Abstract. Detection of Feature Points for Computer Vision. Harris. (feature point) (interest point) (corner) Moravec. Harris.

Σχετικά έγγραφα
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

GIS. . Harris SIFT : SIFT. SIFT Harris. GIS

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Anomaly Detection with Neighborhood Preservation Principle

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.

Mapping Textures on 3D Geometric Model Using Reflectance Image

Robust Feature Extraction Method Based on Run-Length Compensation for Degraded Character Recognition

HSI %89 SOM RGB. Journal of Transactions on Electrical Technology Vol.2 No.7- Autumn 2011

Gait Identification Using a View Transformation Model in the Frequency Domain

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Comparison of Discriminant Analysis in Ear Recognition


Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

ER-Tree (Extended R*-Tree)

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Quick algorithm f or computing core attribute

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΑΛΓΟΡΙΘΜΩΝ ΕΞΑΓΩΓΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

ΟΠΤΙΚΗ ΑΝΑΓΝΩΡΙΣΗ ΓΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΥΤΟΝΟΜΗΣ ΠΤΗΣΗΣ ΕΛΙΚΟΠΤΕΡΟΥ

Matlab command: corner

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Wireless capsule endoscopy video classification using an unsupervised learning approach

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker


ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΗΜΕΡΟΜΗΝΙΑ ΓΕΝΝΗΣΗΣ : 1981 ΟΙΚΟΓΕΝΕΙΑΚΗ ΚΑΤΑΣΤΑΣΗ. : mkrinidi@gmail.com

Gaze Estimation from Low Resolution Images Insensitive to Segmentation Error

Buried Markov Model Pairwise

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

Current Status and Future Prospects of Camera-Based Character Recognition and Document Image Analysis

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Area Location and Recognition of Video Text Based on Depth Learning Method

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Μοντελοποίηση της Οπτικής Προσοχής Visual Attention Modeling

Homework 8 Model Solution Section

Method to Distinguish between Handwritten and Machine-printed Characters Inspired by Human Vision System

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Kernel Methods and their Application for Image Understanding

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

Second Order Partial Differential Equations

Adaptive grouping difference variation wolf pack algorithm

High order interpolation function for surface contact problem

Razor. [1], [2] (typical) LSI V/F. Razor. (Timing Fault: TF) [7] Razor [3], [4], [5] DVFS - Dynamic Voltage and Frequency Scaling [6]

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ

Reading Order Detection for Text Layout Excluded by Image

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Matlab command: corner

ΚΑΤΑΤΜΗΣΗ ΥΦΗΣ ΜΕ ΧΡΗΣΗ ΤΕΛΕΣΤΗ ΤΟΠΙΚΟΥ ΥΑ ΙΚΟΥ ΠΡΟΤΥΠΟΥ ΚΑΙ ΕΦΑΡΜΟΓΗ ΜΟΝΤΕΛΟΥ ΕΝΕΡΓΟΥ ΠΕΡΙΓΡΑΜΜΑΤΟΣ ΧΩΡΙΣ ΑΚΜΕΣ *

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

y = f(x)+ffl x 2.2 x 2X f(x) x x p T (x) = 1 Z T exp( f(x)=t ) (2) x 1 exp Z T Z T = X x2x exp( f(x)=t ) (3) Z T T > 0 T 0 x p T (x) x f(x) (MAP = Max

IMES DISCUSSION PAPER SERIES

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

Βασίλειος Χαραλαμπάκος

A Method for Detection of Occlusal Position Using a Robust Estimator

Λίστα Θεμάτων και Δημοσιεύσεων για εργασίες στην Ο.Υ.

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Automatic extraction of bibliography with machine learning

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Study of urban housing development projects: The general planning of Alexandria City

5-1. Industrial Vision. Machine Vision Systems : Image Acquisition Image processing Analysis/Exploitation

J. Comput. Chem. Jpn., Vol. 1, No. 4, pp (2002) *

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Spring 2010: Lecture 3. Ashutosh Saxena. Ashutosh Saxena

Indexing Methods for Encrypted Vector Databases

ΣΙΣΛΟ ΓΙΑΣΡΙΒΗ ΔΞΑΓΧΓΗ ΥΑΡΑΚΣΗΡΙΣΙΚΧΝ ΔΙΚΟΝΟΠΛΑΙΙΧΝ ΑΠΟ ΑΚΟΛΟΤΘΙΔ ΒΙΝΣΔΟ ΜΔ ΥΡΗΗ ΟΜΑΓΟΠΟΙΗΗ ΠΟΛΛΑΠΛΧΝ ΟΦΔΧΝ ΜΔΣΑΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ ΔΞΔΙΓΙΚΔΤΗ

Detection and Recognition of Traffic Signal Using Machine Learning

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

A research on the influence of dummy activity on float in an AOA network and its amendments

LAN. On the Dynamic Performance of Indoor Positioning System using Wireless LAN on Smartphone

Research on model of early2warning of enterprise crisis based on entropy

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

(1) (2) MFA/SFA: material flow analysis/ substance flow analysis MFA/SFA

Δημήτριος Θ. Τόμτσης, Ph.D. Αναλυτικό Βιογραφικό Σημείωμα

K.K. Delibasis Univ. of Thessaly, Dept. of Computer Science and Biomedical Informatics, Lamia, Greece

Chapter 7 Transformations of Stress and Strain

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Υλοποίηση σε FPGA Αλγορίθμου Συρραφής Εικόνων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΗ ΣΤΟ ΜΑΘΗΜΑ

Hydrologic Process in Wetland

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Development of a basic motion analysis system using a sensor KINECT

Probabilistic Approach to Robust Optimization

Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :

Single-value extension property for anti-diagonal operator matrices and their square

Transcript:

Detection of Feature Points for Computer Vision Abstract Harris Harris Harris 1. (1 7) (8 10) (9) Moravec E-mail kanazawa@tutkie.tut.ac.jp E-mail kanatani@suri.it.okayama-u.ac.jp Yasushi KANAZAWA, Member (Department of Knowledge-based Information Engineering, Toyohashi University of Technology, Toyohashi-shi, 441-8580 Japan) and Kenichi KANATANI, Member (Department of Information Technology, Okayama University, Okayama-shi, 700-8530 Japan). Vol.87 No.1 pp.1043 1048 004 1 Harris. (feature point) (interest point) (corner) p q ( 1) (residual sum of squares) J(p, q) = T p (i, j) T q (i, j) (1) (i,j) N ( 1) T p(i, j), T q(i, j) 0 1 (normalized correlation) 1043

1 Harris (Laplacian) f = f xx + f yy () x f(x, y) (gradient) f (Hessian) H ( ) ( ) fx fxx f xy f =, H = f y f xy f yy (3) () f (= trh) T p (i, j), T q (i, j) p, q N p q J (operator) 1 Harris 3. (x, y) f(x, y) x, y f(x, y) 3.1 x (invariant) x f x x f = f x + f y (4) det H = f xx f yy f xy (5) ( f, H f) = f xx f x + f xy f x f y + f yy f y (6) a, b (a, b) 3. (normal plane) (normal curvature) κ 1, κ (principal curvature) H = κ 1 + κ, K = κ 1 κ (7) (mean curvature) (Gaussian curvature) (total curvature) (11) K 0 (elliptic) (hyperbolic) (parabolic) ( ) 0 (minimal surface) H 0 H K (11) H = f xx + f yy + f xx fy f xy f y f x + f yy fx (1 + fx + fy ) = 1 ( ( f, H f) ) f 1 + f K = f xxf yy f xy 1 + f x + f y (8) = det H 1 + f (9) 1044 Vol.87, No.1, 004

(a) K > 0 (b) K < 0 (c) K = 0 K 3.3 (9) K f det H (1) Kitchen-Rosenfeld (13) Kitchen-Rosenfeld = f xxfy + f yy fx f xy f x f y fx + fy (10) (8) x f f y = 0 f yy (10) Dreschler Nagel (14) det H det H = 0 ( ) Kitchen-Rosenfeld (15) Zuniga-Haralick (16) Zuniga-Haralick = f xxf y + f yy f x f xy f x f y (f x + f y ) 3/ (11) f yy /f x ( 3) (9) f K f x, f x, f xx, f xy, f yy ( ) det H K (9) det H f K ( 3) (16) (17) Zuniga Haralick (16) Wang Brady (18) (11) Zuniga-Haralick 4. Harris 4.1 Harris (19) Harris = det Ĉ k(trĉ) (1) ( ) Gσ (f Ĉ = x) G σ (f x f y ) (13) G σ (f x f y ) G σ (fy ) k ( 4) G σ ( ) σ (1) G σ ( ) ( 4) Harris 0.04 0.06 0.08 1045

4. C ( ) f C = x f x f y = f f (14) f x f y f y (direction tensor) f f 0 C 1 det C = 0 Ĉ Ĉ = G σ ( f f ) = α W α f α f α (15) f α α W α Ĉ f det Ĉ 0 0 det Ĉ (15) trĉ = G σ( f ) = α W α f α (1) ( 5) 4.3 G σ ( ) (1) k f G σ ( ) f(x, y) f(x + δx, y + δy) = f + f x δx + f y δy + 1 (f xxδx + f xy δxδy + f yy δy ) + (16) ( 5) trĉ det Ĉ f trĉ G σ ( ) G σ (δx) = G σ (δy) = 0 σ G σ (δx ) = G σ (δy ) = σ, G σ (δxδy) = 0 G σ (f) = f + σ f + O(σ4 ) (17) ( f () G σ (f x) = f x + σ f x/ +, G σ (f y ) = f y + σ f y / +, G σ (f x f y ) = f x f y + σ (f x f y )/ + (13) ( 6) ( Ĉ=C+σ H + 1 (( f)( f) +( f)( f) )) +O(σ 4 ) (18) Ĉ f 4.4 Harris f x, f y (13) G σ ( ) ( 7) (1) () 4.5 (13) Ĉ λ 1, λ Harris Ĉ xy Harris (1). Harris = λ 1 λ k(λ 1 + λ ) (19) Harris λ 1, λ λ 1 λ ( 6) (0) ( 7) (13) G σ( ) 1046 Vol.87, No.1, 004

(a) Moravec (b) KLT (c) SUSAN 3 1 Tomasi (3) Web ( 8) Kanade-Lucas- Tomasi (KLT) ( 9) min(λ 1, λ ) (4) Chabat (5) 1 (λ1 λ ) /(λ 1 + λ ) f ( 10) 5. Harris (6 8) (9, 30) Moravec (31) Moravec = 1 8 k,l=0,±1 f(x+k, y+l) f(x, y) (0) (3) (33) Moravec 8 SUSAN (Smallest Univalue Segment Assimilating Nucleus) (34) ( 11) ( 8) http://robotics.stanford.edu/ birch/klt/ ( 9) Ĉ (3) ( 10) ( 11) http://www.fmrib.ox.ac.uk/ steve/susan/ SUZAN = c x,y (x, y ) = (x,y ) M x,y c x,y (x, y ) (1) { 1, f(x, y ) f(x, y) t 0, f(x, y ) f(x, y) > t () M x,y (x, y) t (1) (1) 50% 5% 75% MIC (Minimum Intensity Change) (35) ( MIC = min (f(x + t, y + s) f(x, y)) t +s =r +(f(x t, y s) f(x, y)) ) (3) r (x, y) SUSAN MIC f f 90 60 (36) (37) 6. Harris 1047

3 1 (38) Harris ( 1) [1],,, 000. [] O. Faugeras and Q.-T. Luong, The Geometry of Multiple Images, MIT Press, Cambridge, Massachusetts, U.S., 001. [3] R. Hartley and A. Zisserman, Multiple View Geometry, Cambridge University Press, Cambridge, U.K., 000. [4],,, 1995. [5] :,,, ( ),, 1998. [6],,, 1999. [7], CG &,, 001. [8],, ( ),, 1991. [9], ( ),, 00. [10], ( ),, 1996. [11],,, 1998. [1] P.R. Beaudet, Rotationally invariant image operators, Proc. 4th Int. Joint Conf. Patt. Recog, pp.579 583, Tokyo, Japan, 1978. [13] L. Kitchen and A. Rosenfeld, Gray-level corner detection, Pattern Recognit. Lett., vol.1, no., pp.95 10, Dec. 198. [14] L. Dreschler and H.-H. Nagel, Volumetric model and 3D trajectory of a moving car derived from monocular TV frame sequences of street scenes, Comput. Graph. Image Process,, vol.0, no.3, pp.199 8, 198. [15] H.-H. Nagel, Displacement vectors derived from second-order intensity variations in image sequences, Comput. Vis. Graph. Image Process., vol.1, pp.85 117, 1983. [16] O.A. Zuniga and R.M. Haralick, Corner detection using the facet model, Proc. IEEE Conf. Comput. Vision Patt. Recog., pp.30 37, Washington, DC, June 1983. [17] J.A. Noble, Finding corners, Image Vis. Comput., vol.6, no., pp.11 18, May 1988. [18] H. Wang and M. Brady, Real-time corner detection algorithm for motion estimation, Image Vis. Comput., vol.13, no.9, pp.695 703, Nov. 1995. [19] C. Harris and M. Stephens, A combined corner and edge detector, Proc. 4th Alvey Vision Conf., pp.147 151, Manchester, U.K., Aug. 1988. [0] R. Deriche and G. Giraudon, A computational approach for corner and vertex detection, Int. J. Comput. Vis., vol.10, no., pp.101 14, April 1993. [1] K. Mikolajczyk and C. Schmid, Indexing based on scale invariant interest points, Proc. Int. Conf. Comput. Vision, vol.1, pp.55 531, Vancouver, Canada, July 001. [] K. Mikolajczyk and C. Schmid, An affine invariant interest point detector, Proc. Euro. Conf. Comput. Vision, vol.1, pp.18 14, Copenhagen, Denmark, May 00. [3] C. Tomasi and T. Kanade, Detection and tracking of point features, CMU Tech. Rep. CMU-CS-91-13, April 1991. http://vision.stanford.edu/ birch/klt/ [4] J. Shi and C. Tomasi, Good features to track, Proc. IEEE Conf. Comput. Vision Patt. Recogn., pp. 593 600, Seattle, WA, June 1994. [5] F. Chabat, G.Z. Yang, and D.M. Hansell, A corner orientation detector, Image Vis. Comput., vol.17, no.10, pp.761 769, Aug. 1999. [6] K. Rangarajan, M. Shah, and D.V. Brackle, Optimal corner detector, Comput. Vis. Graph. Image Process., vol.48, no., pp.30 45, Aug. 1989. [7] K. Rohr, Modeling and identification of characteristic intensity variations, Image Vis. Comput., vol.10, no., pp.66 76, March 199. [8] A. Singh and M. Shneier, Gray level corner detection: A generalization and a robust real time implementation, Comput. Vis. Graph. Image Process., vol.51, no.1, pp.54 69, July 1990. [9] S. Baker, S. K. Nayar, and H. Murase, Parametric feature detection, Int. J. Comput. Vis., vol.7, no.1, pp.7 50, March 1998. [30] P. Perona, Deformable kernels for early vision, IEEE Trans. Pattern Anal. Mach. Intell., vol.17, no.5, pp.488 499, May 1995. [31] H.P. Moravec, Towards automatic visual obstacle avoidance, Int. Joint Conf. Art. Intell., Cambridge, MA, USA, p.584, Aug. 1977. [3] K. Paler, J. Föglein, J. Illingworth, and J. Kittler, Local ordered gray levels as an aid to corner detection, Pattern Recognit., vol.17, no.5, pp.535 543, 1984. [33] J. Cooper, S. Venkatesh, and L. Kitchen, Early jump-out corner detector, IEEE Trans. Pattern Anal. Mach. Intell., vol.15, no.8, pp.83 88, Aug. 1993. [34] S. M. Smith and J. M. Brady, SUSAN A new approach to low level image processing, Int. J. Comput. Vis., vol.3, no.1, pp.45 78, May 1997. [35] M. Trajković and M. Hedley, Fast corner detection, Image Vis. Comput., vol.16, no., pp.75 87, Feb. 1998. [36] D. Reisfeld, H. Wolfson, and Y. Yeshurun, Context-free attentional operators: the generalized symmetry transform, Int. J. Comput. Vis., vol.14, no., pp.119 130, March 1995. [37] R. Laganière, Morphological corner detection, Proc. Int. Conf. Comput. Vision, pp.80 85, Bombay, India, Jan. 1998. [38] C. Schmid, C. Mohr, and C. Bauckhage, Evaluation of interest point detectors, Int. J. Comput. Vision, vol.37, no., pp.151 17, March 000. 60 6 ( ) 47 54 IEEE ( 1) http://www.img.tutkie.tut.ac.jp/programs/ 1048 Vol.87, No.1, 004