ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα



Σχετικά έγγραφα
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ :

Β Γυμνασίου. Θέματα Εξετάσεων

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΓΥΜΝΑΣΙΟ 2008 ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης B ΓΥΜΝΑΣΙΟΥ. Πέτρος Μάρκος

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.

ΓΥΜΝΑΣΙΟ ΤΑΞΗ Β 59 ΑΣΚΗΣΕΙΣ. Θέμα 1 ο. Θέμα 2 ο : Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η

Γυμνάσιο Μαθηματικά Τάξη B. ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΕΡΟΣ 1ο

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

Επαναληπτικές ασκήσεις για το Πάσχα.

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Επαναληπτικές Ασκήσεις

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΗ 3 η : H βαθµολογία των µαθητών σε ένα διαγώνισµα στα Μαθηµατικά φαίνεται στο παραπάνω ραβδόγραµµα.

1 ΘΕΩΡΙΑΣ...με απάντηση

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ

Ιωάννης Σ. Μιχέλης Μαθηματικός

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ :

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΑ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Μαθηματικϊ Β Γυμνασύου. Μεθοδικό Επανϊληψη

Μαθηματικά Β Γυμνασίου

Μαθηματικά Β Γυμνασίου. Μεθοδική Επανάληψη

1. 3 3cm 2. E( ) 24 3cm 3. E( ) 12 3cm ) 1. 8cm 2. 18cm 3. E 56 3 cm 4. E 20 3 cm. 6cm, cm, 3 6 cm, E cm )

τα βιβλία των επιτυχιών

ν =.,( ) -ν =..,α -ν =.,α 0 =.. β

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

2 Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2010 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

1. 3 3cm 2. E( ) 24 3cm 3. E( ) 12 3cm ) 1. 8cm 2. 18cm 3. E 56 3 cm 4. E 20 3 cm. 6cm, cm, 3 6 cm, E cm )

ΓΕΩΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ

Μ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

Ερωτήσεις επί των ρητών αριθµών

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

2.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Οι πέντε καλύτεροι φίλοι σας είναι το Τι, Γιατί, Πού, Πότε και Πώς. Όταν χρειάζεστε συμβουλές, ρωτείστε Τι; ρωτείστε Γιατί; ρωτείστε Πού; Πότε και

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3

Γραπτές προαγωγικές εξετάσεις περιόδου Μαΐου Ιουνίου στα Μαθηματικά. Θέματα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ. Τριγωνομετρικοι αριθμοι οξειων γωνιων

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΧ. ΧΡ Ενότητα 2: Αξιοσημείωτες Ταυτότητες 1. Να βρείτε τα αναπτύγματα: (α) 2

Κεφ 3 ο. - Συναρτήσεις.

B τάξη Γυμνασίου : : και 4 :

Οδηγίες & Ενδεικτικά θέματα προαγωγικών & απολυτηρίων εξετάσεων Γυμνασίου Σελίδα 1

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

1,y 1) είναι η C : xx yy 0.

Κεφ 3 ο. Μέτρηση κύκλου.

( ) ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ 2 = ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. 1) Να βρεθεί το Π.Ο.

Άσκηση 4η Να βρεθεί ο τριψήφιος αριθμός που τα ψηφία του είναι ανάλογα των αριθμών 1, 2, 3 κατά σειρά και διαιρείται από το 9. Άσκηση 7η.

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΤΡΙΑΣ : ΑΡΙΘΜΟΣ ΚΑΤΑΛΟΓΟΥ :

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στη Γεωμετρία Σελίδα 1. (απ.: Ε ΕΒΓΔΗΖ = 44 cm 2 ) (απ.: ΒΗ = 8 cm, (BHΝ) = 12 cm 2 )

ΜΕΡΟΣ Α: Να απαντήσετε και στα δέκα (10) θέματα του μέρους Α. Κάθε θέμα βαθμολογείται με πέντε (5) μονάδες (5/100).

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Μαθηματικά Α Τάξης Γυμνασίου

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ. Τριγωνομετρικοι αριθμοι οξειων γωνιων

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου

Γεωμετρία Β Λυκείου. Τράπεζα Θεμάτων 18-22/1/2015

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Όνομα μαθητή /τριας: Τμήμα: Αρ.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014

Τριγωνομετρικοί αριθμοί παραπληρωματικών γωνιών

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

Άσκηση 1 η ( x 2) 2. i) Να βρείτε την τιμή της παράστασης Α, αν χ = 0. ii) Να βρείτε την τιμή της παράστασης Β, αν χ = 2 2 [ 3 8 ( 3) ]

ΚΕΦΑΛΑΙΟ 3 ο ΘΕΩΡΙΑ. 3.1 Τριγωνομετρικοί Αριθμοί Γωνίας

ΜΑΘΗΜΑΤΙΚΑ B ΓΥΜΝΑΣΙΟΥ

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Transcript:

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια είναι η σχέση μεταξύ εγγεγραμμένης και επίκεντρης γωνίας που έχουν ίσο αντίστοιχο τόξο; ΘΕΜΑ ο A) Ποια ποσά λέγονται ανάλογα και ποια αντιστρόφως ανάλογα; B) Ποια είναι η γραφική παράσταση της συνάρτησης y αχ. α Γ) Ποια είναι η γραφική παράσταση της συνάρτησης y x όταν: i) α>0 και ii) α<0 Να βρεθούν οι κοινές λύσεις των ανισώσεων 3x 1 x 4 5, (x 3) 5x 3 3 ΘΕΜΑ ο Δίνεται η συνάρτηση y x 3 α) Να γίνει η γραφική της παράσταση β) Να βρεθούν τα σημεία τομής της γραφικής παράστασης με τους άξονες χ χ και y ' y γ) Να εξετάσετε αν τα σημεία Α, 1 και ανήκουν στη γραφική της παράσταση. 1 Β, Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με βάση ΒΓ = 10 cm. Αν η περίμετρος του είναι 36 cm να βρεθούν : α) Το ύψος ΑΔ του τριγώνου ΑΒΓ β) Το εμβαδόν του τριγώνου ΑΒΓ γ) Το ημβ, το συνβ και η εφβ 1

Α. Θεωρία ο δείγμα α) Ποια συνάρτηση συνδέει δύο ανάλογα ποσά και ποια είναι η γραφική παράσταση της συνάρτησης αυτής; β) Ποια είναι η γραφική παράσταση της συνάρτησης y αx β ; γ) Να συμπληρώσετε τα κενά: i. Ένα ορθοκανονικό σύστημα αξόνων χωρίζει το επίπεδο σε τέσσερα μέρη, που λέγονται.. ii. Κλίση της ευθείας y αx είναι iii. Η ευθεία x x o είναι παράλληλη προς.. iv. Η ευθεία y κ είναι παράλληλη προς.. ΘΕΜΑ ο α) Να γραφεί το πυθαγόρειο θεώρημα (θεώρημα, σχήμα, τύπος) β) Να γραφεί το αντίστροφο του πυθαγορείου θεωρήματος. Να λύσετε την εξίσωση: x 8 x 4 x 5 7 4 3 και να υπολογίσετε την παράσταση 13 7 4 x, όπου χ η ρίζα της εξίσωσης. ΘΕΜΑ ο α) Να βρείτε την εξίσωση της ευθείας ε 1 που διέρχεται από την αρχή των αξόνων και το σημείο Α, 8. β) Να βρείτε την εξίσωση της ευθείας ε που είναι παράλληλη στην ε 1 και διέρχεται από το σημείο Β 0,5. γ) Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις ευθείες ε 1 και ε. Στο διπλανό σχήμα ο κύκλος εφάπτεται στις πλευρές του τετραγώνου ΑΒΓΔ και έχει μήκος L 31,4 cm. Να βρείτε : α) την ακτίνα ρ του κύκλου β) το εμβαδόν του γραμμοσκιασμένου μέρους.

Α. Θεωρία 3 ο δείγμα α) Να δώσετε τον ορισμό της τετραγωνικής ρίζας ενός θετικού αριθμού α β) Να συμπληρώσετε την ισότητα : αν α 0, α... γ) Υπάρχει τετραγωνική ρίζα αρνητικού αριθμού ; Δικαιολογήστε την απάντησή σας. ΘΕΜΑ ο α) Να δώσετε τους ορισμούς των τριγωνομετρικών αριθμών ημω, συνω, εφω οξείας γωνίας ω ενός ορθογωνίου τριγώνου. β) Αν ω είναι οξεία γωνία, να συμπληρώσετε τα κενά :...... ημω...,... συνω..., εφω... γ) Αν ημω 3, να συμπληρώσετε τα κενά : ˆω=..., εφω=..., συνω=... Στον παρακάτω πίνακα έχουμε τις θερμοκρασίες που επικράτησαν στην πόλη των Σερρών για είκοσι συνεχείς μέρες κατά τον μήνα Φεβρουάριο του 010. Θερμοκρασία σε ο C τιμές xi Μέρες Συχνότητες νi 5 8 6 8 10 4 Σύνολα Ποσοστά ημερών Σχετ. συχνότητες f % xi νi Α. Να συμπληρωθεί ο παραπάνω πίνακας. Β. Να βρείτε το πλήθος των ημερών που η θερμοκρασία ήταν τουλάχιστον 6 ο C καθώς και το ποσοστό των ημερών που η θερμοκρασία ήταν το πολύ 8 ο C Γ. Να βρεθεί η μέση θερμοκρασία καθώς και η διάμεσος θερμοκρασία. ΘΕΜΑ ο x x 4 x x 1 x Να βρεθούν οι κοινές λύσεις των ανισώσεων και 1 3 6 4. Αφού τις παραστήσετε στον ίδιο άξονα των πραγματικών αριθμών να γράψετε τους φυσικούς αριθμούς που είναι κοινές λύσεις των ανισώσεων. 3

Στο παρακάτω σχήμα έχουμε σχεδιάσει τετράγωνο ΑΒΓΔ πλευράς 10cm και τεταρτοκύκλιο κέντρου Γ και ακτίνας ΓΒ = ΓΔ = 10 cm. Να βρείτε το εμβαδόν της γραμμοσκιασμένης καμπυλόγραμμης επιφάνειας. Α. Θεωρία 4 ο δείγμα Α) Τι ονομάζεται τετραγωνική ρίζα ενός θετικού αριθμού α και πως συμβολίζεται; Β) Να συμπληρώσετε τα κενά στις παρακάτω προτάσεις. Αν a = χ, όπου α 0, τότε χ και χ = Αν α 0 τότε a = 0 = Γ) Ορίζεται η τετραγωνική ρίζα αρνητικού αριθμού; Να αιτιολογήσετε την απάντησή σας. ΘΕΜΑ ο Α) Ποια γωνία λέγεται εγγεγραμμένη; Ποια η σχέση που τη συνδέει με το αντίστοιχο τόξο της; Β) Πότε ένα πολύγωνο λέγεται κανονικό; Να γράψετε τη σχέση που μας δίνει την κεντρική γωνία ω ενός κανονικού ν- γώνου καθώς και τη σχέση που συνδέει την κεντρική γωνία ω με τη γωνία φ ενός κανονικού ν- γώνου. Γ) Να γράψετε τις σχέσεις από τις οποίες υπολογίζουμε το μήκος του κύκλου, το εμβαδόν κυκλικού δίσκου ακτίνας ρ και το εμβαδόν κυκλικού τομέα γωνίας μ ο (σε μοίρες) κύκλου κέντρου Ο και ακτίνας ρ. Στο σχήμα, η περίμετρος του τριγώνου ΑΒΓ είναι 4cm. Α)Να βρείτε τις πλευρές του τριγώνου ΑΒΓ, και να αποδείξετε ότι είναι ορθογώνιο. Β)Να υπολογίσετε το εμβαδόν του σκιασμένου τμήματος. 4

ΘΕΜΑ ο Σε ορθογώνιο τρίγωνο ΑΒΓ (Α=90 0 ), δίνονται ΑΒ=1, ΑΓ=16. Να βρεθούν α) η πλευρά ΒΓ β) Οι τριγωνομετρικοί αριθμοί των γωνιών Β και Γ. ημb 3συνΓ γ) Η τιμή της παράστασης: Α 4ε Β Έστω τρίγωνο ΚΛΜ με ΛΜ=16cm και το ύψος ΚΖ=10 cm. α) Να υπολογίσετε το εμβαδό Ε1 του τριγώνου ΚΛΜ. β) Να εκφράσετε το εμβαδό Ε του τριγώνου ΚΛΖ σε σχέση με το μήκος x του τμήματος ΛΖ. γ) Αν γνωρίζετε ότι Ε1=4 Ε, να βρείτε την εφαπτομένη της γωνίας Μ 5

Α. Θεωρία 5 ο δείγμα Α) Nα γράψετε τους τύπους που δίνουν το εμβαδόν της παράπλευρης επιφάνειας Επ και της ολικής επιφάνειας Εολ πρίσματος και κυλίνδρου. Β) Nα γράψετε τους τύπους που δίνουν τον όγκο πρίσματος και κυλίνδρου. Γ) Nα γράψετε τους τύπους που δίνουν το εμβαδόν τετραγώνου πλευράς α, ορθογωνίου με πλευρές α, β, τριγώνου, τραπεζίου και παρ/μου. ΘΕΜΑ ο Α) Τι ονομάζετε ημίτονο,συνημίτονο, εφαπτομένη μιας οξείας γωνίας ενός ορθογωνίου τριγώνου ΑΒΓ με πλευρές α, β, γ και ποια είναι τα όρια μεταβολής του ημιτόνου και του συνημιτόνου (σχήμα). Β) Να συμπληρώσετε τον πίνακα: γωνία ω ημω συνω εφω 30 45 60 Α) Να λυθεί η εξίσωση 7 x 8 x 5 x 4 3 4 Β) Να λυθεί η ανίσωση 3(x ) 4x 3(4 x) Γ) Η λύση της εξίσωσης είναι και λύση της ανίσωσης ; ΘΕΜΑ ο Δίνονται οι ανισώσεις: x 1 (1 3x) 3(x 4) < 0 και < x 3 Α. Να τις λύσετε. Β. Να παραστήσετε στην ίδια ευθεία τις λύσεις τους και να προσδιορίσετε τη μεγαλύτερη από τις κοινές ακέραιες λύσεις τους. Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με βάση ΒΓ = 6 cm και ΑΒ = 5cm. Να βρεθούν : α) Η ύψος ΑΔ του τριγώνου ΑΒΓ β) Η εμβαδόν του τετραγώνου ΑΔΕΖ γ) Το ημβ, το συνβ και η εφβ 6