8. 1 Βαθμωτά και διανυσματικά πεδία



Σχετικά έγγραφα
Μερικές Διαφορικές Εξισώσεις

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

Μονοτονία - Ακρότατα Αντίστροφη Συνάρτηση

Εξίσωση Laplace Θεωρήματα Μοναδικότητας

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Κλασική Hλεκτροδυναμική

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Δομή Διάλεξης. Ορισμός Ηλεκτρικού Δυναμικού και συσχέτιση με το Ηλεκτρικό Πεδίο

k = j + x 3 j + i + + f 2

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η ΚΙΝΗΣΗ ΣΩΜΑΤΙΟ Ή ΥΛΙΚΟ ΣΗΜΕΙΟ Ή ΣΗΜΕΙΑΚΟ ΑΝΤΙΚΕΙΜΕΝΟ

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.

Ηλεκτρική Μετατόπιση- Γραμμικά Διηλεκτρικά

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους.

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

V. Διαφορικός Λογισμός. math-gr

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Το βαρυτικό πεδίο της Γης.

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΚΕΦΑΛΑΙΟ 6 ΙΑΝΥΣΜΑΤΙΚEΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΙΑΝΥΣΜΑΤΙΚΑ ΠΕ ΙΑ. 1. Όριο Συνέχεια Παράγωγος διανυσµατικών συναρτήσεων.

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή

x (t) u (t) = x 0 u 0 e 2t,

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

Κλασική Ηλεκτροδυναμική Ι

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

Μαθηματική Εισαγωγή Συναρτήσεις

ds ds ds = τ b k t (3)

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Κεφάλαιο 4 Διανυσματικοί Χώροι

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Με διάγραμμα :

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κλασική Ηλεκτροδυναμική Ι

ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

Ευθύγραμμες Κινήσεις

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Θεώρημα της αντιστροφής

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο 4 Διανυσματικοί Χώροι

Μαθηματική Εισαγωγή Συναρτήσεις

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.

Διαφορική ανάλυση ροής

1.1.3 t. t = t2 - t x2 - x1. x = x2 x

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

Κλασική Ηλεκτροδυναμική Ι

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

Φυσική Β Λυκείου Γενικής

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

II. Συναρτήσεις. math-gr

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών

ΚΕΦΑΛΑΙΟ 1 ΤΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΚΑΜΠΤΟΥ ΣΩΜΑΤΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο «ΑΛΓΕΒΡΑ»

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΣΗΜΕΙΩΣΕΙΣ. x A αντιστοιχίζεται (συσχετίζεται) με ένα μόνο. = ονομάζεται εξίσωση της

Transcript:

8. 1 Βαθμωτά και διανυσματικά πεδία Ας θεωρήσουμε τη συνάρτηση f : 2 Ø που έχει ως πεδίο ορισμού ολόκληρο το επίπεδο 2 και τύπο f Hx, yl = 2 xy. Επειδή τα στοιχεία του ονομάζονται και βαθμωτά, η παραπάνω f : 2 Ø ονομάζεται βαθμωτό πεδίο του 2. Γενικότερα, μπορούμε να θεωρήσουμε βαθμωτά πεδία που ορίζονται μόνο σε μια περιοχή του επίπεδου, αντί σε ολόκληρο τον 2. Ενα παράδειγμα αποτελεί η συνάρτηση h : Ω Ø με τύπο hhx, yl = 1 + x + y και πεδίο ορισμού την ορθογώνια περιοχή Ω = 9Hx, yl œ 2 :0 x 2, 0 y 1=. Συχνά, βαθμωτά πεδία αυτού του είδους χρησιμεύουν για την αναπαράσταση μιας φυσικής ποσότητας, γ.π. της θερμοκρασίας, σε μια γεωγραφική περιοχή που αντιστοιχεί στη γεωμετρική περιοχή Ω. Αλλοτε, πάλι, ο περιορισμός σε κάποιο γνήσιο υποσύνολο Ω του 2 επιβάλλεται από το γεγονός ότι ο τύπος της συνάρτησης που υπεισέρχεται στον ορισμό του πεδίου δεν έχει νόημα σε όλα τα σημεία του επίπεδου. Για παράδειγμα, ο τύπος ghx, yl = 1 ë Ix 2 + y 2 M δεν έχει νόημα στο σημείο Hx, yl = H0, 0L. Συνεπώς, ο τύπος ghx, yl = 1 ë Ix 2 + y 2 M μπορεί να χρησιμοποιηθεί για τον ορισμό του βαθμωτού πεδίου g : Ω Ø στην περιοχή Ω = 2 \ 8H0, 0L< ή σε κάποιο τμήμα αυτής της περιοχής, όχι όμως και σ' ολόκληρο τον 2. Ανάλογα, ο τύπος φhx, yl = 1 ê Hx - yl δεν έχει νόημα κατά μήκος της ευθείας Γ = 9Hx, yl œ 2 : x = y =. Αρα με βάση τον τύπο φhx, yl = 1 ê Hx - yl μπορούμε να ορίσουμε ένα βαθμωτό πεδίο στο υποσύνολο Ω = 2 \ Γ ή σε κάποια μικρότερη περιοχή του 2. Yπάρχουν πολλοί τρόποι για να δώσουμε μια γραφική αναπαράσταση ενός βαθμωτού πεδίου μιας περιοχής Ω του 2. Ενας απ αυτούς έγκειται στο να καταγράψουμε την τιμή της συνάρτησης f : Ω Ø σε ορισμένα από τα σημεία της Ω, όπως γίνεται στο ακόλουθο σχήμα για την f Hx, yl = 2 xy.

Βαθμωτά και διανυσματικά πεδία 217 y -8-4 2 0 4 8-4 -2 1 0 2 4 0 0 0 0 0-2 -1 1 2 x 4 2-1 0-2 -4 8 4-2 0-4 -8 Σχ. 1.1 Πολλές φυσικές ποσότητες που αφορούν μια επίπεδη φυσική περιοχή προσδιορίζονται με τη βοήθεια δύο συναρτήσεων και όχι μιας μόνο. Ας σκεφτούμε το παράδειγμα ενός λεπτού στρώματος κάποιου υγρού που βρίσκεται πάνω σε μια επίπεδη μεταλλική πλάκα. Για να προσδιορίσουμε την ταχύτητα των στοιχείων του υγρού, θα πρέπει να εργαστούμε ως εξής. Θεωρούμε αρχικά ότι η μεταλλική πλάκα αντιστοιχεί στην περιοχή Ω του 2. Στη συνέχεια, δίνουμε δύο συναρτήσεις με πεδίο ορισμού την περιοχή Ω, ας πούμε τις f : Ω Ø και g : Ω Ø 2, και λέμε ότι το στοιχείο του υγρού που βρίσκεται στο σημείο Hx, yl της Ω έχει ταχύτητα υhx, yl, με συνιστώσα στην κατεύθυνση x τον αριθμό f Hx, yl και συνιστώσα στην κατεύθυνση y τον αριθμό ghx, yl. Mε άλλα λόγια, η ταχύτητα υ είναι μια συνάρτηση που η τιμή της στο σημείο Hx, yl œ Ω είναι το ζευγάρι υhx, yl = H f Hx, yl, ghx, yll, δηλαδή ένα διάνυσμα. Αυτό το γεγονός περιγράφεται λέγοντας ότι η ταχύτητα είναι ένα διανυσματικό πεδίο και δηλώνεται με την έκφραση υ : Ω Ø 2. Για να κατασκευάσουμε μια γραφική παράσταση ενός διανυσματικού πεδίου υ : Ω Ø 2, μπορούμε να ακολουθήσουμε το παράδειγμα της γραφικής παράστασης του βαθμωτού πεδίου που δώσαμε νωρίτερα. Πιο συγκεκριμένα, αν η συνάρτηση υ : Ω Ø 2 ορίζεται από τις f : Ω Ø και g : Ω Ø 2, τότε αρκεί να δώσουμε τις τιμές της υ σε ορισμένα σημεία της περιοχής Ω. Αυτό γίνεται στο σχήμα που ακολουθεί, υποθέτοντας ότι η συνάρτηση f : 2 Ø ορίζεται από τον τύπο f Hx, yl = 2 xy, ενώ η g : 2 Ø ορίζεται από τον τύπο ghx, yl = x 2 - y 2, οπότε υhx, yl = H f Hx, yl, ghx, yll= I2 xy, x 2 - y 2 M.

218 Ειδική Σχετικότητα και κλασική θεωρία ηλεκτρομαγνητισμού y 8 8, 0< 8 4, 3< 80, 4< 2 84, 3< 88, 0< 8 4, 3< 8 2, 0< 80, 1< 1 82, 0< 84, 3< 80, 4< 80, 1< 80, 0< 80, 1< 80, 4< -2-1 1 2 x 84, 3< 82, 0< 80, 1< -1 8 2, 0< 8 4, 3< 88, 0< 84, 3< 80, 4< -2 8 4, 3< 8 8, 0< Σχ. 1.2 Eναλλακτικά, μπορούμε στα επιλεγμένα σημεία της περιοχής Ω να κατασκευάσουμε βελάκια με οριζόντια συνιστώσα τον αριθμό f Hx, yl και κάθετη συνιστώσα τον ghx, yl, όπως στο Σχ. 1.3. 2 y 1-3 -2-1 1 2 3 x -1-2 Σχ. 1.3 Με τη βοήθεια των σύγχρονων υπολογιστών, ακόμα και "προσωπικών" (PCs), μπορούμε να κατασκευάσουμε σχήματα που, σαν το προηγούμενο, δείχνουν βέλη που παριστάνουν τις τιμές του πεδίου σε ορισμένα, αλλά πολύ περσότερα σημεία. Τα αποτελέσματα τέτοιων κατασκευών φαίνονται στα δύο επόμενα σχήματα. Και τα δύο αντιστοιχούν στο παραπάνω διανυσματικό πεδίο υhx, yl = I2 xy, x 2 - y 2 M, αλλά στο πρώτο

Βαθμωτά και διανυσματικά πεδία 219 περιγράφεται η περιοχή Ω 1 = 9Hx, yl œ 2 : -2 x 2, -2 y 2=, ενώ στο δεύτερο η περιοχή Ω 2 = 9Hx, yl œ 2 :2 x 6, -2 y 2=. Σχ. 1.4 Σχ. 1.5 Mε τον ίδιο ακριβώς τρόπο μπορούμε να ορίσουμε βαθμωτά και διανυσματικά πεδία σε μια περιοχή Ω του τρισδιάστατου Ευκλείδειου χώρου 3. Σαν παράδειγμα βαθμωτού

220 Ειδική Σχετικότητα και κλασική θεωρία ηλεκτρομαγνητισμού πεδίου που ορίζεται σε ολόκληρο τον 3, μπορούμε να πάρουμε τη συνάρτηση f : 3 Ø με τύπο f Hx, y, zl = xyz, ή την r : 3 Ø με τύπο rhx, y, zl = x 2 + y 2 + z 2. Mε τη βοήθεια της τελευταίας, μπορούμε να προσδιορίσουμε την περιοχή Ω ανάμεσα σε δυο ομόκεντρες σφαίρες ακτίνας a και b, αντίστοιχα, γράφοντας Ω = 9Hx, y, zl œ 3 : a < rhx, y, zl < b =. Τότε η συνάρτηση g : Ω Ø με τύπο ghx, y, zl = 1 ê @rhx, y, zl - ad@b - rhx, y, zld ορίζει ένα βαθμωτό πεδίο στην περιοχή Ω. Ενα διανυσματικό πεδίο στην περιοχή Ω του τρισδιάστατου Ευκλείδειου χώρου 3 ορίζεται μέσω τριών βαθμωτών πεδίων της ίδιας περιοχής. Για παράδειγμα, οι παραπάνω συναρτήσεις f : Ω Ø, g : Ω Ø, και h : Ω Ø ορίζουν το διανυσματικό πεδίο υ : Ω Ø 3 με τύπο υhx, y, zl = H f Hx, y, zl, ghx, y, zl, hhx, y, zll. Πιο συγκεκριμένα, αν Ω = 3 \ 8H0, 0, 0L< και οι τύποι των f, g, h f Hx, y, zl = xyz, ghx, y, zl = 1 ì x 2 + y 2 + z 2 και hhx, y, zl = x - y + z, αντίστοιχα, τότε υhx, y, zl = K xyz, 1ì x 2 + y 2 + z 2, x - y + z O. είναι Το επόμενο σχήμα παριστάνει το διανυσματικό πεδίο υ = H x ê r, y ê r, z ê rl, r = x 2 + y 2 + z 2, στην κυβική περιοχή Ω = 9Hx, y, zl œ 3 : -2 x 2, -2 x 2, -2 x 2, r 0 = Σχ. 1.6

Βαθμωτά και διανυσματικά πεδία 221 Αν παραλείψουμε την κεφαλές των βελών, το ίδιο σχήμα παίρνει την ακόλουθη μορφή: Σχ. 1.7 Ας υποθέσουμε ότι οι μερικές παράγωγοι της συνάρτησης φ : Ω Ø υπάρχουν σε κάθε σημείο της περιοχής Ω του τρισδιάστατου Ευκλείδειου χώρου 3. Με άλλα λόγια, ας υποθέσουμε ότι ορίζονται οι συναρτήσεις f : Ω Ø, g : Ω Ø, και h : Ω Ø με τύπο f Hx, y, zl = x φhx, y, zl, ghx, y, zl = y φhx, y, zl και hhx, y, zl = z φhx, y, zl, αντίστοιχα. Tότε ορίζεται αυτόματα και το διανυσματικό πεδίο grad φ : Ω Ø 3 με τύπο grad φhx, y, zl = H f Hx, y, zl, ghx, y, zl, hhx, y, zll. Αυτό το πεδίο ονομάζεται κλίση του βαθμωτού πεδίου φ και συχνά συμβολίζεται με φ. Ετσι, σε κάθε ομαλό βαθμωτό πεδίο φ : Ω Ø αντιστοιχεί το διανυσματικό πεδίο φ : Ω Ø 3, όπου (1.1) φhx, y, zl ª grad φhx, y, zl := I x φhx, y, zl, y φhx, y, zl, z φhx, y, zlm. Αν γ.π. φhx, y, zl = xyz, τότε φhx, y, zl ª grad φhx, y, zl = H yz, xz, xyl. Με ανάλογο τρόπο σε κάθε ομαλό διανυσματικό πεδίο υ : Ω Ø 3 αντιστοιχεί ένα βαθμωτό πεδίο, το div υ : Ω Ø, που oνομάζεται απόκλιση του υ. H απόκλιση του διανυσματικού πεδίου v συμβολίζεται και με ÿ v και ορίζεται με τον ακόλουθο τρόπο. Αν υhx, y, zl = H f Hx, y, zl, ghx, y, zl, hhx, y, zll, τότε (1.2) ÿ υhx, y, zl ª div υhx, y, zl := x f Hx, y, zl + y ghx, y, zl + z hhx, y, zl. Αν γ.π. vhx, y, zl = H xy, yz, zxl, τότε ÿ υhx, y, zl ª div υhx, y, zl = y + z + x. Σε κάθε ομαλό διανυσματικό πεδίο υ : Ω Ø 3 αντιστοιχεί αυτόματα και ένα διανυσματικό πεδίο, το curl υ : Ω Ø 3, που oνομάζεται στροβιλισμός του υ. Ο

222 Ειδική Σχετικότητα και κλασική θεωρία ηλεκτρομαγνητισμού στροβιλισμός του διανυσματικού πεδίου υ, που συμβολίζεται και με äυ, ορίζεται ως εξής. Αν υhx, y, zl = H f Hx, y, zl, ghx, y, zl, hhx, y, zll, τότε (1.3) äυ ª curl υ := I y h - z g, z f - x h, x g - y f M Ετσι, ο στροβιλισμός του παραπάνω διανυσματικού πεδίου υhx, y, zl = H xy, yz, zxl δίνεται από τον τύπο äυhx, y, zl ª curl υhx, y, zl = H - y, -z, -x L ª-H y, z, x L. Eίναι φανερό ότι οι παραπάνω διαδικασίες παραγωγής ενός πεδίου από ένα άλλο μπορούν να συνδυαστούν για να δώσουν ολόκληρες αλυσίδες από πεδία που ορίζονται στην ίδια περιοχή Ω του 3. Με την προϋπόθεση, βέβαια, ότι οι παράγωγοι των συναρτήσεων που υπεισέρχονται στον ορισμό κάθε κρίκου της αλυσίδας υπάρχουν. Διαφορετικά, κάθε κρίκος ορίζεται σε όλο και μικρότερα υποσύνολα της περιοχής Ω. Για παράδειγμα, αν υποθέσουμε ότι οι μερικές παράγωγοι δεύτερης τάξης x 2 φ, y 2 φ και z 2 φ της συνάρτησης φ : Ω Ø υπάρχουν σε κάθε σημείο της περιοχής Ω, τότε μπορούμε να κατασκευάσουμε την απόκλιση της κλίσης του βαθμωτού πεδίου φ: (1.4) ÿ H φl ª div Hgrad φl := x H x φl + y I y φm + z H z φl ª x 2 φ + y 2 φ + z 2 φ Ο τελευταίος συνδυασμός των μερικών παραγώγων δεύτερης τάξης ενός βαθμωτού πεδίου φ συναντιέται συχνά στην ανάλυση των πεδίων και γι αυτό αναφέρεται με ξεχωριστό σύμβολο και όνομα. Λέγεται πεδίο Laplace (Λαπλάς) του φ και συμβολίζεται με 2 φ ή με Δφ. Με άλλα λόγια, (1.5) 2 φ ª Δφ := x 2 φ + y 2 φ + z 2 φ. Ετσι, η προηγούμενη σχέση μπορεί πλέον να γραφτεί σαν (1.6) ÿ H φl ª div Hgrad φl = 2 φ. Με ανάλογο τρόπο μπορούμε να κατασκευάσουμε το στροβιλισμό της κλίσης του βαθμωτού πεδίου φ : Ω Ø. Xρησιμοποιώντας τους αντίστοιχους ορισμούς, βρίσκουμε ότι (1.7) äh φl ª curl Hgrad φl = I y H z φl - z I y φm, z H x φl - x H z φl, x I y φm - y H x φlm Ομως, για μια συνάρτηση με συνεχείς παραγώγους δεύτερης τάξης η σειρά παραγώγισης δεν παίζει κανένα ρόλο. Αρα, και οι τρεις συνιστώσες του τελευταίου διανύσματος μηδενίζονται ταυτοτικά. Με άλλα λόγια, (1.8) äh φl ª curl Hgrad φl = 0 Δηλαδή, ο στροβιλισμός της κλίσης ενός βαθμωτού πεδίου φ : Ω Ø είναι μηδενικός σε κάθε σημείο της περιοχής Ω όπου το πεδίο φ είναι ομαλό. Παράδειγμα 1.1 (α) Ας θεωρήσουμε το βαθμωτό πεδίο r : 3 Ø με τύπο (1.9) rhx, y, zl = x 2 + y 2 + z 2.

Βαθμωτά και διανυσματικά πεδία 223 Η κλίση αυτού του πεδίου ορίζεται μόνο στο υποσύνολο Ω = 3 \ 8H0, 0, 0L< και δίνεται από την έκφραση (1.10) rhx, y, zl ª grad rhx, y, zl = H x ê rhx, y, zl, y ê rhx, y, zl, z ê rhx, y, zll. Aπό την ταυτότητα που μόλις αποδείξαμε έπεται αμέσως ότι äh rl ª curl Hgrad rl = 0 σε κάθε σημείο της περιοχής Ω. (β) Γενικεύοντας, ας θεωρήσουμε ένα βαθμωτό πεδίο φ : Ω Ø με τύπο (1.11) φhx, y, zl = FHrHx, y, zll, όπου F : Ø τυχαία ομαλή συνάρτηση και rhx, y, zl = Τότε, x 2 + y 2 + z 2, όπως παραπάνω. (1.12) φhx, y, zl ª grad φhx, y, zl = F Hr LHx ê r, y ê r, z ê r L, όπου r = rhx, y, zl και F Hr L η πρώτη παράγωγος της FHrL. Aνάλογα με τον ακριβή τύπο της συνάρτησης F, το διανυσματικό πεδίο φ ορίζεται σ όλο τον 3 ή μόνο σε κάποιο υποσύνολό του. Αν γ.π. FHrL = r 2, τότε φhx, y, zl = FHrHx, y, zll = x 2 + y 2 + z 2. Αρα η κλίση του πεδίου φ δίνεται από τον τύπο φhx, y, zl = 2 H x, y, z L και ορίζεται σε κάθε σημείο του 3. Αντίθετα, όταν FHrL = 1 ê r, τότε η κλίση του πεδίου φ ορίζεται μόνο στην περιοχή Ω = 3 \ 8H0, 0, 0L<και δίνεται από την έκφραση φhx, y, zl =-I x ë r 3, y ë r 3, z ë r 3 M. Και στις δυο περιπτώσεις, äh φl ª curl Hgrad φl = 0. Συγκεκριμένο φυσικό παράδειγμα που αντιστοιχεί στην τελευταία περίπτωση είναι το ηλεκτρικό δυναμικό Φ που αντιστοιχεί σ' ένα σωμάτιο με φορτίο Q που ακινητεί στην αρχή των αξόνων: (1.13) ΦHx, y, zl = Q r To αντίστοιχο ηλεκτρικό πεδίο Ε ορίζεται από τη σχέση (1.14) ΕHx, y, zl := - ΦHx, y, zl. Συνεπώς, (1.15) ΕHx, y, zl := Q I x ë r 3, y ë r 3, z ë r 3 M ñ Ε x = Q x r 3 Ε y = Q y r 3 Ε z = Q z r 3 Σύμφωνα με τη φυσική θεωρία του ηλεκτρισμού, αν ένα σωμάτιο με φορτίο q βρίσκεται στο σημείο p με συντεταγμένες Hx, y, z L H0, 0, 0L, τότε υφίσταται την δύναμη (1.16) FHx, y, zl = q ΕHx, y, zl = QqI x ë r 3, y ë r 3, z ë r 3 M. Αυτή η σχέση εκφράζει τον λεγόμενο νόμο (του) Coulomb (Κουλόμ). ð

224 Ειδική Σχετικότητα και κλασική θεωρία ηλεκτρομαγνητισμού Ας αναδιατυπώσουμε την πρόταση που αποδείξαμε παραπάνω: Aν δοθεί το ομαλό διανυσματικό πεδίο v : Ω Ø 3 και υπάρχει βαθμωτό πεδίο φ : Ω Ø τέτοιο που υ = φ, τότε äυ = 0 σε κάθε σημείο της περιοχής Ω. Είναι σημαντικό ότι ισχύει, εν μέρει, και το αντίστροφο αυτής της πρότασης. Δηλαδή, αν ο στροβιλισμός του διανυσματικού πεδίου υ : Ω Ø 3 μηδενίζεται σε κάθε σημείο της περιοχής Ω, τότε υπάχει βαθμωτό πεδίο φ : Ω 1 Ø, τέτοιο που υ = φ σε κάθε σημείο ενός τμήματος Ω 1 της περιοχής Ω. Το πεδίο φ ονομάζεται σ αυτή την περίπτωση βαθμωτό δυναμικό του διανυσματικού πεδίου υ. Ενα άλλο πεδίο που μηδενίζεται ταυτοτικά είναι η απόκλιση του στροβιλισμού ενός διανυσματικού πεδίου v. Mε άλλα λόγια, για κάθε ομαλό διανυσματικό πεδίο v : Ω Ø 3 ισχύει ότι (1.17) ÿ H ävl ª div Hcurl vl = 0. Αυτή η ταυτότητα αποδείχνεται εύκολα με βάση τους αντίστοιχους ορισμούς. Εδώ θα περιοριστούμε στο να την εκφράσουμε στη μορφή της ακόλουθης πρότασης. Αν δοθεί ένα ομαλό διανυσματικό πεδίο w : Ω Ø 3 και υπάρχει ένα άλλο διανυσματικό πεδίο υ : Ω Ø τέτοιο που w = äυ, τότε ÿ w = 0 σε κάθε σημείο της περιοχής Ω. Και αυτής της πρότασης ισχύει το αντίστροφο, με την εξής περιορισμένη έννοια. Αν η απόκλιση του ομαλού διανυσματικού πεδίου w : Ω Ø 3 μηδενίζεται σε κάθε σημείο της περιοχής Ω, αν δηλαδή ÿ w = 0, τότε υπάρχει ένα διανυσματικό πεδίο υ : Ω 1 Ø τέτοιο που w = äυ σε κάποιο τμήμα Ω 1 της περιοχής Ω. Σ αυτή την περίπτωση, το πεδίο υ ονομάζεται διανυσματικό δυναμικό του πεδίου w.

Θεωρία βαθμωτών και διανυσματικών πεδίων του R^3 225 8. 2 Θεωρία βαθμωτών και διανυσματικών πεδίων του 3 Ας υποθέσουμε ότι μας έχει δοθεί το ομαλό διανυσματικό πεδίο υ : Ω Ø 3. Τότε μπορούμε αμέσως να κατασκευάσουμε το βαθμωτό πεδίο α : Ω Ø με τύπο τον αhx, y, zl = ÿ υhx, y, zl, Hx, y, zl œ Ω, καθώς και το διανυσματικό πεδίο σ : Ω Ø 3 με τύπο τον σhx, y, zl = äυhx, y, zl, Hx, y, zl œ Ω. Το ερώτημα που αμέσως ανακύπτει από αυτή την κατασκευή είναι κατά πόσο είναι δυνατό να αντιστρέψουμε την παραπάνω διαδικασία. Με άλλα λόγια, αν υποτεθεί ότι μας δίνεται το βαθμωτό πεδίο ρ : Ω Ø μαζί με το διανυσματικό πεδίο w : Ω Ø 3, μπορούμε να βρούμε ένα διανυσματικό πεδίο υ : Ω Ø 3 τέτοιο που (2.1) ÿ υhx, y, zl = ρhx, y, zl και äυhx, y, zl = whx, y, zl σε κάθε σημείο της περιοχής Ω; Αξίζει να σημειώσουμε ότι το πρόβλημα που μόλις διατυπώσαμε ταυτίζεται, από μαθηματική άποψη, με την επίλυση ενός συστήματος από μερικές διαφορικές εξισώσεις (ΜΔΕ) πρώτης τάξης. Για να φανεί αυτό καθαρά, αρκεί να γράψουμε αναλυτικά τις συνιστώσες των πεδίων υ, w καθώς και τις εκφράσεις για τις ποσότητες ÿ υ και äυ. Αν, λοιπόν, (2.2) υ = H f, g, hl και w = Ha, b, cl, τότε οι εξισώσεις ÿ υ = ρ, äυ = w γράφονται αναλυτικά ως εξής (για ευκολία παραλείπουμε την ένδειξη (x,y,z)). (2.3) ÿ υ = ρ ñ x f + y g + z h = ρ (2.4) äυ = w ñ y h - z g = a z f - x h = b x g - y f = c Το παραπάνω σύστημα φαίνεται υπερκαθορισμένο, με την έννοια ότι απαρτίζεται από τέσσερες εξισώσεις ενώ οι άγνωστες συναρτήσεις είναι μόνο τρεις. Πριν αντιμετωπίσουμε αυτό το ζήτημα, θα πρέπει να σημειώσουμε ότι οι συναρτήσεις a, b, και c δεν μπορούν να επιλέγονται τελείως ελεύθερα. Κι αυτό γιατί η ταυτότητα ÿ H äυl = 0 συνεπάγεται ότι οι παραπάνω συναρτήσεις πρέπει να ικανοποιούν συνθήκη x a + y b + z c = 0. Οταν αυτή η συνθήκη ικανοποείται, η θεωρία των συστημάτων ΜΔΕ πρώτης τάξης μας εξασφαλίζει την ύπαρξη λύσης των εξ. (2.4) Επανερχόμενοι στο αρχικό ζήτημα, ας υποθέσουμε ότι έχουμε βρει μια λύση υ 1 των εξισώσεων (2.4) και ότι

226 Ειδική Σχετικότητα και κλασική θεωρία ηλεκτρομαγνητισμού (2.5) ÿ υ 1 = τ ρ. Τότε, μπορούμε να θεωρήσουμε το διανυσματικό πεδίο (2.6) υ 1 := υ 1 + Ψ, όπου Ψ τυχαία ομαλή συνάρτηση και να παρατηρήσουμε αρχικά ότι (2.7) äυ 1 = äυ 1 = w. Από την άλλη μεριά, (2.8) ÿ υ 1 = ÿ υ 1 + H ΨL = τ + 2 Ψ Αν, λοιπόν, η αρχικά τυχαία συνάρτηση Ψ επιλεγεί έτσι ώστε να ικανοποεί τη συνθήκη (2.9) 2 Ψ = σ := ρ - τ, τότε το πεδίο υ 1 θα είναι λύση της ΜΔΕ (2.10) ÿ υ 1 = ρ. Με άλλα λόγια το νέο πεδίο υ 1 θα ικανοποεί το σύστημα των εξισώσεων (2.3) και (2.4). Η μερική διαφορική εξίσωση (ΜΔΕ) δεύτερης τάξης (2.11) 2 Ψ = σ είναι γνωστή ως εξίσωση Poisson (Πουασόν), ή ως μη ομογενής εξίσωση Laplace. Ενα βασικό αποτέλεσμα της θεωρίας των ΜΔΕ είναι ότι, για οποιαδήποτε ομαλή συνάρτηση σ, η εξίσωση Poisson έχει πάντοτε λύση. Αυτό σημαίνει ότι και το σύστημα (2.3) - (2.4) έχει λύση, παρά το γεγονός ότι είναι υπερκαθορισμένο. Θεωρούμε στη συνέχεια τα συστήματα (2.12) ÿ υ 1 = ρ, äυ 1 = 0. και (2.13) ÿ υ 2 = 0, äυ 2 = w. Από την προηγούμενη ανάλυση έπεται ότι και τα δυο αυτά συστήματα έχουν λύση. Συνακόλουθα το διανυσματικό πεδίο (2.14) υ := υ 1 + υ 2 ικανοποεί το σύστημα των εξισώσεων (2.3) και (2.4). Με άλλα λόγια, έχουμε αποδείξει την ακόλουθη πρόταση: Κάθε ομαλό διανυσματικό πεδίο υ του 3 μπορεί να θεωρηθεί, τοπικά τουλάχιστον, σαν το άθροισμα δύο άλλων, των υ 1 και υ 2, από τα οποία το πρώτο είναι αστρόβιλο ( äυ 1 = 0) και το δεύτερο ασυμπίεστο ( ÿ υ 2 = 0). Ο τελευταίος όρος πηγάζει από τη φυσική των ρευστών, όπου ένα ρευστό ονομάζεται ασυμπίεστο όταν το διάνυσμα της ταχύτητάς του, υ, ικανοποιεί τη συνθήκη ÿ υ = 0.