8 9 Ö 3 3 Sept. 8 Communication on Applied Mathematics and Computation Vol.3 No.3 DOI.3969/j.issn.6-633.8.3.7 Õ Îµ Ï̺ Eule»²Ö µ ÝÙÚ ÛÞ ØßÜ ( Ñ É ÉÕ Ñ 444 Î ÇÄ Eule ± ÆÃ ¼ Û Â Þ Û ¾ ³ ÇÄ Eule ± Å Å Þ Å Å ¼ 35A; 35B44; 35B65 ÒǼ O75.7 ÈÊ Ð A È 6-633(83-68- Blowup of egula solutions fo adial elativistic Eule equations with damping LIU Jianli, LUAN Liping, FANG Yaoli (College of Sciences, Shanghai Univesity, Shanghai 444, China Abstact In this pape, we mainly conside the blowup of the egula solutions of the adial elativistic Eule equations with damping. Unde the appopiate assumptions on the initial data, we obtain the singulaity fomation fo the egula solutions to the Cauchy poblem of the adial elativistic Eule equations with damping. Key wods adial elativistic Eule equations; damping; egula solutions; blowup Mathematics Subject Classification 35A; 35B44; 35B65 Chinese Libay Classification O75.7 Ó Ú¾ È Ò È ĐÔ È Ó À Ù Ã ÄÝÐ À ³ Ä ¾ À Ä À È Eule Ï Ù Ì Ã Á ÆÃ ÆÃ Eule Ï Û ÚÉÆ ÆÃÀ È Í Õ ¾ ß Smolle Õ Temple [] Í ÆÃ Eule Ï Ì Ð Þ Chen Õ Zhou [] Í Ê Á ÆÃ Eule Ð Ð Ä Đ Riemann ¹ [3] Í Ê Ä½ÂÀ 7-4-4; ¹ÂÀ 7-5-9 Í Ø²ÊÞ Ï (4367; «Ô «Þ Ï (338 Æ Ï ² E-mail: jlliu@shu.edu.cn
3 ÇÄ Eule ± Þ 69 Đß ÆÃ Eule Ï ÚÆ Úµ Ñ Å ¹ [4-6] Í ÆÃ Eule ½ÚÅÕ½Æ ºÁÅ ÆÃ Eule ØÅ ÆÃÀ Å» È Pan Õ Smolle [7] Æß ÆÃ µ» Ä Í Í µ ¾Õµ Ñ Å Guo Õ Tahvilda-Zadeh [8] Í Ú¾ Úµ ÓÆ ÆÃ Eule Ú Geng [9] Í ³ ÆÃ Eule Ú «Æ ½ÚÅÜ»Ó ¹ Æ ÆÃ Eule ÄÍ Ú Á µ Ï Ý Ú ½ÉÍ Û ÆÃ Eule ( n ( n t + v /c v /c v + nv v /c =, ( p/c +ρ ( p/c t v /c v +ρ + v /c v + p+ p/c +ρ v /c v = (p v /c 4 (p/c +ρ ( (v /c v, dn nc = dρ p + ρc, t = : ρ(, = ρ (, v(, = v (, n, ρ, p Å ÊÄ «ÊÄÕË v = (v, v, v 3 Å ÀÀ Ä c µ p Å γ Á p = ρ γ, γ >, γ µ Ù ½É³ Ë Ã ( µ [, R], ÐÅ H = { A= max A =R 3 +, A = R + R 5γ+3 8(γ v d > A, (, A 3 = R +, A 4 = R + R 45 8 { 8 8(γ < R < min, 45 5γ + 3, 3 A, A (5γ + 3 + 45A 3 + 45 A 3 + 56A 3 6, A 4 + A 4 + 6A 4(γ 4(γ ÝÆ ¾ v ÐÅ v c R (γ }, A (5γ + 3 + 56A (γ, 6(γ } Ý (ρ, v ÅÜÚ [, T Ô Á ³ ŵ { A R 3 T =max H (A R 3, 8A R 5 (γ H [8R (γ (A R 3 A R 3 (5γ + 3], 8A 3 R 5 H [8R (A 3 R 3 45A 3 R 3 ], A 4 R 5 (γ H [R (γ (A 4 R 3 A 4 R 3 ] }.
6 3 Ô µã¹² Å ½É Ë Đ Eule Ï Í ¹ [-] Í Eule Ï Úµ ÊÄ ÑÂ Í ÎÀÑ ÜÚ ¹ [3-4] ÐÜÎÒ ÏÌ Í Á Ú Ë Ã Å«µ Ã Í Ú Æ½ÉÅ ( Ý Á Đ Å Û (ω, v = (p γ γ, v = (ρ γ, v C, p (ρ < c, Ý (ρ, v Ý Ô 3 Û (ρ, v Ý Ý (ρ, v Í (ρ, v ( Cauchy» Ý ÝÚ [, T (ρ, v ܹ t = (t;» Ë «Á À ³ Ûµ d dt (t; = v(t, (t;, (; =. B = { R} B(t = {(t; B }. ( Ï d ( dt n + v /c n ( v v /c + =, (3 d dt Å «d dt = t + v. n, Å (3 Đ Äß n v /c = n v /c exp ( t ( v + (t, (t; dt. (4 ρ Õ n Å Û ρ = n ( + e c, (5 e ¹ B(t ρ(t,, Ý n(t,. ËÅ ÍÚÀ Ë B(t Ð À Ä v(t, (t; =. µï Í Á q = p/c + ρ, Ý ( ß Ï ³ µ dρ dn = q n. (6
3 ÇÄ Eule ± Þ 6 ( Ï ³Ûµ qv ρ t + vρ = c ( v /c v q t v /c v qv. (7 Å ( à ØÏ ³ Áµ ( p v /c 4 q ( v /c v + ( p v /c 4 q ( v /c v t + ( p /c qv ( v /c v qv p /c ( v /c + p ρ =, (8 Ý v + v t + p /c p v /c 4vv + ( v /c p q( p v /c 4 ρ = ( v /c v p /c ( p v /c 4. (9 Ú B(t Ð ρ(t, (t;, Ý p = γρ γ =. ÖÉ Û ½ÉÅ Á Ú (9 Å ÅÚ B ÐÔ ¾Ò µ µ ÁÁ Á Ý ω = p γ γ = ρ γ, γ >, ( Ý ρ = ω =. Ý (9 ³Ûµ p q ρ = Å ( Ú B(t Ð Đ ß γργ ρ γ /c + ρ ρ = γ /(γ ω ω γ /c + ω =, v + v t + vv =, B(t, ( v(t, = v(, e t. ( (t = + v(, t =, B, ³ (t, B(t, (t R, Ý > R ρ(t, =, v(t, =, ¹ ρ(t, R =, v(t, R =, (3
6 3 Ú Æ ½É ÐË Á Ñ ¹ Ã Í (4 Õ (5 ³ n(t,, Ý ρ(t,, ¹ (9 ³ Áµ v + v t + p /c p v /c 4 vv + ( v /c p q( p v /c 4 ρ, (4 v + v t + vv p /c ( v /c p v /c 4 vv + ( v /c p q( p v /c 4 ρ. (5 Å (5 Æ Äß ³ + vd+ v t d+ dv + 4 p ( p v /c 4 d v c (v /c p q(p v /c 4 dρ. (6 Ë½ÉÆ (6 Õ ß ÌÕ (3, p ( 4 p v /c 4 d v c = [ p ( v /c ] R 4 p v /c 4 p ( v /c 4 p v /c 4 d 4 = p ( v /c 4 p v /c 4 d ( v 4 p = ρ γ, Ûµ ( v /c γρ γ γc (ρ γ /c + ρ( p v /c 4 dρ = γ Ï (7 Ï (8 4 = γc γ γc γ d ( v p c p v /c 4 c d p p v /c 4. (7 p ( v /c p v d, /c4 ( v /c p v /c 4 d ln( + ργ /c ( v /c ln( + ρ γ /c p v /c 4 d γc ( v /c ln( + ρ γ /c γ p v /c 4 d. ln( + ρ γ /c d ( v /c p v /c 4. (8
3 ÇÄ Eule ± Þ 63 (6 ³ vd + γc γ v t d + dv 4 d ( v p c p v /c 4 ln( + ρ γ /c d ( v /c p v. (9 /c4 ˽ÉÅ Ñ Ã ( Cauchy» Ý Ñ Á Ý (9 4 d ( v p c p v /c 4, γc γ ln( + ρ γ /c d ( v /c p v, /c4 Ý (9 ³ Û vd + v t d 4 v d. ( Á H = H(t = Cauchy-Schwatz ³ vd = ( vd R v d ( vd. ( d, ( Ö (, Á ( ³ vd + d dt Ñ Æ Ë ³ Ï 4H R H + dt vd 4 v d. (3 ẋ = a x + a x, v d H R 3. (4 H R 3. (5 a >, a Û ÊºÏ a x + a x = ÇÚ ẋ <, Ñ ẋ >. (5 dt H H. (6 R3
64 3 ½É³ ÊºÏ H R 3 H = µ H =, H = R 3, R 3 > µµ H = v d > R 3, ½É R < 3 A ³ ¹ H(t ÅÚ T = Á Ý (9 4 γc γ = γ γ dt H(t dt >, H > A = R 3 +. (6, H R 3 H A A R 3 A R 3 H, (7 A R 3 H A R 3 H (A R 3 t, (8 A R 3 Ý H (A R 3 d ( v p c p v /c 4 = 4 ln( + ρ γ /c d ( v /c p v /c 4 ln( + ρ γ /c ( v (p + (p /c 4 (v c ( p v /c 4 d, ( v /c v /c (p + ( + p v /c 4 + p /c ( v /c (v ( p v /c 4 d, Ý (9 ³Û vd + v t d + dv ( v /c ( p v /c 4 [ 4 + γ γ ln( + ργ /c v c ] (p d ( v /c [ (p ( ( p v /c 4 c 4 v c γ γ ln( + ργ /c ( p v ] c 4 p c (v d. (9 µ (9 Õ Ð Û Ï [5] ln( + ρ γ /c ρ γ /c = p γc, (3 f(y = y p = kc 5 f(y, q 4 + q dq, ρ = kc 3 g(y, y g(y = 3 q + q dq,
3 ÇÄ Eule ± Þ 65 k Ý ± Ý p = c y 3( + y, p = 9kcy ( + y 5 >. p c y lim ρ p = lim y 3( + y = c 3, (3 p c 3, ( p v /c 4 ( /3 = 9 4. (3 Ö (3 (3, (9 Û ( v /c [ ( p v /c 4 4 + γ ] γ ln( + ργ /c v c (p d 9 4 = ( v /c [ ( p v /c 4 4 + γ ] γ ln( + ργ /c v c (p d (p d v 3(3γ + 6(γ ( c 4 + 3(γ v (p 3(3γ + c d 6(γ v d. (33 Á v c ( v /c v /c, ÏË (ρ, v ( Cauchy» Ý ¹ (p (p = γωω c. ¼ (9 Û (v /c [ (p ( (p v /c 4 c 4 v c 9 4 5 γ 4(γ v c 9 γ γ 3γ ½É (v c ( 3 vv d γ γ ln( + ργ /c ( p v c 4 p c ] (v d v d, (34 vd + = v v c. Å (33 Õ (34 Ü (9, v t d 4 v d 5γ + 3 + 3(γ v d, (35 (3 Õ (36, ³ vd + vd + d dt v t d 4 ( R ( vd R 5γ + 3 8(γ v d. (36 5γ + 3 H 8(γ R, (37
66 3 Ý H = v R d > R 5γ+3 8(γ ( dt 5γ + 3 H H. (38 R 8(γ R, Å«³ dt >, Ñ (7 ¼ ³ ( dt 5γ + 3 H R 8(γ R H, (39 A R < A(5γ+3+ A (5γ+3 +56A (γ 6(γ ³ H(t ¹ ÅÚ T = 4 Á 3 Ý (9 Ý (9 ³Û 8H A R 5 (γ 8A R 5 (γ H [8R (γ (A R 3 A R 3 (5γ + 3]t, (4 d ( v p c p v /c 4, γc γ vd + (3 (3 8A R 5 (γ Ý H [8R (γ(a R 3 A R 3 (5γ+3] v t d + vd + dv 4 v t d 4 ( R 45 8 ln( + ρ γ /c d ( v /c p v, /c4 d ( v p c p v. (4 /c4 v d. (4 Á ( ³ ( dt R 45 H H. (43 8 R Ý H = v d > R, Å«, ³ R 45 dt >. Ñ (7 Õ (39 ¼ ³ 8 ( dt R 45 H 8 R H, (44 A 3 R < 45A3+ 45 A 3 +56A3 6 ³ ¹ ÅÚ T = 4 H(t Á 4 Ý (9 8H A 3 R 5 8A 3 R 5 H [8R (A 3 R 3 45A 3 R 3 ]t, (45 8A 3R 5 Ý H [8R (A 3R 3 45A 3R 3 ] d ( v p c p v /c 4, γc γ ln( + ρ γ /c d ( v /c p v, /c4
3 ÇÄ Eule ± Þ 67 Ý (9 ³Ûµ vd + v t d + (3 (3 Á ( ³ ݵ H = vd + v R d > dv γc γ v t d 4 ln( + ρ γ /c d ( v /c p v. (46 /c4 ( R (γ ( dt R H (γ R H. R (γ, Å«, ³ dt >, Ý ( dt R H (γ R H, A 4 v d. (47 R < A4+ A 4 +6A4(γ 4(γ ³ H(t ¹ ÅÚ T = Ð Ú H A 4 R 5 (γ A 4 R 5 (γ H [R (γ (A 4 R 3 A 4 R 3 ]t, (48 A 4R 5 (γ Ý H [R (γ(a 4R 3 A 4R 3 ] { 8 8(γ < R < min, 45 5γ + 3, 3 A, A (5γ + 3 + 45A 3 + 45 A 3 + 56A 3 6, A 4 + A 4 + 6A 4(γ 4(γ A (5γ + 3 + 56A (γ, 6(γ }, Ð v c ( Cauchy» Ý Ú { A R 3 T = max H (A R 3, 8A R 5 (γ H [8R (γ (A R 3 A R 3 (5γ + 3], Ý ± ÉË 8A 3 R 5 H [8R (A 3 R 3 45A 3 R 3 ], A 4 R 5 (γ H [R (γ (A 4 R 3 A 4 R 3 ] [] Smolle J, Temple B. Global solutions of the elativistic Eule equations [J]. Communications in Mathematical Physics, 993, 56(: 67-99. [] Chen Y, Zhou Y. Simple waves of the two dimensional compessible full Eule equations [J]. Acta Math Sci Se B Engl Ed, 5, 35(4: 855-875. }
68 3 [3] Gemaud Piee A, Sun Y. Numeical study of singulaity fomation in elativistic Eule flows [J]. Communications in Computational Physics, 4, 6(: 348-364. [4] Chen G Q, Li Y C. Relativistic Eule equations fo isentopic fluids: stability of Riemann solutions with lage oscillation [J]. Z Angew Math Phys, 4, 55(6: 93-96. [5] Li Y C, Feng D M, Wang Z J. Global entopy solutions to the elativistic Eule equations fo a class of lage initial data [J]. Z Angew Math Phys, 5, 56(: 39-53. [6] Chen G Q, Li Y C. Stability of Riemann solutions with lage oscillation fo the elativistic Eule equations [J]. Jounal of Diffeential Equations, 4, (: 33-353. [7] Pan R, Smolle J. Blowup of smooth solutions fo elativistic Eule equations [J]. Communications in Mathematical Physics, 6, 6(3: 79-755. [8] Guo Y, Tahvilda-Zadeh A S. Fomation of singulaities in elativistic fluid dynamics and in spheically symmetic plasma dynamics [J]. Nonlinea Patial Diffeential Equations, 999, 38: 5-6. [9] Geng Y C. Singulaity fomation fo elativistic Eule and Eule-Poisson equations with epulsive foce [J]. Communications on Pue and Applied Analysis, 5, 4(: 549-564. [] Liu T P. Compessible flow with damping and vacuum [J]. Japan Jounal of Industial and Applied Mathematics, 996, 3(: 5-3. [] Liu T P, Yang T. Compessible Eule equations with vacuum [J]. Jounal of Diffeential Equations, 997, 4(: 3-37. [] Zhu X S, Wang W K. The egula solutions of the isentopic Eule equations with degeneate linea damping [J]. Chinese Annals of Mathematics, Seies B, 5, 6(4: 583-598. [3] Ç Ð ¼ Ì º ± ÆÇ Æ [J]. È ÉÉ ( ±É, 4, 53(6: 78-784. [4] Zhu X S. Blowup of the solutions fo the IBVP of the isentopic Eule equations with damping [J]. Jounal of Mathematical Analysis and Applications, 5, 43(: 75-74. [5] Weinbeg S. Gavitation and Cosmology: Applications of the Geneal Theoy of Relativity [M]. New Yok: Wiley, 97.