αποκλειστικά

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ 1. Αν f συνεχής στο [α, β] είναι f ( ) d 0 f ( ) 0 2. Αν f συνεχής και γν. αύξουσα στο [α, β] ισχύει ότι: f ( ) d 0. 3. Αν f ( ) d g( ) d, ό f ( ) g( ) ά [, ]. 4. Το σύνολο τιμών

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων 5. Η συνάρτηση είναι συνεχής στο R. 6. Η συνάρτηση sin είναι συνεχής στο R. 7. Η συνάρτηση cos είναι συνεχής στο R. 8. Η συνάρτηση tan είναι συνεχής σε κάθε R µε k π + π/2, k Z. 9. Η συνάρτηση cotan είναι

Διαβάστε περισσότερα

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ ΕΚΔΣΕΙΣ ΚΕΛΑΦΑ 19 Μιγαδικός αριθμός λέγεται η έκφραση α + i, με α, ΙR. Φανταστικός αριθμός λέγεται η έκφραση i, με ΙR. Αν z = α + i, α, ΙR, το α λέγεται πραγματικό μέρος του z. Αν z = α + i, α, ΙR, το

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:. Να γνωρίζει τον ορισμό της παραγώγου συνάρτησης σε ένα σημείο και να τον ερμηνεύει ως ρυθμό μεταβολής.. Να γνωρίζει τις έννοιες

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της f στο Δ, να αποδείξετε ότι:

ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της f στο Δ, να αποδείξετε ότι: ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΟΝΟΜΑ ΤΜΗΜΑ Διαγώνισμα Προσομοίωσης Μαθηματικών Προσανατολισμού 11/5/19 Γ Λυκείου ΕΚΠΑΙΔΕΥΤΗΡΙΟ ΔΙΑΡΚΕΙΑ ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι

Διαβάστε περισσότερα

3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li

3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να γνωρίζει: Τον ορισµό της συνάρτησης και τον τρόπο εύρεσης του πεδίου ορισµού της. Τις πράξεις µεταξύ συναρτήσεων, τις γραφικές παραστάσεις

Διαβάστε περισσότερα

α β. M x f x. f x x x = = =.

α β. M x f x. f x x x = = =. Κυρτές συναρτήσεις σηµεία καµπής, Έστω συνάρτηση f συνεχής στο [ α β ] και παραγωγίσιµη στο ( α, β ) (α) Αν η f είναι γνησίως αύξουσα στο ( α, β ), τότε η fείναι κυρτή ή στρέφει τα κοίλα πάνω στο [ α,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Διαφορικός Λογισμός Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 1 Σκοποί ενότητας 4

Διαβάστε περισσότερα

ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116

ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116 ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116 1 ΕΙΣΑΓΩΓΙΚΟ-ΠΑΡΑΓΩΓΟΙ Ορισμός παραγώγου συνάρτησης σε σημείο Μια συνάρτηση f (X) λέμε ότι είναι παραγωγίσιμη σ ένα σημείο του

Διαβάστε περισσότερα

Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Θέματα τύπου Σωστό-Λάθος στις Πανελλαδικές Εξετάσεις από το 2000 έως 204 χωρισμένα σε Κεφάλαια Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 = 2. Για κάθε μιγαδικό αριθμό z ισχύει: α.

Διαβάστε περισσότερα

ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ

ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ 3.1. Να αποδείξετε ότι η συνάρτηση: f x = { x e 1/ x,αν x 0 x ημx,αν x 0} είναι παραγωγίσιμη στο 0. 3.2. Δίνεται η συνάρτηση f x = { x 2 αx 1,αν x 1 2x 2, αν x 1 } η οποία

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτό το κεφάλαιο ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x Γ' ΛΥΚΕΙΟΥ-ΤΕΧΝΟΛΟΓΙΚΩΝ/ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΩΡΙΑ. Πότε δύο συναρτήσεις και g είναι ίσες;. Πότε μία συνάρτηση με πεδίο ορισμού Α λέγεται " " ; 3. Πότε μία συνάρτηση λέγεται συνεχής στο σημείο o του πεδίου

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο 11 Μαΐου 19 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Έστω f μια

Διαβάστε περισσότερα

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Μεθοδική Επανα λήψή Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 Βόλος Τηλ. 4 598 Επιμέλεια Κων/νος Παπασταματίου Περιεχόμενα Συνοπτική Θεωρία με Ερωτήσεις Απαντήσεις...

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.5.1: Μελέτη Συνάρτησης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.5.1: Μελέτη

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y.

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y. ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (/7/ 203) ΘΕΜΑ. (α) Δίνεται η συνάρτηση f : R 2 R με f(x, y) = xy x + y, αν (x, y) (0, 0) και f(0, 0) = 0. Δείξτε ότι η f είναι συνεχής στο (0, 0). (β) Εξετάστε αν

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά

Διαβάστε περισσότερα

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4) Αµυραδάκη, Νίκαια (-493576) ΘΕΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 3 Α. Πότε µια συνάρτηση f λέγεται παραγωγίσιµη στο ο ; Β. Τι σηµαίνει γεωµετρικά το θεώρηµα Rolle ; Γ. Να αποδείξετε ότι ( ) a = a ln a (Μονάδες 5) (Μονάδες

Διαβάστε περισσότερα

την αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του

την αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του ΑΣΚΗΣΗ 47 Δίνεται η συνάρτηση f(x) = και οι ευθείες (ε ): y = x και (ε ): y = x +. Να αποδείξετε ότι:. Η (ε ) είναι ασύμπτωτη της C f στο, ενώ η (ε ) είναι ασύμπτωτη της C f στο +. Για κάθε x R ισχύει

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 Ε_3.Μλ3ΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Παύλος Βασιλείου Σε όλους αυτούς που παλεύουν για έναν καλύτερο κόσμο ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ

Διαβάστε περισσότερα

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: Φεβρουαρίου Ημερομηνία παράδοσης της Εργασίας: 6 Μαρτίου Πριν από την λύση κάθε άσκησης καλό είναι να

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ., τότε η f είναι πάντοτε συνεχής στο x., τότε η f είναι συνεχής στο x.

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ., τότε η f είναι πάντοτε συνεχής στο x., τότε η f είναι συνεχής στο x. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη σωστό ή λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης: 3 ώρες

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Συναρτήσεις, Ορια, Συνέχεια ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των συναρτήσεων,

Διαβάστε περισσότερα

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 49 ΟΡΙΣΜΟΣ 6 4 Πότε μια συνάρτηση λέγεται κυρτή και πότε κοίλη σε ένα διάστημα Δ ; Απάντηση : Έστω μία συνάρτηση σ υ ν ε χ ή ς σ ένα

Διαβάστε περισσότερα

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2 1994 ΘΕΜΑΤΑ 1. ίνεται η συνάρτηση f()=,. Α) Αν ε είναι η εφαπτοµένη της γραφικής παράστασης C της συνάρτησης f στο σηµείο Μ(α, α ), α >, να βρείτε το εµβαδόν του χωρίου που περικλείεται από τη C, την ευθεία

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1, ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Αποδεικνύουμε το θεώρημα στην περίπτωση που

Διαβάστε περισσότερα

40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ)

40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ) Άσκηση η 4 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ) Έστω f, g είναι συνεχείς συναρτήσεις στο διάστημα, να δείξετε: Α. (Ανισότητα των Cauchy-Schwarz) Β.( Ανισότητα του Minkowski)

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα