Endogoneity and All That

Σχετικά έγγραφα
Lecture 3: Asymptotic Normality of M-estimators

Homework for 1/27 Due 2/5

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

LAD Estimation for Time Series Models With Finite and Infinite Variance

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Solutions: Homework 3

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

1. For each of the following power series, find the interval of convergence and the radius of convergence:

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Solve the difference equation

6.3 Forecasting ARMA processes

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Other Test Constructions: Likelihood Ratio & Bayes Tests

Outline. Detection Theory. Background. Background (Cont.)

The Equivalence Theorem in Optimal Design


Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Every set of first-order formulas is equivalent to an independent set

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Lecture 7: Overdispersion in Poisson regression

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

IIT JEE (2013) (Trigonomtery 1) Solutions

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Lecture 34 Bootstrap confidence intervals

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

The Simply Typed Lambda Calculus

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

The Heisenberg Uncertainty Principle

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Ψηφιακή Επεξεργασία Εικόνας

Solution Series 9. i=1 x i and i=1 x i.

Proof of Lemmas Lemma 1 Consider ξ nt = r

EE512: Error Control Coding

Degenerate Perturbation Theory

Statistical Inference I Locally most powerful tests

4.6 Autoregressive Moving Average Model ARMA(1,1)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

p n r

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

On Generating Relations of Some Triple. Hypergeometric Functions

1. Matrix Algebra and Linear Economic Models

EN40: Dynamics and Vibrations

Bessel function for complex variable

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

2 Composition. Invertible Mappings

Bayesian modeling of inseparable space-time variation in disease risk

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 21: Properties and robustness of LSE

Tridiagonal matrices. Gérard MEURANT. October, 2008

Diane Hu LDA for Audio Music April 12, 2010

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Srednicki Chapter 55

The Neutrix Product of the Distributions r. x λ

Models for Probabilistic Programs with an Adversary

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Fractional Colorings and Zykov Products of graphs

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

C.S. 430 Assignment 6, Sample Solutions

Lecture 12: Pseudo likelihood approach

Notes on the Open Economy

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Section 8.3 Trigonometric Equations

ST5224: Advanced Statistical Theory II

Uniform Convergence of Fourier Series Michael Taylor

Inertial Navigation Mechanization and Error Equations

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Reminders: linear functions

On the Galois Group of Linear Difference-Differential Equations

Α Ρ Ι Θ Μ Ο Σ : 6.913

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Local Approximation with Kernels

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Space-Time Symmetries

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Three Classical Tests; Wald, LM(Score), and LR tests

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

FORMULAS FOR STATISTICS 1

Online Appendix for Measuring the Dark Matter in Asset Pricing Models

Variance Covariance Matrices for Linear Regression with Errors in both Variables. by J.W. Gillard and T.C. Iles

3. SEEMINGLY UNRELATED REGRESSIONS (SUR)

Example Sheet 3 Solutions

Matrices and Determinants

Supplemental Material to Comparison of inferential methods in partially identified models in terms of error in coverage probability

The ε-pseudospectrum of a Matrix

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

α β

derivation of the Laplacian from rectangular to spherical coordinates

A study on generalized absolute summability factors for a triangular matrix

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Transcript:

Edogoeity ad All That Roger Koeker Uiversity of Illiois, Urbaa-Champaig Uiversity of Miho 12-14 Jue 2017 Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 1 / 17

Is there IV for QR? Amemiya (1982) ad Powell (1983) cosider aalogues of 2SLS for media regressio models Che ad Portoy (1986) ad Kim ad Muller (2004) cosider extesios to quatile regressio Abadie, Agrist ad Imbes (2002) cosider models with biary edogoous treatmet Cherozhukov ad Hase (2003) propose iverse quatile regressio Chesher (2003) cosiders triagular models with cotiuous edogoous variables. Recet surveys by Cherozhukov, Hase ad Wüthrich ad Melly ad Wüthrich i the forthcomig Hadbook of Quatile Regressio. Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 2 / 17

Abadie-Agrist-Imbes QTE Model: Q Y (τ D, X, D 1 > D 0 ) = Dα(τ) + Xβ(τ) where D i deotes (potetial) treatmet status uder the (radomized) biary itet-to-treat, Z. Let π(x) = P(Z = 1 X), ad defie κ(d, Z, X) = 1 D(1 Z) 1 π(x) (1 D)Z π(x) which is 1 if D = Z for compliers ad less tha zero otherwise. We would like to estimate the model by solvig the empirical couterpart of, mi Eκρ τ (Y Dα Xβ) but egative weights are problematic so,settig ν = E(Z Y, D, X) it is proposed to replace κ by a estimate of, κ ν = E[κ U = (Y, D, X)] = 1 D(1 ν(u)) 1 π(x) (1 D)ν(U) π(x) Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 3 / 17

Cherozhukov ad Hase QRIV Motivatio: Yet aother way to view two stage least squares. Model: y = Xβ + Zα + u, W u Estimator: ˆα = argmi α ˆγ(α) 2 A=W M X W ˆγ(α) = argmi γ y Xβ Zα Wγ 2 Thm ˆα = (Z P MX WZ) 1 Z P MX Wy, the 2SLS estimator. Heuristic: ˆα is chose to make ˆγ(α) as small as possible to satisfy (approximately) the exclusio restrictio/assumptio. Geeralizatio: The quatile regressio versio simply replaces 2 i the defiitio of ˆγ by the correspodig QR orm. Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 4 / 17

A Liear Locatio Shift Recursive Model Y = Sα 1 + x α 2 + ɛ + λν (1) S = zβ 1 + x β 2 + ν (2) Suppose: ɛ ν ad (ɛ, ν) (z, x). Substitutig for ν from (2) ito (1), Q Y (τ 1 S, x, z) = S(α 1 + λ) + x (α 2 λβ 2 ) + z( λβ 1 ) + F 1 ɛ (τ 1 ) Q S (τ 2 z, x) = zβ 1 + x β 2 + F 1 ν (τ 2 ) π 1 (τ 1, τ 2 ) = Si Q Yi Si =Q Si + z i Q Yi Si =Q Si zi Q Si = (α 1 + λ) + ( λβ 1 )/β 1 = α 1 Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 5 / 17

A Liear Locatio-Scale Shift Model Y = Sα 1 + x α 2 + S(ɛ + λν) S = zβ 1 + x β 2 + ν π 1 (τ 1, τ 2 ) = α 1 + F 1 ɛ (τ 1 ) + λf 1 ν (τ 2 ) ˆπ 1 (τ 1, τ 2 ) = Q Y (τ 1 S, x, z) = Sθ 1 (τ 1 ) + x θ 2 + S 2 θ 3 + Szθ 4 + Sx θ 5 Q S (τ 2 z, x) = zβ 1 + x β 2 + F 1 ν (τ 2 ) w i {ˆθ 1 (τ 1 )+2 ˆQ Si ˆθ 3 (τ 1 )+z iˆθ 4 (τ 1 )+x ˆθ i 5 (τ 1 )+ ˆQ Si ˆθ 4 (τ 1 ) } ˆβ 1 (τ 2 ) a weighted average derivative estimator with ˆQ Si = ˆQ S (τ 2 z i, x i ). Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 6 / 17

The Geeral Recursive Model Strotz & Wold (1960) Y = ϕ 1 (S, x, ɛ, ν; α) S = ϕ 2 (z, x, ν; β) Suppose: ɛ ν ad (ɛ, ν) (z, x). Solvig for ν ad substitutig we have the coditioal quatile fuctios, Q Y (τ 1 S, x, z) = h 1 (S, x, z, θ(τ 1 )) Q S (τ 2 z, x) = h 2 (z, x, β(τ 2 )) Extesios to more tha two edogoous variables are straightforward. Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 7 / 17

The (Chesher) Weighted Average Derivative Estimator ˆθ(τ 1 ) = argmi θ ρ τ1 (Y i h 1 (S, x, z, θ(τ 1 ))) ˆβ(τ 2 ) = argmi β ρ τ2 (S i h 2 (z, x, β(τ 2 ))) where ρ τ (u) = u(τ I(u < 0)), givig structural estimators: ˆπ 1 (τ 1, τ 2 ) = ˆπ 2 (τ 1, τ 2 ) = w i { S ĥ 1i Si =ĥ 2i + zĥ1i } Si =ĥ 2i, z ĥ 2i w i { x ĥ 1i Si =ĥ 2i zĥ1i Si =ĥ 2i z ĥ 2i x ĥ 2i }, Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 8 / 17

2SLS as a Cotrol Variate Estimator Y = Sα 1 + X 1 α 2 + u Zα + u S = Xβ + V, where X = [X 1.X 2 ] Set ˆV = S Ŝ M X Y 1, ad cosider the least squares estimator of the model, Y = Zα + ˆVγ + w Claim: ˆα CV (Z M ˆV Z) 1 Z M ˆV Y = (Z P X Z) 1 Z P X Y ˆα 2SLS. Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 9 / 17

Proof of Cotrol Variate Equivalece M ˆV = M M X S = I M X S(S M X S) 1 S M X S M ˆV = S S M X = S P X X 1 M ˆV = X 1 X 1 M X = X 1 = X 1 P X Reward for iformatio leadig to a referece prior to Dhrymes (1970). Recet work o the cotrol variate approach by Bludell, Powell, Smith, Newey ad others. Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 10 / 17

Quatile Regressio Cotrol Variate Estimatio I Locatio scale shift model: Y = S(α 1 + ɛ + λν) + x α 2 S = zβ 1 + x β 2 + ν. Usig ˆν(τ 2 ) = S ˆQ S (τ 2 z, x) as a cotrol variate, Y = w α(τ 1, τ 2 ) + λs( ˆQ S Q S ) + S(ɛ F 1 ɛ (τ 1 )), where w = (S, x, Sˆν(τ 2 )) α(τ 1, τ 2 ) = (α 1 (τ 1, τ 2 ), α 2, λ) α 1 (τ 1, τ 2 ) = α 1 + F 1 ɛ (τ 1 ) + λf 1 ν (τ 2 ). ˆα(τ 1, τ 2 ) = argmi a ρ τ1 (Y i w i a). Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 11 / 17

Quatile Regressio Cotrol Variate Estimatio II Y = ϕ 1 (S, x, ɛ, ν; α) S = ϕ 2 (z, x, ν; β) Regardig ν(τ 2 ) = ν F 1 ν (τ 2 ) as a cotrol variate, we have Q Y (τ 1 S, x, ν(τ 2 )) = g 1 (S, x, ν(τ 2 ), α(τ 1, τ 2 )) Q S (τ 2 z, x) = g 2 (z, x, β(τ 2 )) ˆν(τ 2 ) = ϕ 1 2 (S, z, x, ˆβ) ϕ 1 2 ( ˆQ s, z, x, ˆβ) ˆα(τ 1, τ 2 ) = argmi a ρ τ1 (Y i g 1 (S, x, ˆν(τ 2 ), a)). Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 12 / 17

Asymptopia Theorem: Uder regularity coditios, the weighted average derivative ad cotrol variate estimators of the Chesher structural effect have a asymptotic liear (Bahadur) represetatio, ad after efficiet reweightig of both estimators, the cotrol variate estimator has smaller covariace matrix tha the weighted average derivative estimator. Remark: The cotrol variate estimator imposes more striget restrictios o the estimatio of the hybrid structural equatio ad should thus be expected to perform better whe the specificatio is correct. The advatages of the cotrol variate approach are magified i situatios of overidetificatio. Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 13 / 17

Asymptotics for WAD Theorem The ˆπ (τ 1, τ 2 ) has the asymptotic liear (Bahadur) represetatio, (ˆπ (τ 1, τ 2 ) π(τ 1, τ 2 )) = W 1 J 1 1 + W 2 J 1 2 1 σ i1 ḣ i1 ψ τ1 (Y i1 ξ i1 ) 1 σ i2 ḣ i2 ψ τ2 (Y i2 ξ i2 ) = N(0, ω 11 W 1 J 1 1 J 1 J 1 1 W 1 + ω 22 W 2 J 1 2 J 2 J 1 2 W 2 ) 1 J j = lim σ 2 ij ḣ ij ḣ 1 ij, J j = lim σij f ij (ξ ij )ḣ ij ḣ ij, W 1 = θ π(τ 1, τ 2 ), W 2 = β π(τ 1, τ 2 ), ḣ i1 = θ h i1, ḣ i2 = β h i2, ω jj = τ j (1 τ j ). Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 14 / 17

Asymptotics for CV Theorem The ˆα (τ 1, τ 2 ) has the Bahadur represetatio, (ˆα (τ 1, τ 2 ) α(τ 1, τ 2 )) = D 1 1 + D 1 1 = N(0, ω 11 D 1 1 D 1 1 D D 12 D 1 2 1 + ω 22 D 1 1 1 σ i1 ġ i1 ψ τ1 (Y i1 ξ i1 ) 1 σ i2 ġ i2 ψ τ2 (Y i2 ξ i2 ) D 12 D 1 2 D 2 1 D 2 D 1 12 D 1 ) D j = lim 1 σ 2 ijġijġ ij, D j = lim 1 σ ij f ij (ξ ij )ġ ij ġ ij, D 12 = lim 1 σ i1 f i1 η i ġ i1 ġ i2, ġ i1 = α g i1, ġ i2 = β g i2, η i = ( g 1i / ν i2 (τ 2 ))( νi2 ϕ i2 ) 1. Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 15 / 17

ARE of WAD ad CV Efficiet weights: σ ij = f ij (ξ ij ) (ˆπ (τ 1, τ 2 ) π(τ 1, τ 2 )) N(0, ω 11 W 1 J 1 1 W 1 + ω 22 W 2 J 1 2 W 2 ) (ˆα (τ 1, τ 2 ) α(τ 1, τ 2 )) N(0, ω 11 D 1 1 + ω 22 D 1 1 D 12D 1 2 D 12D 1 1 ). The mappig: π = Lˆα, Lα = π. W 1 J 1 1 W 1 LD 1 1 L W 2 J 1 2 W 2 LD 1 1 D 12D 1 2 D 12D 1 1 L. Theorem Uder efficiet reweightig of both estimators, Avar( π ) Avar( ˆπ ). Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 16 / 17

Coclusios Triagular structural models facilitate causal aalysis via recursive coditioig, directed acyclic graph represetatio. Recursive coditioal quatile models yield iterpretable heterogeeous structural effects. Cotrol variate methods offer computatioally ad statistically efficiet strategies for estimatig heterogeeous structural effects. Weighted average derivative methods offer a less restrictive strategy for estimatio that offers potetial for model diagostics ad testig. Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 17 / 17