Blowup of regular solutions for radial relativistic Euler equations with damping

Σχετικά έγγραφα

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

2 SFI

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

THE BLOWUP OF SOLUTIONS FOR 3-D AXISYMMETRIC COMPRESSIBLE EULER EQUATIONS

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

High order interpolation function for surface contact problem

Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

Ó³ Ÿ , º 7(205) Ä1540 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ŠÊ Íμ,.. Ê ±μ,.. ² μ 1. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Ανώτερα Μαθηματικά ΙI

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

Ó³ Ÿ , º 4(181).. 501Ä510

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä1350 ˆ ˆ Š -3

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

Ó³ Ÿ , º 1(199).. 66Ä79 .. Ê 1. Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ±

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

Prey-Taxis Holling-Tanner

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä É ³μ μ μé ³ ±μ²² μ Í LHCb ˆ É ÉÊÉ Ë ± Ò μ± Ì Ô Í μ ²Ó μ μ ² μ É ²Ó ±μ μ Í É ŠÊ Î Éμ ± É ÉÊÉ, μé μ, μ Ö

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

Ó³ Ÿ , º 3(180).. 313Ä320

Εφαρμοσμένα Μαθηματικά

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

ˆ ˆ Œ Ÿ Š Œ ƒˆ Šˆ ˆ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

v w = v = pr w v = v cos(v,w) = v w

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

ƒšˆœˆ Ÿ Œˆ ˆ ˆ ˆ Šˆ ƒˆÿ.. Ê μ Î ±μ

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

Ανώτερα Μαθηματικά ΙI

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

Ó³ Ÿ , º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ .. ± Î,. ˆ. ³. ƒ ˆ, Œμ ±

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Ανώτερα Μαθηματικά ΙI

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

Ó³ Ÿ , º 7(170) Ä1241 Š ˆ ŒˆŠˆ. ˆ.. ƒ Ê 1. ˆ É ÉÊÉ ³ É ³ É ± ³... μ μ² μ μ ± μ Ê É Ò Ê É É, μ μ ±, μ Ö

Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±

ƒ ˆŒ Œ ƒ ƒ ˆ ƒ ˆŠ ˆ -144

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

P ˆ.. Ö±μ 1,.. ²μ 1,..ˆ μ 1,.. μ²μ μ 1,2,.. μ ² μ 3,.. É ±μ 1,.. 4. Š ƒ ˆ ˆ Š Š ˆ Š ˆ Šˆ. ² μ Ê ² Ó³ Ÿ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ƒ ² ± Ñ Ò É ÉÊÉ Ô É Î ± Ì Ö ÒÌ ² μ Å μ Ò Í μ ²Ó μ ± ³ ʱ ²μ Ê, Œ ±

DtN ² *1) May, 2016 MATHEMATICA NUMERICA SINICA Vol.38, No.2. ˱ Helmholtz µå ű Dirichlet-to-Neumann. u = g, Γ, (1.1) r iku = o(r 1 2 ), r,

H Witten- ¾. 1956, Payne-póyla Weinberger [15] Ó ĐË È : (1) λ k+1 λ r 4. λ r. (2) n k. λ k , Yang [19] ÅĐ «Yang ¾. (λ k+1 λ r )λ r 1+ 4 ) 1

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

Inflation and Reheating in Spontaneously Generated Gravity

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

Transcript:

8 9 Ö 3 3 Sept. 8 Communication on Applied Mathematics and Computation Vol.3 No.3 DOI.3969/j.issn.6-633.8.3.7 Õ Îµ Ï̺ Eule»²Ö µ ÝÙÚ ÛÞ ØßÜ ( Ñ É ÉÕ Ñ 444 Î ÇÄ Eule ± ÆÃ ¼ Û Â Þ Û ¾ ³ ÇÄ Eule ± Å Å Þ Å Å ¼ 35A; 35B44; 35B65 ÒǼ O75.7 ÈÊ Ð A È 6-633(83-68- Blowup of egula solutions fo adial elativistic Eule equations with damping LIU Jianli, LUAN Liping, FANG Yaoli (College of Sciences, Shanghai Univesity, Shanghai 444, China Abstact In this pape, we mainly conside the blowup of the egula solutions of the adial elativistic Eule equations with damping. Unde the appopiate assumptions on the initial data, we obtain the singulaity fomation fo the egula solutions to the Cauchy poblem of the adial elativistic Eule equations with damping. Key wods adial elativistic Eule equations; damping; egula solutions; blowup Mathematics Subject Classification 35A; 35B44; 35B65 Chinese Libay Classification O75.7 Ó Ú¾ È Ò È ĐÔ È Ó À Ù Ã ÄÝÐ À ³ Ä ¾ À Ä À È Eule Ï Ù Ì Ã Á ÆÃ ÆÃ Eule Ï Û ÚÉÆ ÆÃÀ È Í Õ ¾ ß Smolle Õ Temple [] Í ÆÃ Eule Ï Ì Ð Þ Chen Õ Zhou [] Í Ê Á ÆÃ Eule Ð Ð Ä Đ Riemann ¹ [3] Í Ê Ä½ÂÀ 7-4-4; ¹ÂÀ 7-5-9 Í Ø²ÊÞ Ï (4367; «Ô «Þ Ï (338 Æ Ï ² E-mail: jlliu@shu.edu.cn

3 ÇÄ Eule ± Þ 69 Đß ÆÃ Eule Ï ÚÆ Úµ Ñ Å ¹ [4-6] Í ÆÃ Eule ½ÚÅÕ½Æ ºÁÅ ÆÃ Eule ØÅ ÆÃÀ Å» È Pan Õ Smolle [7] Æß ÆÃ µ» Ä Í Í µ ¾Õµ Ñ Å Guo Õ Tahvilda-Zadeh [8] Í Ú¾ Úµ ÓÆ ÆÃ Eule Ú Geng [9] Í ³ ÆÃ Eule Ú «Æ ½ÚÅÜ»Ó ¹ Æ ÆÃ Eule ÄÍ Ú Á µ Ï Ý Ú ½ÉÍ Û ÆÃ Eule ( n ( n t + v /c v /c v + nv v /c =, ( p/c +ρ ( p/c t v /c v +ρ + v /c v + p+ p/c +ρ v /c v = (p v /c 4 (p/c +ρ ( (v /c v, dn nc = dρ p + ρc, t = : ρ(, = ρ (, v(, = v (, n, ρ, p Å ÊÄ «ÊÄÕË v = (v, v, v 3 Å ÀÀ Ä c µ p Å γ Á p = ρ γ, γ >, γ µ Ù ½É³ Ë Ã ( µ [, R], ÐÅ H = { A= max A =R 3 +, A = R + R 5γ+3 8(γ v d > A, (, A 3 = R +, A 4 = R + R 45 8 { 8 8(γ < R < min, 45 5γ + 3, 3 A, A (5γ + 3 + 45A 3 + 45 A 3 + 56A 3 6, A 4 + A 4 + 6A 4(γ 4(γ ÝÆ ¾ v ÐÅ v c R (γ }, A (5γ + 3 + 56A (γ, 6(γ } Ý (ρ, v ÅÜÚ [, T Ô Á ³ ŵ { A R 3 T =max H (A R 3, 8A R 5 (γ H [8R (γ (A R 3 A R 3 (5γ + 3], 8A 3 R 5 H [8R (A 3 R 3 45A 3 R 3 ], A 4 R 5 (γ H [R (γ (A 4 R 3 A 4 R 3 ] }.

6 3 Ô µã¹² Å ½É Ë Đ Eule Ï Í ¹ [-] Í Eule Ï Úµ ÊÄ ÑÂ Í ÎÀÑ ÜÚ ¹ [3-4] ÐÜÎÒ ÏÌ Í Á Ú Ë Ã Å«µ Ã Í Ú Æ½ÉÅ ( Ý Á Đ Å Û (ω, v = (p γ γ, v = (ρ γ, v C, p (ρ < c, Ý (ρ, v Ý Ô 3 Û (ρ, v Ý Ý (ρ, v Í (ρ, v ( Cauchy» Ý ÝÚ [, T (ρ, v ܹ t = (t;» Ë «Á À ³ Ûµ d dt (t; = v(t, (t;, (; =. B = { R} B(t = {(t; B }. ( Ï d ( dt n + v /c n ( v v /c + =, (3 d dt Å «d dt = t + v. n, Å (3 Đ Äß n v /c = n v /c exp ( t ( v + (t, (t; dt. (4 ρ Õ n Å Û ρ = n ( + e c, (5 e ¹ B(t ρ(t,, Ý n(t,. ËÅ ÍÚÀ Ë B(t Ð À Ä v(t, (t; =. µï Í Á q = p/c + ρ, Ý ( ß Ï ³ µ dρ dn = q n. (6

3 ÇÄ Eule ± Þ 6 ( Ï ³Ûµ qv ρ t + vρ = c ( v /c v q t v /c v qv. (7 Å ( à ØÏ ³ Áµ ( p v /c 4 q ( v /c v + ( p v /c 4 q ( v /c v t + ( p /c qv ( v /c v qv p /c ( v /c + p ρ =, (8 Ý v + v t + p /c p v /c 4vv + ( v /c p q( p v /c 4 ρ = ( v /c v p /c ( p v /c 4. (9 Ú B(t Ð ρ(t, (t;, Ý p = γρ γ =. ÖÉ Û ½ÉÅ Á Ú (9 Å ÅÚ B ÐÔ ¾Ò µ µ ÁÁ Á Ý ω = p γ γ = ρ γ, γ >, ( Ý ρ = ω =. Ý (9 ³Ûµ p q ρ = Å ( Ú B(t Ð Đ ß γργ ρ γ /c + ρ ρ = γ /(γ ω ω γ /c + ω =, v + v t + vv =, B(t, ( v(t, = v(, e t. ( (t = + v(, t =, B, ³ (t, B(t, (t R, Ý > R ρ(t, =, v(t, =, ¹ ρ(t, R =, v(t, R =, (3

6 3 Ú Æ ½É ÐË Á Ñ ¹ Ã Í (4 Õ (5 ³ n(t,, Ý ρ(t,, ¹ (9 ³ Áµ v + v t + p /c p v /c 4 vv + ( v /c p q( p v /c 4 ρ, (4 v + v t + vv p /c ( v /c p v /c 4 vv + ( v /c p q( p v /c 4 ρ. (5 Å (5 Æ Äß ³ + vd+ v t d+ dv + 4 p ( p v /c 4 d v c (v /c p q(p v /c 4 dρ. (6 Ë½ÉÆ (6 Õ ß ÌÕ (3, p ( 4 p v /c 4 d v c = [ p ( v /c ] R 4 p v /c 4 p ( v /c 4 p v /c 4 d 4 = p ( v /c 4 p v /c 4 d ( v 4 p = ρ γ, Ûµ ( v /c γρ γ γc (ρ γ /c + ρ( p v /c 4 dρ = γ Ï (7 Ï (8 4 = γc γ γc γ d ( v p c p v /c 4 c d p p v /c 4. (7 p ( v /c p v d, /c4 ( v /c p v /c 4 d ln( + ργ /c ( v /c ln( + ρ γ /c p v /c 4 d γc ( v /c ln( + ρ γ /c γ p v /c 4 d. ln( + ρ γ /c d ( v /c p v /c 4. (8

3 ÇÄ Eule ± Þ 63 (6 ³ vd + γc γ v t d + dv 4 d ( v p c p v /c 4 ln( + ρ γ /c d ( v /c p v. (9 /c4 ˽ÉÅ Ñ Ã ( Cauchy» Ý Ñ Á Ý (9 4 d ( v p c p v /c 4, γc γ ln( + ρ γ /c d ( v /c p v, /c4 Ý (9 ³ Û vd + v t d 4 v d. ( Á H = H(t = Cauchy-Schwatz ³ vd = ( vd R v d ( vd. ( d, ( Ö (, Á ( ³ vd + d dt Ñ Æ Ë ³ Ï 4H R H + dt vd 4 v d. (3 ẋ = a x + a x, v d H R 3. (4 H R 3. (5 a >, a Û ÊºÏ a x + a x = ÇÚ ẋ <, Ñ ẋ >. (5 dt H H. (6 R3

64 3 ½É³ ÊºÏ H R 3 H = µ H =, H = R 3, R 3 > µµ H = v d > R 3, ½É R < 3 A ³ ¹ H(t ÅÚ T = Á Ý (9 4 γc γ = γ γ dt H(t dt >, H > A = R 3 +. (6, H R 3 H A A R 3 A R 3 H, (7 A R 3 H A R 3 H (A R 3 t, (8 A R 3 Ý H (A R 3 d ( v p c p v /c 4 = 4 ln( + ρ γ /c d ( v /c p v /c 4 ln( + ρ γ /c ( v (p + (p /c 4 (v c ( p v /c 4 d, ( v /c v /c (p + ( + p v /c 4 + p /c ( v /c (v ( p v /c 4 d, Ý (9 ³Û vd + v t d + dv ( v /c ( p v /c 4 [ 4 + γ γ ln( + ργ /c v c ] (p d ( v /c [ (p ( ( p v /c 4 c 4 v c γ γ ln( + ργ /c ( p v ] c 4 p c (v d. (9 µ (9 Õ Ð Û Ï [5] ln( + ρ γ /c ρ γ /c = p γc, (3 f(y = y p = kc 5 f(y, q 4 + q dq, ρ = kc 3 g(y, y g(y = 3 q + q dq,

3 ÇÄ Eule ± Þ 65 k Ý ± Ý p = c y 3( + y, p = 9kcy ( + y 5 >. p c y lim ρ p = lim y 3( + y = c 3, (3 p c 3, ( p v /c 4 ( /3 = 9 4. (3 Ö (3 (3, (9 Û ( v /c [ ( p v /c 4 4 + γ ] γ ln( + ργ /c v c (p d 9 4 = ( v /c [ ( p v /c 4 4 + γ ] γ ln( + ργ /c v c (p d (p d v 3(3γ + 6(γ ( c 4 + 3(γ v (p 3(3γ + c d 6(γ v d. (33 Á v c ( v /c v /c, ÏË (ρ, v ( Cauchy» Ý ¹ (p (p = γωω c. ¼ (9 Û (v /c [ (p ( (p v /c 4 c 4 v c 9 4 5 γ 4(γ v c 9 γ γ 3γ ½É (v c ( 3 vv d γ γ ln( + ργ /c ( p v c 4 p c ] (v d v d, (34 vd + = v v c. Å (33 Õ (34 Ü (9, v t d 4 v d 5γ + 3 + 3(γ v d, (35 (3 Õ (36, ³ vd + vd + d dt v t d 4 ( R ( vd R 5γ + 3 8(γ v d. (36 5γ + 3 H 8(γ R, (37

66 3 Ý H = v R d > R 5γ+3 8(γ ( dt 5γ + 3 H H. (38 R 8(γ R, Å«³ dt >, Ñ (7 ¼ ³ ( dt 5γ + 3 H R 8(γ R H, (39 A R < A(5γ+3+ A (5γ+3 +56A (γ 6(γ ³ H(t ¹ ÅÚ T = 4 Á 3 Ý (9 Ý (9 ³Û 8H A R 5 (γ 8A R 5 (γ H [8R (γ (A R 3 A R 3 (5γ + 3]t, (4 d ( v p c p v /c 4, γc γ vd + (3 (3 8A R 5 (γ Ý H [8R (γ(a R 3 A R 3 (5γ+3] v t d + vd + dv 4 v t d 4 ( R 45 8 ln( + ρ γ /c d ( v /c p v, /c4 d ( v p c p v. (4 /c4 v d. (4 Á ( ³ ( dt R 45 H H. (43 8 R Ý H = v d > R, Å«, ³ R 45 dt >. Ñ (7 Õ (39 ¼ ³ 8 ( dt R 45 H 8 R H, (44 A 3 R < 45A3+ 45 A 3 +56A3 6 ³ ¹ ÅÚ T = 4 H(t Á 4 Ý (9 8H A 3 R 5 8A 3 R 5 H [8R (A 3 R 3 45A 3 R 3 ]t, (45 8A 3R 5 Ý H [8R (A 3R 3 45A 3R 3 ] d ( v p c p v /c 4, γc γ ln( + ρ γ /c d ( v /c p v, /c4

3 ÇÄ Eule ± Þ 67 Ý (9 ³Ûµ vd + v t d + (3 (3 Á ( ³ ݵ H = vd + v R d > dv γc γ v t d 4 ln( + ρ γ /c d ( v /c p v. (46 /c4 ( R (γ ( dt R H (γ R H. R (γ, Å«, ³ dt >, Ý ( dt R H (γ R H, A 4 v d. (47 R < A4+ A 4 +6A4(γ 4(γ ³ H(t ¹ ÅÚ T = Ð Ú H A 4 R 5 (γ A 4 R 5 (γ H [R (γ (A 4 R 3 A 4 R 3 ]t, (48 A 4R 5 (γ Ý H [R (γ(a 4R 3 A 4R 3 ] { 8 8(γ < R < min, 45 5γ + 3, 3 A, A (5γ + 3 + 45A 3 + 45 A 3 + 56A 3 6, A 4 + A 4 + 6A 4(γ 4(γ A (5γ + 3 + 56A (γ, 6(γ }, Ð v c ( Cauchy» Ý Ú { A R 3 T = max H (A R 3, 8A R 5 (γ H [8R (γ (A R 3 A R 3 (5γ + 3], Ý ± ÉË 8A 3 R 5 H [8R (A 3 R 3 45A 3 R 3 ], A 4 R 5 (γ H [R (γ (A 4 R 3 A 4 R 3 ] [] Smolle J, Temple B. Global solutions of the elativistic Eule equations [J]. Communications in Mathematical Physics, 993, 56(: 67-99. [] Chen Y, Zhou Y. Simple waves of the two dimensional compessible full Eule equations [J]. Acta Math Sci Se B Engl Ed, 5, 35(4: 855-875. }

68 3 [3] Gemaud Piee A, Sun Y. Numeical study of singulaity fomation in elativistic Eule flows [J]. Communications in Computational Physics, 4, 6(: 348-364. [4] Chen G Q, Li Y C. Relativistic Eule equations fo isentopic fluids: stability of Riemann solutions with lage oscillation [J]. Z Angew Math Phys, 4, 55(6: 93-96. [5] Li Y C, Feng D M, Wang Z J. Global entopy solutions to the elativistic Eule equations fo a class of lage initial data [J]. Z Angew Math Phys, 5, 56(: 39-53. [6] Chen G Q, Li Y C. Stability of Riemann solutions with lage oscillation fo the elativistic Eule equations [J]. Jounal of Diffeential Equations, 4, (: 33-353. [7] Pan R, Smolle J. Blowup of smooth solutions fo elativistic Eule equations [J]. Communications in Mathematical Physics, 6, 6(3: 79-755. [8] Guo Y, Tahvilda-Zadeh A S. Fomation of singulaities in elativistic fluid dynamics and in spheically symmetic plasma dynamics [J]. Nonlinea Patial Diffeential Equations, 999, 38: 5-6. [9] Geng Y C. Singulaity fomation fo elativistic Eule and Eule-Poisson equations with epulsive foce [J]. Communications on Pue and Applied Analysis, 5, 4(: 549-564. [] Liu T P. Compessible flow with damping and vacuum [J]. Japan Jounal of Industial and Applied Mathematics, 996, 3(: 5-3. [] Liu T P, Yang T. Compessible Eule equations with vacuum [J]. Jounal of Diffeential Equations, 997, 4(: 3-37. [] Zhu X S, Wang W K. The egula solutions of the isentopic Eule equations with degeneate linea damping [J]. Chinese Annals of Mathematics, Seies B, 5, 6(4: 583-598. [3] Ç Ð ¼ Ì º ± ÆÇ Æ [J]. È ÉÉ ( ±É, 4, 53(6: 78-784. [4] Zhu X S. Blowup of the solutions fo the IBVP of the isentopic Eule equations with damping [J]. Jounal of Mathematical Analysis and Applications, 5, 43(: 75-74. [5] Weinbeg S. Gavitation and Cosmology: Applications of the Geneal Theoy of Relativity [M]. New Yok: Wiley, 97.