Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Σχετικά έγγραφα
Homework for 1/27 Due 2/5

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Solve the difference equation

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Presentation of complex number in Cartesian and polar coordinate system

α β

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Bessel function for complex variable

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.


p n r

The Equivalence Theorem in Optimal Design

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

The Heisenberg Uncertainty Principle

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Homework 4.1 Solutions Math 5110/6830

Ψηφιακή Επεξεργασία Εικόνας

LAD Estimation for Time Series Models With Finite and Infinite Variance

Example Sheet 3 Solutions

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

IIT JEE (2013) (Trigonomtery 1) Solutions

Numerical Analysis FMN011

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Solutions: Homework 3

Concrete Mathematics Exercises from 30 September 2016

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

EN40: Dynamics and Vibrations

Data Dependence of New Iterative Schemes

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

On Generating Relations of Some Triple. Hypergeometric Functions

1. Matrix Algebra and Linear Economic Models

Inertial Navigation Mechanization and Error Equations

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Math221: HW# 1 solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Forced Pendulum Numerical approach

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Finite difference method for 2-D heat equation

Homework 3 Solutions

Degenerate Perturbation Theory

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

B.A. (PROGRAMME) 1 YEAR

Diane Hu LDA for Audio Music April 12, 2010

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

Second Order RLC Filters

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

A study on generalized absolute summability factors for a triangular matrix

The Neutrix Product of the Distributions r. x λ

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives

Lecture 3: Asymptotic Normality of M-estimators

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Matrices and Determinants

Fourier Series. Fourier Series

, - [1]. - [2]., - - 2:10:20,. -,. -,. -,, -,. -, 1/3,,, [5] -. -

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Three Classical Tests; Wald, LM(Score), and LR tests

Every set of first-order formulas is equivalent to an independent set

ST5224: Advanced Statistical Theory II

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Certain Sequences Involving Product of k-bessel Function

Gauss Radau formulae for Jacobi and Laguerre weight functions

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

Proof of Lemmas Lemma 1 Consider ξ nt = r

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

Fibonacci. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

On Inclusion Relation of Absolute Summability

The Simply Typed Lambda Calculus

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

DERIVATION OF MILES EQUATION Revision D

K. Hausdorff K K O X = SDA. symbolic data analysis SDA SDA. Vol. 16 No. 3 Mar JOURNAL OF MANAGEMENT SCIENCES IN CHINA

Outline. Detection Theory. Background. Background (Cont.)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

2 Composition. Invertible Mappings

Trigonometric Formula Sheet

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

Section 8.3 Trigonometric Equations

- 1+x 2 - x 3 + 7x x x x x x 2 - x 3 - -

4. ELECTROCHEMISTRY - II

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Statistical Inference I Locally most powerful tests

physicsandmathstutor.com

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Solution Series 9. i=1 x i and i=1 x i.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΜΕΘΟ ΟΣ ΣΥΖΕΥΓΜΕΝΩΝ Ι ΙΟΜΟΡΦΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΑ ΟΣΗΣ ΗΧΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΘΑΛΑΣΣΙΟ ΙΑΣΤΡΩΜΑΤΩΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ.

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Other Test Constructions: Likelihood Ratio & Bayes Tests

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Transcript:

Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/

Strategy of Numerical Simulatios Pheomea Error modelize Nostatioary temperature distributio i uiform metal bar heat coservatio Fourier s law Mathematical Model Error discretizatio Approximate Problem Nostatioary heat equatio I time: forward/backward Euler Crak-Nicolso I space: cetral differece Liear Systems

Heat equatio Heat equatio (1-D i space) u t 2 u = 0, x2 x, t 0, 1 0, T, t u 0, t = u 1, t = 0, t 0, T, u x, 0 = si πx, x 0, 1, has the uique solutio u u x, t = e π2t si πx x

Space-Time grid t T t N =N Δt t = Δt Δt u i t 1 t 1 =Δt t 0 =0 O 1 x 0 =0 x 1 =h x h i 1 x i =ih x M 1 x x M =Mh=1

Cotiuous problem (1H) Heat equatio (cotiuous problem; 1H): u t 2 u x 2 = f, x, t 0, 1 0, T, u = 0, x = 0, t 0, T, u = 0, x = 1, t 0, T, u, 0 = a, x 0, 1, t = 0. We focus ourselves o time variatio u t t = F t, u t ; f t f t + 2 u t. x2

Time discretizatio [1/5] Time discretizatio with the same argumet i ODE: 1. Set N equal divisio of time iterval 0, T, ad time icremet Δt is defied by Δt T/N. 2. Itroduce the fuctio Φ from the temperature at t = t N to oe at t = t N+1. u u N u u 0 Φ Φ 2 u u 1 Φ u t u t N u t u t 2 0 u t 1 u t Δt Δt Δt t t 0 = 0 t 1 t 2 t t N = T t

Time discretizatio [2/5] How to decide? u t Φ t = F t, u t ; f t Itegrate o t, t u t = u t + t t F s, u s ; f s ds Itroduce umerical itegratio forward/backward Euler method; Crak-Nicolso method, etc. have bee itroduced correspodig to the type of umerical itegratios. u = u + Φ t, t ; u, u ; f, f u u t, f f t

Time discretizatio [3/5] u t = u t + t t F s, u s ; f s ds u = u + Δt F t, u ; f piecewise costat as the value at t = t. Forward Euler method: Set u 0 = a; For = 0,, N 1, compute u s.t. D Δt u 2 u x 2 = f, x 0, 1, u = 0, x = 0, u Here = 0, x = 1. D Δt u u u Δt

Time discretizatio [4/5] u t = u t + t t F s, u s ; f s ds u = u + Δt F t, u ; f piecewise costat as the value at t = t. Backward Euler method: Set u 0 = a; For = 0,, N 1, fid u s.t. D Δt u 2 u x 2 = f, x 0, 1, u = 0, x = 0, u Here = 0, x = 1. D Δt u u u Δt

Time discretizatio [5/5] u t = u t + t u = u + 1 2 Δt k=0 t F s, u s ; f s 1 ds piecewise 1st order polyomial as the value at t = t ad t = t (trapezoidal formula). F t +k, u +k ; f +k Crak Nicolso method: Set u 0 = a; For = 0,, N 1, fid u s.t. D Δt u 2 u /2 x 2 = f /2, x 0, 1, u /2 Here = 0, x = 0, u /2 = 0, x = 1. D Δt u u u Δt v /2 v + v 2

Space discretizatio [1/2] Set M equal divisio of iterval 0,1, ad apply the 2d order cetral differece ito the approximatio of the Laplace operator for grid poit fuctio u u j : Discrete Laplace operator: L h u i u i+1 2 u i + u i 1 h 2 d2 u dx 2 x i x i ih h 1/M u i u x i u 2 u 3 u 4 u 0 h u 1 h h h x x 0 =0h=0 x 1 =h x 2 =2h x 3 =3h x 4 =4h=1

Space discretizatio [2/2] How to realize the homogeeous Neuma boudary coditio? 1. Set virtual grid poit x = x M+1 = 1 + h ad virtual approximate value u M+1. 2. Approximate u/ x at x = x M = 1 by the cetral differece with u M 1 ad u M+1 : 0 = u x 1 u M+1 u M 1 2h 3. Impose the followigs: u M+1 = u M 1 v x = u x 0 x 1 u 2 x 1 < x 2 v i = u i i = 0, 1,, M u 2M i i = M + 1,, 2M x=1

Fiite differece equatio [1/4] Forward Euler method: Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, compute u i s.t. D Δt u i + L h u i = f i, u 0 u M+1 = 0, = u M 1. i = 1,, M, Here D Δt u u u Δt, L h u i u i+1 2 u i + u i 1 h u i u x i, t, f i f x i, t, a i a x i

Fiite differece equatio [2/4] Backward Euler method: Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, fid u i s.t. D Δt u i + L h u i = f i, u i = 1,, M, 0 = 0, u M+1 = u M 1. Here D Δt u u u Δt, L h u i u i+1 2 u i + u i 1 h u i u x i, t, f i f x i, t, a i a x i

Fiite differece equatio [3/4] Crak Nicolso method: Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, fid u i s.t. D Δt u /2 /2 i + L h u i = fi, u i = 1,, M, 0 = 0, u M+1 = u M 1. Here D Δt u u u Δt, L h u i u i+1 2 u i + u i 1 h u i u x i, t, f i f x i, t, a i a x i v /2 v + v 2

Fiite differece equatio [4/4] θ method θ 0, 1 : Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, fid u i s.t. D Δt u i + L h u +θ i = f +θ i, u i = 1,, M, 0 = 0, u M+1 = u M 1. θ = 0: forward Euler θ = 1: backward Euler θ = 1/2: Crak-Nicolso Here D Δt u u u Δt, L h u i u i+1 2 u i + u i 1 h u i u x i, t, f i f x i, t, a i a x i v +θ θv + 1 θ v

Discretized equatio [1/4] Forward Euler method: Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, compute u i u i u 0 = t h 2 u i+1 + 1 2 t h 2 u i = 0, s.t. + t h 2 u i 1 + t f i, i = 1,, M, u M+1 = u M 1. u i Explicit scheme: Do ot require to solve the liear system at eqch time step. Require the stability coditios betwee Δt ad h to satisfy. u i 1 u i u i+1

Discretized equatio [2/4] Backward Euler method: Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, fid u i t h 2 u i+1 + 1 + 2 t h 2 u i u 0 = 0, s.t. t h 2 u i 1 = u i + t f i, i = 1,, M, u M+1 = u M 1. u i Implicit scheme: Require to solve the liear system at eqch time step. Do ot require the stability coditios betwee Δt ad h to satisfy. u i 1 u i u i+1

Discretized equatio [3/4] Crak Nicolso method: Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, fid u i s.t. 1 t 2 h 2 u i+1 + 1 + t h 2 ui 1 t 2 h 2 u i 1 = 1 t 2 h 2 u i+1 + 1 t h 2 ui + 1 t 2 h 2 u i 1 + t f +θ i, i = 1,, M, u 0 = 0, u M+1 = u M 1. u i Implicit scheme: Require to solve the liear system at eqch time step. Do ot require the stability coditios betwee Δt ad h to satisfy. u i 1 u i 1 u i u i+1 u i+1

Discretized equatio [4/4] θ method θ 0, 1 : Set u i 0 = a i i = 0,, M + 1 ; For = 0,, N 1, fid u i θ t h 2 u i+1 + 1 + 2θ t h 2 u i θ t = 1 θ t h 2 u i+1 + 1 2 1 θ t h 2 u i + t f +θ i, = 0, u 0 u M+1 s.t. i = 1,, M, = u M 1. θ = 0: forward Euler θ = 1: backward Euler θ = 1/2: Crak-Nicolso h 2 u i 1 + 1 θ t h 2 u i 1 u i u i 1 u i+1 Hereafter we call the above equatio (1H) h. u i 1 u i u i+1

Mathematical justificatios Cosistecy of D t ad L h Stability of (1H) h Covergece of (1H) h

Extetio u ito R [1/3] u = u x u = 0 u = 0 v x = u x 0 x 1 u 2 x 1 < x 2 x=0 x=1 x= 2 x= 1 x=0 x=1 x=2 w x = v x v x 0 x 2 2 x < 0

Extetio u ito R [2/3] l u x l k u x k 0 = 0, l = 0, 2,, 2m; 1 = 0, k = 1, 3,, 2m 1 v x = u x 0 x 1 u 2 x 1 < x 2 u C 2m 2, 2 Replace w ito the same otatio u. x= 2 x= 1 x=0 x=1 x=2 w x = v x v x 0 x 2 2 x < 0

Extetio u ito R [3/3] x= 2 x= 1 x=0 x=1 x=2 Defiitio: u is L periodic fuctio u x + L = u x, x R u is exteded ito R to become 4 periodic fuctio. u x = u x 4 x + 2 4 x= 6 x= 2 x=0 x=2 x=6 l u x l 0 = 0, l = 0, 2,, 2m; u C 2m R k u x k 1 = 0, k = 1, 3,, 2m 1

Cotiuous problem i R Heat equatio (cotiuous problem i R): Fid 4 periodic fuctio u: R 0, T R s.t. u t 2 u x 2 = f, x, t R 0, T, u, 0 = a, x R, t = 0.

Extetio u ito R [1/2] u = u i u M+1 = u M 1 u 0 = 0 x=0 x=1 v i = u i i = 0, 1,, M u 2M i i = M + 1,, 2M x= 2 x= 1 x=0 x=1 x=2 w i = v i v i i = 0, 1,, 2M i = 2M, 2M + 1,, 1

Extetio u ito R [2/2] x= 2 x= 1 x=0 x=1 x=2 u is exteded ito the all grid poits i R to become 4M periodic grid poit fuctio. Defiitio: u is L periodic grid poit fuctio u i+l = u i, i Z u j = u j 4M j+2m 4M x= 6 x= 2 x=0 x=2 x=6

Discretized equatio i R [1/3] θ method θ 0, 1 : Give M periodic grid poit fuctio a = a i i Z ; Set u i 0 = a i i Z ; For = 0,, N 1, fid M periodic grid poit fuctio u = u i i Z s.t. θ t h 2 u i+1 + 1 + 2θ t h 2 u i θ t h 2 u i 1 = 1 θ t h 2 u i+1 + 1 2 1 θ t h 2 u i + 1 θ t h 2 u i 1 + t f i +θ, i = 1,, M. NOTE: I the previous sheet, the periodic of u is equal to 4M. However, to avoid cumbersomes, we replace the period with M.

Discretized equatio i R [2/3] u i p1 u i 1 u i u i+1 u i+q1 t = t Δt u i p0 u i 1 u i u i+1 u i+q0 t = t Fiite differece operator: B L t q L b m L t S m Summatio of the +L, coefficiets of u i+m which ifluece u i m= p L L = 0, 1; p L, q L N 0 : costat; t R + : time icremet; b L m t R: coefficiet correspodig to u +L i+m ; S m : v i S m v i v i+m : shifted operator i space for the grid poit fuctios

Discretized equatio i R [3/3] Whe a exteral heat source f = 0, the discretize equatio ca be writte geerally as follows: Give M periodic grid poit fuctio a = a i i Z ; Set u i 0 = a i i Z ; For = 0,, N 1, fid M periodic grid poit fuctio u = u i i Z s.t. B 1 t u i = B 0 t u i, i Z. (FD) EX) θ method: For p 0, q 0 = 1 b 1 t = b 1 1 t = θ t p 1, q 1 = 1, 1 h 2, b L 1 t = 1 + 2θ t h 2 0 b 1 t = b 0 1 t = 1 θ t h 2, b 1 L t = 1 2 1 θ t h 2

Stability [1/4] Discretized equatio i geeral form: Set u 0 i = a i i Z ; For = 0,, N 1, fid u = u i B 1 t u i = B 0 t u i, i Z. i Z s.t. (FD) Here B L t q L b m L t S m m= p L Amplitude factor of (FD) g k; t q 0 bm 0 t e 2πi m= p 0 q 1 bm 1 t e 2πi m= p 1 mk M mk M k = 0, 1,, M

Stability [2/4] Defiitio (FD) is stable def c > 0 s.t. u 0, t 0, 1, = 0,, N T u h c a h M 1 Here v h 1 M j=0 v j 2 1/2

Stability [3/4] vo Neuma coditio (FD) is stable c 0 > 0 s.t. g k; t 1 + c 0 t k Z, t 0, 1. EX) I case of θ method, g k; t = if g k; t 1 1 2θ t πk 2 si2 h t 1 4 1 θ h2 si2πk M 1+4θ t h2 si2πk M M < 1 2. Therefore,, (FD) is stable. That is, θ 1, 1 : without ay coditios betwee t ad h 2 θ 0, 1 t : with the stability coditios < 1 2 h 2 2 1 2θ

Stability [4/4] Stability of (1H) h u: the solutio of (1H) h Assume t < 1 h 2 2 1 2θ u h a h 1 + t t 1 θ f 0 2 h + t k=1 f k 2 + tθ f h 2 h 1 2 = 0, 1,, N Here v h 1 M 1 2 v 2 0 + M 1 j=1 v j 2 + 1 2 v M 2 1 2

Cosistecy of differece operator u: the solutio of (1H) l u x l C 0, 1 0, T, l = 0, 1, 2, 3, 4; k u = 0, k = 0, 1, 2, 3 tk l u x l 0, t = 0, l = 0, 2, 4; k u x k 1, t = 0, k = 1, 3 g i θ 1 2 tm 0,2 u + 1 12 t2 M 0,3 u + 1 12 h2 M 4,0 u i = 1, 2,, M, = 0, 1,, N 1 Here l+k u M l,k v max x l x, t ; x, t 0, 1 0, T tk g i D Δt u i + L h u +θ +θ i f i u i u x i, t, f i f x i, t, v +θ θv + 1 θ v

Covergece u: the solutio of (1H) u: the solutio of (1H) h Assumptios of Stability ad Cosistecy max u x i, t u i ; i = 0, 1,, M, = 0, 1,, N θ 1 2 tm 0,2 u + 1 12 t2 M 0,3 u + 1 12 h2 M 4,0 u θ 1 2 O t + h2 θ = 1 2 O t2 + h 2