([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Σχετικά έγγραφα
u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Curved Fold Origami. Marcelo A. Dias & Christian D. Santangelo NSF DMR

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

L p approach to free boundary problems of the Navier-Stokes equation

( ) Kähler X ( ),. Floer -Oh- - [6]. X Fano *, X ( = (C ) N ) W : X C ( ) (X,W). X = P, W (y) =y + Q/y. Q P. Φ:X R N, Δ=Φ(X). u Int Δ, Lagrange L(u) =

X g 1990 g PSRB

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Heisenberg Uniqueness pairs

Jacobian Elliptic Function Method and Solitary Wave Solutions for Hybrid Lattice Equation

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping

ΟΛΟΚΛΗΡΩΣΙΜΕΣ ΜΗ ΓΡΑΜΜΙΚΕΣ ΜΕΡΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

IUTeich. [Pano] (2) IUTeich

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

On the Galois Group of Linear Difference-Differential Equations

D Alembert s Solution to the Wave Equation

ITU-R P ITU-R P (ITU-R 204/3 ( )

Discriminantal arrangement

ITU-R P (2012/02) &' (

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Differential equations

arxiv: v1 [math.dg] 31 Jan 2009

New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

n+1 v x x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) =

Homework 8 Model Solution Section

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS


Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Higher spin gauge theories and their CFT duals

Geodesic paths for quantum many-body systems

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Dispersive estimates for rotating fluids and stably stratified fluids

LTI Systems (1A) Young Won Lim 3/21/15

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Rectangular Polar Parametric

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

Java Applets. Visual Simulation of Classical Mechanics in terms of Java Applets. Toshiaki Izumoto 1 and Yuki Irokawa 1. Java Graphics 1) 2) 6)

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Inverse trigonometric functions & General Solution of Trigonometric Equations

Research Article Weingarten and Linear Weingarten Type Tubular Surfaces in E 3

Exact Two Waves Solutions with Variable Amplitude to the KdV Equation 1

Chapter 6 BLM Answers

Lectures on Quantum sine-gordon Models

New Soliton-like Solutions and Multi-soliton Structures for Broer Kaup System with Variable Coefficients

Second Order RLC Filters

The Pohozaev identity for the fractional Laplacian

Ηλεκτρονικοί Υπολογιστές IV

Critical Dynamics in Driven-Dissipative Bose-Einstein Condensation

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

ADVANCES IN MECHANICS Jan. 25, Newton ( ) ,., Newton. , Euler, d Alembert. Lagrange,, , Hamilton ( )

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

[4], [5], [6], [7], [8], [9], [10], [11].

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

Solutions - Chapter 4

Lotka Volterra. Stability Analysis of Delayed Periodic Lotka Volterra Systems

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Smarandache Curves of a Spacelike Curve According to the Bishop Frame of Type-2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

3-dimensional motion simulation of a ship in waves using composite grid method

A Laplace Type Problem for a Lattice with Cell Composed by Three Triangles with Obstacles

Section 8.3 Trigonometric Equations

On Asymptotic Behaviour of Positive Solutions of x = t α/2 2 x 1+α in the Superlinear Case

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1


The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Τίτλος Μαθήματος: Διαφορική Γεωμετρία II

Spherical Coordinates

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

page: 2 (2.1) n + 1 n {n} N 0, 1, 2

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons E. Witten Chern-

Discretization of Generalized Convection-Diffusion

Phase Response Curve of Spike Response Model

γ γ(t) x 2 + y2 tan t. , et e t a 2 t +e t

THE GEOMETRY OF VORTEX FILAMENTS FOR MHD IN MINKOWSKI 3-SPACE

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Expansion formulae of sampled zeros and a method to relocate the zeros

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

The Spiral of Theodorus, Numerical Analysis, and Special Functions

ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΙΑΧΥΤΟΤΗΤΩΝ ΜΕΡΙΚΩΣ ΚΟΡΕΣΜΕΝΩΝ ΠΟΡΩ ΩΝ ΥΛΙΚΩΝ ΜΕΣΩ ΣΤΟΧΑΣΤΙΚΑ ΑΝΑΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΠΟΡΩ ΩΝ ΟΜΩΝ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CYLINDRICAL & SPHERICAL COORDINATES

6.4 Superposition of Linear Plane Progressive Waves

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

1 String with massive end-points

Smarandache Curves and Applications According to Type-2 Bishop Frame in Euclidean 3-Space

Curves of Constant Curvatures in Four Dimensional Spacetime

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

> ##################### FEUILLE N3 237 ###################################### Exercice 1. plot([cos(3*t), sin(2*t), t=-pi..pi]);

Transcript:

5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59-

, κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv. [] Musso []. [9] mkdv,,. R M p TpM = {at + bn a bκ = 0}. M presymplectic ω ωpat + bn, T + N = at + bn, αt + βn ds = b + aκβds S S M H Hp = S κs ds H X H X H = κ T + κ N mkdv KdV [3], [5], [].,.,,. [5], [6], [8] mkdv 977 [4]. mkdv -60-

.,., R, Z n p n. p n+ p n =. p n..,. p n+ p n =. p n+ p n ϵ = ϕ n. p n, p n = p n+ p n p n. p p n ϕ n. p n p n+ S n. p n. T n = p n + p,. Tim Hoffmann.,. ps. rs. κs = /rs κs., +, /rs κs.. p n p, p n+ 3 C v n. 3 3. p n. 3-6-

. p n, T n C v n. r v n r v n = sin ϕ n, κ v n = ±/r v n = ± sinϕ n /.... 3 S, S n, S n+. p p n p, p n. p n, p n+, O e n., 3 S, S n, S n+, p n. r e n r e n = tan ϕ n + tan ϕ n+. /rn e, 3,. Hoffmann [8]. p n,, S S n. r n = tan ϕ n. /r n κ n,. [8]. 4, O, Musin[] S. Tabachnikov[6],. 3 Hoffmann Kutz[9] mkdv.. p n+ p n ϵ = -6-

d dt p n = ϵ p n+ p n p n+ p n d dt κ n = + ϵ ϵ 4 κ n κ n+ κ n mkdv [7] ϕ n,. [9]. n, m p m n p m n+ p m n =, a n, p m n+ p m n a n p m+ n p m n b m = RK m n pm n p m a, Frenet, = RW m n pm n+ p m n a n, RK m n K m n p m n+ p m n a n = t cos Ψ m n, sin Ψ m n K m n = Ψ m n Ψ m. 3 [9] p n+ m+ = p m+ n+. Θ m n tan Θ m+ n+ Θm n = b m + a n Θ m+ n Θ m n+a tan 4 b m a n 4. W m n n Θ m n+, Kn m = Θm n+ Θ m = Θm+ mkdv [5]. mkdv ps = xs, ys T s = x s, y s = cos θs, sin θs -63-

θ s = κs mkdv θs, t mkdv. θ t + θ s 3 + θ sss = 0 mkdv. Hoffmann-Kutz κ m n = tan Km n a n [4], a n = a, b m = b t := n + m, l := n m, δ := a + b, ϵ := a b δ 0 Hoffmann-Kutz 4 mkdv bilinear method, 3 fs, y, t gs, y, t D i sd j yd k t f g := s s i y y j t t k fx, y, tgx, y, t s=s,y=y,t=t. D s. n D n s f g = n r=0 n r s n r f s r g 4 [3] τ m n s, t; y D sd y τ m n τ m n = τ m n, 3 D sτ m n τ m n = 0, 4 D 3 s + D t τ m n τ m n = 0, 5 D y τ m n+ τ m n = a n τ m n+ τ m n, 6 D y τn m+ τn m = b m τ n+ τ m n m, 7 b m τ n m+ τn+ m a n τ n+τ m n m+ + a n b m τ n+ m+ n m = 0. 8-64-

p m n s, t; y := Θ m n s, t; y := log τ m n τ m n y logτ m n τ m n logτ m n / τ m n m, n Z, y R s, t p m n s, t; y mkdv s, t, y R n, m p m n s, t; y mkdv τ m n. breather solution [3]. N Z 0, τ m n u = τ m n s, t; y, z; u τ m n u = exp f i u [ s + n a n + m b m = f u i s, t; y, z; m, n i =,..., N y ] det f i u+j, i,j=,...,n f i u s = f i u+, f u i z = f i u+, f u i t = 4f i u+3, f u i y = f i u, f u i m, n f u m, n = f i u+ a m, n, f u i m, n f u m, n = f i u+ m, n n b m. N = 0, detf i u+j i,j=...,n =. f u i f u i = e η i + e µ i, 9 e η i = α i p u i a n p i b m p i e pis+p i z 4p3 i t+ p y i, n m 0 e µ j = β i qi u a n q i b m q i e qis+q i z 4q3 i t+ q y i, p i, q i, α i, β i. n m -65-

τ τ m n = exp [ s + n a n + m b m y ] det f i j, i,j=,...,n e η i e µ j n f i u = e η i + e µ i, = α i p u i a n p i b m p i e pis 4p n m 3 i t+ p i y, = β i p i u + a n p i + b m p i e pis+4p m 3 i t p i y. p i, α i R, β i R i =,..., N, τ m n mkdv mkdv N- N = M, τ m n p i, α i, β i C i =,..., M, p k = p k k =,..., M, α k = α k, β k = β k k =,..., M mkdv mkdv M- 5 mkdv ps, t px, t = x, yx, t. mkdv u x u t = + u 3/, u = y x xx WKI rs, t := exp θs, t, zs, t := s 0 rs, t ds Dym r t = r 3 r zzz []. -66-

[] B.-F. Feng, J. Inoguchi, K. Kajiwara, K. Maruno and Y. Ohta, Discrete integrable systems and hodograph transformations arising from motion of deiscrete plane curves, preprint, arxiv:07.48, 0. [] A. Fujioka and T. Kurose, Hamiltonian formalism for the higher KdV flows on the space of closed complex equicentroaffine curves, Int. J. Geom. Methods Modern Phys. 700, no., 65 75. [3] R. E. Goldstein and D. M. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett. 6799, no. 3, 303 306. [4], Nonlinear partial difference equations. I. A difference analogue of the Kortewegde Vries equation, J. Phys. Soc. Japan 43977, no. 4, 44 433. [5], Discretization of the potential modified KdV equation, J. Phys. Soc. Japan 67998, no. 4, 34 36. [6],,, 003. [7] M. Hisakado, K. Nakayama, and M. Wadati, Motion of discrete curves in the plane, J. Phys. Soc. Japan 64995, no. 7, 390 393. [8] T. Hoffmann, Discrete Differential Geometry of Curves and Surfaces, COE, Vol. 8, 009 [8]. [9] T. Hoffmann and N. Kutz, Discrete curves in CP and the Toda lattice, Stud. Appl. Math. 3 004 3 55. [0],,, 007. [],,, 00. [],,, 00 0, 6 3. [3] J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta, Motion and Bäcklund transformations of discrete plane curves, Kyushu J. Math., to appear arxiv:008.808. [4] J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta, Explicit solutions to semi-discrete modified KdV equation and motion of discrete plane curves, preprint. [5],, [8]. [6] W. Rossman,, 48 00, 9 5. [7] G. L. Lamb Jr., Solitons and the motion of helical curves, Phys. Rev. Lett. 37976, no. 5, 35 37. [8],,,, 000, pp. 95 9. [9] N. Matsuura, Discrete KdV and discrete modified KdV equations arising from motions of planar discrete curves, Int. Math. Res. Notices, to appear doi:0.093/imrn/rnr080-67-

9, http://gandalf.math.kyushu-u.ac.jp/disddg/. [0],,, A0-580,, pp. 6 74. [] O. R. Musin, Curvature extrema and four-vertex theorems for polygons and polyhedra, J. Math. Sci. 9 004, no. 0, 68 77. [] E. Musso, An experimental study of Goldstein-Petrich curves, Rend. Sem. Mat. Univ. Pol. Torino 67009, no. 4, 407 46. [3] U. Pinkall, Hamiltonian flows on the space of star-shaped curves, Results Math.7995, no. 3-4, 38 33. [4] W. Rossman, Discrete Constant Mean Curvature Surfaces via Conserved Quantities, COE 5, 00. [5] G. Segal, The geometry of the KdV equation, Int. J. Modern Phys. A 6 99, 859 869. [6] S. Tanachnikov, A four vertex theorem for polygons, Amer. Math. Monthly 07000, no. 9, 830 833. [7] M. Umehara, A unified approach to the four vertex theorems. I.,in: Differential and Symplectic Topology of Knots and Curves, 85 8, Amer. Math. Soc. Transl. Ser., 90999, pp. 85 8. [8],,, 00. inoguchi@sci.kj.yamagata-u.ac.jp -68-