FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

2 SFI

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

Ανώτερα Μαθηματικά ΙI

Delta Inconel 718 δ» ¼

v w = v = pr w v = v cos(v,w) = v w

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

p din,j = p tot,j p stat = ρ 2 v2 j,

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Blowup of regular solutions for radial relativistic Euler equations with damping

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

S i L L I OUT. i IN =i S. i C. i D + V V OUT

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Vol.30 No ß Journal of Chinese Society for Corrosion and Protection Oct /HCO 3 3 /HCO 3 É. 2.0 cm cm 2 SiC µ Ì 2000 Å

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

Ανώτερα Μαθηματικά ΙI

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

CHARACTERISTIC BEHAVIORS OF PARTICLE PHASES IN NiCrBSi TiC COMPOSITE COATING BY LASER CLADDING ASSISTED BY MECHANICAL VIBRATION

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

Ανώτερα Μαθηματικά ΙI

Electronic Supplementary Information (ESI)

Εφαρμοσμένα Μαθηματικά

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

Protective Effect of Surface Coatings on Concrete

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Quick algorithm f or computing core attribute

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

arxiv: v1 [math.dg] 3 Sep 2007

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Reverse Ball-Barthe inequality

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

ΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

PACS: Pj, Gg

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος

tan(2α) = 2tanα 1 tan 2 α

Ανώτερα Μαθηματικά ΙI

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Επικαμπύλια Ολοκληρώματα. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

Δυναμικοί τύποι δεδομένων

Κληρονομικότητα. ΙωάννηςΓºΤσ ούλος

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

H Witten- ¾. 1956, Payne-póyla Weinberger [15] Ó ĐË È : (1) λ k+1 λ r 4. λ r. (2) n k. λ k , Yang [19] ÅĐ «Yang ¾. (λ k+1 λ r )λ r 1+ 4 ) 1

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Transcript:

Đ 49 Đ 11 Vol.49 No.11 2013 ³ 11 Đ 1406 1410 CT METLLURGIC SINIC Nov. 2013 pp.1406 1410 γ Til º Cr W º  û ÒÑ ( ÌÇ̵ Öà Å, 211106) Ë Ç º ÙÄÞ «γ Til Cr W. ÅÚÆ, γ Til Cr W, Ú Å ±, ÑÎ Ú Å 648.8 HV 0.1, ß³ Ô 2. Ó ÚÆ, Cr W ±À 70 N ÚÎ, ß³² Î. Đ ¹ ÏÚ µ ÚÆ, Cr W µì ¾ 0.43, ß³Ú 0.70, Å, ÅÐ, ÔÔ ß³Ï ±Å ; 500 µ ÚÆ, Cr W µì 0.50, ß³Ú 0.75, Ñ ß³ ¼ Ï. γ Til, ÙÄÞ «, Cr W, µ Þ± Ï ½³ TG174.4 À Ì ³ 0412 1961(2013)11 1406 05 FRICTION ND WER PROPERTIES OF SURFCE PLSM Cr W LLOYING LYER OF γ Til LLOY WEI Xiangfei, ZHNG Pingze, WEI Dongbo, CHEN Xiaohu, WNG Qiong, WNG Ruonan College of Materials Science and Engineering, Nanjing University of eronautics and stronautics, Nanjing 211106 Correspondent: ZHNG Pingze, professor, Tel: 13951883686, E-mail: pzzhang@nuaa.edu.cn Supported by National Natural Science Foundation of China (No.51175247) Manuscript received 2013 08 07, in revised form 2013 08 28 STRCT Cr W alloying layer was prepared on the Til alloy by using the double glow plasma surface alloying technology (DGP). The hardness tests show that the surface micro hardness of Cr W alloying layer is greatly increased and the micro hardness of diffusion layer is 648.8 HV 0.1, increased two times more than the matrix. The scratch tests show that the bond between Til alloy and Cr W alloying layer is very good and the layer at least can withstand 70 N vertical load. The friction and wear at room temperature tests show that the friction coefficient of Cr W alloying layer is about 0.43, that of the matrix is 0.70. The wear scar is narrow, and the depth is small. The wear weight loss and wear rate relative to the matrix decrease greatly. The friction and wear at 500 tests show that the friction coefficient of Cr W alloying layer is about 0.50, that of the body is 0.75. The wear weight loss and wear rate of Cr W alloying layer are all less than the matrix. KEY WORDS γ Til alloy, doulb glow plasma surface alloying technology(dgp), Cr W alloying layer, friction and wear property γ Til ¹ ½ Ì ÐÅ«ß Ò ÐÏ ÍÆ ÏÛ³ Ä ß, Ø º ²Á Ä Á Û ««ÏÛÁ Öß², ÎÓ¹ Ü Ð Ð ÍÈÍ Û È ½Õ Û [1,2]. Ç γ Til ¹µ«Ð ß ß Õ ², ÎÉ Ø ¼Ü Å, ¹Ø ÑÇ ³ Åß². * ÇÅ ÆÄ ß ÐÙ 51175247 ÕÆ Ë : 2013 08 07, Õ» Ë : 2013 08 28 Í µ :,, 1988 Ð, ± Ð DOI: 10.3724/SP.J.1037.2013.00475 ÍÈÍ Ü Û, Ü ¹Û ß Øº Õ. ½Ð «ÎÓ ²: ½ Ê ¼ ¹, Î ¹Ò Cr, Nb, Si, ß, ŽÒÎÖÛ, ± ¹Û ß ² [3 5],» ¼ß, ²¼ ¹ ß²Û ± ½Ê ĐÜÏ [6 8] Ð Ë [9] [10] Å ¹Ö [11] ß Ë ± ß. ¾µ, Úß Đ ¹ ½ Ë ³ ²Û ¹ ¹ Û Ø, Til ¹ Cr [12] Mo [13], ± ßÛ«ÄØÕ É. Ð ËÒÛ Cr ÏÖ Til ¹

Đ 11 Ý : γ Til «Cr W Ù Ý Å 1407 Ò, Cr ÜÄ Ti l Û, Ê ĐÛÕ É Û Ti l Cr Ö Ç, ½Ú ± ¹Ûµ«[14,15], W ½ Û ¹Ö², ²Á Ä ÏÛ Ä ß, Å Ti l Û ÂÍÖ, Ü ¹ ØÖ½ÒÛÖ, ÝØ ÏÛ «[16]. Å» ÚÅß Đ ¹ γ Til ¹ Cr W ¹, ¹ µ«³ (500 ) Û ß². 1 Ä 1.1 ÆÎÆ ¹Ø ¹ Û Cr W, Ö Cr 28W( Đ Æ, %). ± ¹Ø»«± Û Ü«ÛÛÀ γ Til ¹ Ö Ç, Ö Ti 46.5l 2.5V 1.0Cr( Đ Æ, %). 14 mm 14 mm 4 mm Û»ß. Û Û 10 kw ² ÚÅ Đ ¹ Ò¼Ü, Cr W, γ Til ±. ÚÅß Đ ¹ Û Â [17]. Þ, ¾ ÐÈ, SiC Ò ¾Í Ò Ë 10 min ¾ Ï. ¼Æ : r 35 Pa, 15 20 mm, 900 1000 V, (± ) 500 600 V, Ø 3 h,. 1.2» JSM 6360LV Ù Æ Đ (SEM/ EDX) à ¹ ÝÛ Û Ò ¹ ;» 401MV Ù µ«ò ¹ µ«;» WS 2006 ¹ Ô Ò Û³ Å (OM) Ã Ô Û ;» HT 500 Ù Û Ð Ò ¹ Û ß², Û Å Òº ¼Ü. Û Ò, «(20±4), ¹Ø 4.75 mm Û GCr15, 330 g, Ý 560 r/min, ÝÅ 2 mm, Ø 10 min. Û Ò, «500, ¹Ø Si 3 N 4, ¼Æ Û. Û Ò 0.1 mg Û Floo4 Ù Đ Ò 1, ÕÕ. 2 Ĺ²É ¾ 2.1 ± ÍÊÁ 1 γ Til ÚÅß Đ Cr W ¹ Û ± Û. Å ÀÈ, º ¹ ³ Å, ÅÉ Ð ÙÃß, Å ³, Û Ï, ² ÎÑÛ. ºÅ, ÅÉ ÙÃßÅ, ½Ò «3 µm ¾. EDS È, γ Til ¹ ÚÅß Đ Cr W,»Ë½ Cr W 2 Ó, Cr W ËÒ (ÐÒ Æ) 63.90% 32.76%. Î, ¹ Cr W Û Đ², Þ ÈÛ Cr W Đ Ø ÑÕ ¹È. Cr W ÛËÒ 96.66%, Cr W ¹ ½, XRD Û ( 2), ¹ Ç W, Cr, Cr2Ti, lti, l5w ß. 2.2 È γ Til ¹ ÚÅß Đ Cr W 1 Cr W Ú SEM ˺ Fig.1 SEM micrographs of surface (a) and cross section Intensity, a.u. (b) of Cr W alloying layer lti l5w W Cr Cr2Ti 0 20 40 60 80 100 2, deg 2 Cr W Ú XRD Fig.2 XRD pattern of Cr W alloying layer

1408 Æ Đ 49 Û µ«û Ò, Cr W ¹ Û µ«513.9 HV 0.1, (312.5 HV 0.1 ), ± 64.5%. Î ½ µ«û Cr Cr2Ti ß È È ³ Cr W ¹ Ò, ± Õ µ «. Ï Ûµ«648.8HV 0.1, Î Ï Ò Cr W Đ Ê Ø ÛÏ, ÑÂÍ ², Ø» Þ Ñɳ Á, ¹ Á Ð ¼ÜÕÉË, Ñ Ã ³ß ², ÂÍ É Ë Û³ Ô Ï ³ ÁÛµ«²±, Î ¹ß²Û±Ò ½ Û. 2.3 µ Å 3 Cr W ¼ß / ³ Û ³É Ô¹. Î 3a ß, Ñ 60 N ÛÊ ÁÒ ½È ÛØ, Å. Ð Ö 65 N Ø, ÇÈ ÚÛ ÛØ,» Šع Ö Ô̼ß, Ù. Î 3b ß, ÊÁÒÔÛ, Û ß Û, Š߯ÙĐ, 65 N Í, ³ Ê. ¼Ì ½«É [13,18] Å, ³ «Til ¹ Cr Mo Æ Å, Î ¹ ÒÛ ÛÖ Ç«Ë¹ ß Ó ÛÞ, Intensity, a.u. (a) Õ Ö ÇÛ µ«¹ Ö ÇÛÊß; Ý,» EDS ȳÉÅ, Å ³, Û Õ ¹³, Á«ÖÕ Û³ ² [19]. 2.4 Å 1 γ Til Cr W ¹ Û Ò Đ Đ. Å ÀÈ, Cr W ¹ Û Đ ĐÛ 1/3, Đ Û 50% ¾. λ Ê Ë, ¹ Ò Û ÛµÐ ± Õ µ«, ÖÕ ÛÅ, ÐÕÇ Á«. 4 γ Til Cr W ¹ Û ÍÆ Ø Û ÖÃ. Î ß, Cr W ¹ ÍÆÄ 0.43 ¾, γ Til  0.55 0.80 Ú, 0.70. Û µ «Ð, Ø Ø ÛÃ, µ²æ, Û É Ö Ã, µ½ Û ß, à ÕÒ, ÙÛÊÁ ¼Ü, ÍÆ È Û. Cr W ¹ Đ º» Ò ÅÛ Cr W Â, «½ Ã, Û Ç, ÍÆ Ó, ¹, Cr W Û Û µð ÖÕ ÛÅ [20,21], ¼Ï Ä, ÍÆ Ð 0.43 ¾. 5 γ Til Cr W ¹ º 1 À Ü Ó Table 1 Wear weight loss (m), wear rate (r) and specific wear rate (r ) at room temperature Sample m, g r, g/m r, m 3 /(N m) γ Til matrix 0.0006 11.94 10 6 10.62 10 4 Cr W alloying layer 0.0002 3.98 10 6 6.02 10 4 0 20 40 60 80 100 Load, N 1.0 0.8 Friction coefficient 0.6 0.4 0.2 -Til matrix Cr-W alloying layer 0 2 4 6 8 10 Time, min 3 Cr W»Þ /ß² ÚÆ²È Ó Fig.3 Scratch tests result of the Cr W alloying layer (a) and the metallographic photo (b) 4 Ï γ Til ß³ Cr W Ú µì ÆÚ Õ Fig.4 Curves of friction coefficient vs time of γ Til matrix and Cr W alloying layer at room temperature

11 6 Ce y : γ Til ^+ Cr W Ch^+5u ( y$ ; 1409 Yx o 2 500 Table 2 Wear weight loss (m), wear rate (r) and specific wear rate (r ) at 500 Sample m, g r, g/m r, m3 /(N m) γ Til matrix 0.0032 63.69 10 6 5.35 10 4 0.0009 17.91 10 6 0.95 10 4 Cr W alloying layer 1.0 Friction coefficient 0.8 0.6 0.4 0.2 -Til matrix 0 2 4 Cr-W 6 alloying layer 8 10 Time, min C6 C 5 <F- W γ Til {'[ Cr W Di_,6v bv 7 W γ Til {'[ Cr W Di_,6v )T sæv qja 500 Fig.6 Curves of friction coefficient vs time of γ Til matrix and Cr W alloying layer at 500 Fig.5 SEM images of wear surface of γ Til matrix (a) and Cr W alloying layer (b) at room temperature X w G w T /. V 8 5a {, γ Til `w ` G q w D j, C 1! f [F, s ~ / 7w r wfw d, 3t γ Til `-!X, \ ph (! q. V8 5b {, Cr W ` -78 (d, > 3YC T \ m, Cr W `- 7 G: i 1 z w `- 7 R{Ol " 1 wo. V~/4 w O8s ~ d s, Cr W `-7 ) d7, 8 *) t; m q q, Vo w / 8 * ) w h 4 8 w, \ OG *)a. w, Vo7) wjd ;m> k\[k,, 3t q wma r m,?1 + Mn&, G * n ; r q wzn,, xti {&trq\t%7. "E (500 ) 7 <M 2 γ Til (\ Cr W Ej`-7G7GX w n \. V {, γ Til (w 63.69 10 g/m, Cr W Ej`-7w 17.91 10 g/m, (w 1/4, / (w 1/5 2, V~$ γ Til (G7G * n, row&æmf y, x nhhk. 8 6 7GX γ Til (\ Cr W E j `- 7 w * UÆ t w r K b. V 8 {, γ Til ( w *UÆY(H}GWman, Y:RI$?dh, 2.5 6 6 C7 500 - W γ Til {'[ Cr W Di_,6v b v 7 3 E 0.75. 7G * w t, ro w w F x }_ H 4+C, (G Z s7x m r &, ; m w Fig.7 SEM images of wear surface of γ Til matrix (a) and Cr W alloying layer (b) at 500

1410 Æ Đ 49 Ò ÖÇ ² ÛÅ ²ÆÝ, Ç Ñ Û ÖÇ, Ü ÍÆ. Cr W ¹ ½ Û µ«, Ç ÑÛ ÖDzÁ Ð Û «, Ö Û ÒÅ, ÍÆ Ð ( 0.50). 7 γ Til Cr W ¹ º Û Û Ì». Î ß, γ Til ¹ Û Ì, Ö Å, ²ÆÑ Û Ö ( 7a). Cr W ¹, Æ, «, Ç Ä ÏÛ ß² ( 7b). 3 ¹¾ (1) γ Til ¹ ÚÅß Đ Cr W, ¹ Û Ï,, ºÅ, ³ ËÅÉ ÙÃßÅ. (2) µ«û, Û µ«312.5 HV 0.1, Cr W ¹ Ûµ«513.9 HV 0.1, Ï 648.8 HV 0.1, ± Õ 2. ÔÛ, Cr W ¹ ²Áà 65 N ÛÏ, ¹ Û³ Ï. (3) Å Ò¾ º, Cr W Û GCr15, ÍÆ 0.43, Ð Û 0.70, Ñ Æ, «Ñ. ÕÕ Đ ²«. 500 Û Ò, Cr W ÍÆ 0.50 ¾, Ð Û 0.75, Ò Đ ½. ¼ À [1] Duan L H, Liu Y P, Peng J S, Guo C L, Pan J D. Surf Technol, 2007; 36(1): 5 ( Ù, ß ½, Ó, Æ,. «, 2007; 36(1): 5) [2] Hu K J. China Met ull, 2007; 16: 2 ( Æ. ÑÇ ¼, 2007; 16: 2) [3] Paul J D H, pple F, Wagner R. cta Mater, 1988; 46: 1075 [4] Liu Z C, Lin J P, Chen G L. Trans Met Heat Treat, 2001; 22(1): 7 (ß, Û ¼, Ç. ÈÊ, 2001; 22(1): 7) [5] ppel F, Wagner R. Mater Sci Eng, 1998; R22(5): 187 [6] Li X Y, Taniguchi S. Mater Sci Eng, 2005; 398: 268 [7] Mukherjee S, Maitz M F, Pham M T, Richter E, Prokert F, Moeller W. Surf Coat Technol, 2005; 196: 312 [8] Li X Y, Taniguchi S, Zhu Y C, Fujita K, Iwamoto N, Matsunaga Y, Nakagawa K. Intermetallics, 2001; 9: 443 [9] Gray S, Jacobs M H, Ponton C, Voice W, Evans H E. Mater Sci Eng, 2004; 384: 77 [10] Lee J K, Lee H N, Lee H K, Oh M H, Wee D M. Surf Coat Technol, 2002; 155: 59 [11] Wang D S, Tian Z J, Chen Z Y, Shen L D, Wu H Y, Zhang P Z, Liu Z D, Xu Z, Huang Y H. J Chin Soc Corros Prot, 2009; 29: 1 ( Ð,,,, Æ, ʾÁ, ß, Đ Ô, Ø Û. ÑÇ Ù, 2009; 29: 1) [12] Wu H Y, Zhang P Z, Ma S J, Xu Z. Lubr Eng, 2007; 32(6): 68 (Æ, ʾÁ,, Đ Ô. Ñ, 2007; 32(6): 68) [13] Liang W P, Xu Z, Miu Q, Liu X P, He Z Y. Rare Met Mater Eng, 2006; 35: 1827 ( Á½, Đ Ô, «, ßн,. ʼ À, 2006; 35: 1827) [14] Music D, Kreissig U. Phys Let, 2004; 326: 473 [15] Loria E. Intermetallics, 2000; 8: 1339 [16] Tedmon Jr C S. J Less Con Met, 1966; 10(5): 301 [17] Gao Y, Xu J Y, Gao Q, Cheng J, Xu Z. Hot Work Technol, 2006; 35(6): 56 (, Đ½,,, Đ Ô. È«, 2006; 35(6): 56) [18] Ma S J, Zhang P Z, Miu Q, Xu Z. Heat Treat, 2007; 22(5): 26 (, ʾÁ, «, Đ Ô. ÈÊ, 2007; 22(5): 26) [19] Liu X, Yu L G, Wang H M. Chin J Nonferrous Met, 2000; 10: 785 (ßÐ,, Ð. ÑǼ 2000; 10: 785) [20] Zheng C L, Xu Z, Xie X S, He Z Y, Dong J X, Zhang M C. Rare Met Mater Eng, 2003; 32: 32 ( ÍÛ, Đ Ô, ÔÉ,, Ö, Ê ¾. ʼ À, 2003; 32: 32) [21] Zheng C L, Xu Z, He Z Y, Xie X S, Cui F Z. Mater Rev, 2002; 16(11): 14 ( ÍÛ, Đ Ô,, ÔÉ, ³Ä. Ó, 2002; 16(11): 14) (Ð : )