ECE 222b Applied Electromagnetics Notes Set 3a

Σχετικά έγγραφα
ECE 222b Applied Electromagnetics Notes Set 3b

webpage :

Chapter 4 : Linear Wire Antenna

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

Homework 8 Model Solution Section

Spherical Coordinates

Appendix A. Stability of the logistic semi-discrete model.

Chapter 7a. Elements of Elasticity, Thermal Stresses

MA6451-PROBABILITY & RANDOM PROCESS. UNIT-IV-CORRELATION AND SPECTRAL DENSITIES By K.VIJAYALAKSHMI Dept. of Applied mathematics

Tutorial Note - Week 09 - Solution

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

Electromagnetic Engineering MAPTele

Chapter 1 Fundamentals in Elasticity

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Sequential Bayesian Search Appendices

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

(b) flat (continuous) fins on an array of tubes

Matrix Hartree-Fock Equations for a Closed Shell System

6.003: Signals and Systems

Curvilinear Systems of Coordinates

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

6.003: Signals and Systems. Modulation

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Example 1: THE ELECTRIC DIPOLE

ω = radians per sec, t = 3 sec

Rektangulär fläns, Rectangular fin

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Laplace s Equation in Spherical Polar Coördinates

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution


) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

( ) ρ ρ + + = + d dt. ME 309 Formula Sheet. dp g dz = ρ. = f +ΣΚ and HS. +α + z = +α + z. δ =δ = δ =θ= τ =ρ =ρ. Page 1 of 7. Basic Equations.

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί

Fundamental Equations of Fluid Mechanics

Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Lecture 12 Modulation and Sampling


2/2/2018. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 105

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.

Χρονοσειρές Μάθημα 3

HMY 333 -Φωτονική Διάλεξη 09 Πόλωση

D-Wave D-Wave Systems Inc.

Inflation and Reheating in Spontaneously Generated Gravity

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University Physics 804 Electromagnetic Theory II

Accelerator Physics Synchrotron Radiation. A. Bogacz, G. A. Krafft, and T. Zolkin Jefferson Lab Colorado State University Lecture 8

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Example Sheet 3 Solutions

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

Lossy Medium EE142. Dr. Ray Kwok

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ΚΑΤΑ ISO ΤΥΠΟΠΟΙΗΣΗ TOY ΚΟΠΤΙΚΟΥ ΕΡΓΑΛΕΙΟΥ ΤΟΡΝΕΥΣΗΣ (ISO/DIS 3002, 1973)

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

b proj a b είναι κάθετο στο

Durbin-Levinson recursive method

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

General theorems of Optical Imaging systems

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Section 7.6 Double and Half Angle Formulas


Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ds ds ds = τ b k t (3)

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Motion of an Incompressible Fluid. with Unit Viscosity

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

SPECIAL FUNCTIONS and POLYNOMIALS

ST5224: Advanced Statistical Theory II

Inverse trigonometric functions & General Solution of Trigonometric Equations

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

Pairs of Random Variables

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Answer sheet: Third Midterm for Math 2339

Lifting Entry (continued)

Προβολές και Μετασχηματισμοί Παρατήρησης

ΣYΣKEYEΣ ΘEPMIKΩN ΔIEPΓAΣIΩN

webpage :

Application of Object Oriented Programming to a Computational Fluid Dynamics

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Bit Error Rate in Digital Photoreceivers

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου

Matrices and Determinants

Trigonometry 1.TRIGONOMETRIC RATIOS

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama

Ο μετασχηματισμός Fourier

Transcript:

C b lid lcomagnics Nos S 3a Insuco: Pof. Viali Lomakin Damn of lcical and Comu ngining Univsi of Califonia San Digo

Unifom Plan Wavs Consid Mawll s quaions: In a losslss mdium ε and µ a al and σ : Sinc ε ρ

3 Unifom Plan Wavs m M i J i ρ ε µε µ Similal In souc-f gion: m i M i J ρ ρ µε µε µε o Wav quaions Lalacian oao Poagaion consan

Unifom Plan Wavs 3 Scial cas: Wav quaion Two soluions: Consid Dfin ininsic imdanc: µ ε hn 4

Unifom Plan Wavs 4 Wav imdanc: In im domain: R qui-has lan: Z w µ ε [ ] [ ] R cos Unifom Plan Wav consan d d Phas vloci: v d d µε v µε Sd of ligh 8 µ µ ε ε v 3 m/s µ ε In vacuum 5

6 Unifom Plan Wavs 5 Wavlngh: λ π π π λ v v f v T wavnumb cos cos cos cos cos w w m ε µ µ ε ε cos S Consid Filds ng dnsi Pow flow dnsi

Unifom Plan Wavs 6 ng vloci: v ow flow dnsi ng dnsi w S w m µε Consid cos cos [ ] [ ] cos cos consan Wav ack Gou vloci: v g d d d d µε 7

Unifom Plan Wavs 7 Phas vloci: v d d d d v v v dv d v g v dv v d No dission: dv d v g v Nomal dission: dv d < v < g v 3 nomalous dission: dv d > v > g v 8

Unifom Plan Wavs 8 Sanding wav: In fqunc domain In im domain sin R[ ] sin sin. Th has is indndn of o. w ε ε cos cos wm µ ε sin sin cos cos cos v 9

sin sin sin sin cos cos 4 S Unifom Plan Wavs 9 Tim avag sin cos sin * S R - avag ow flow Tim S sin cos sin cos sin cos Fo a mo gnal cas: cos sin cos

Unifom Plan Wavs ma min an [ an ] Sanding wav aio SWR: SWR ma min Γ Γ Fo a u avling wav : SWR Fo a u sanding wav : SWR Fo a gnal wav : SWR <

Unifom Plan Wavs Unifom lan wav in a loss mdium: µ M i ε σ J ε σ In a souc-f gion: Z w i µ ε σ µ µ ε σ siml cas: d α d J i

Unifom Plan Wavs Possibl soluions: ow o find α and? α α µ ε σ α Coml quaion µε α µσ α µσ α α µσ 4α µε 4 α µεα µσ 4 3

4 Dsid soluion ε σ ε σ µε µε α α α 4 3 α α α α α Fou soluions: Unifom Plan Wavs 3

Unifom Plan Wavs 4 α µε µε σ ε σ ε µ ε σ. Fo fc conduco: σ α. Fo fc dilcic: σ α µε µ ε 5

Unifom Plan Wavs 5 << 3. Fo good dilcic: σ ε σ 4 σ σ σ ε ε 8 ε ε α µε σ σ µ µ ε µε ε ε 4. Fo good conduco: σ >> σ σ ε ε 3 ε ε σ σ ε 8 α µε σ µσ µσ µ ε σ 6

Unifom Plan Wavs 6 Skin dh: Th fild amliud ducs o 36.8% δ α α µε σ ε m. Fo fc conduco:. Fo fc dilcic: 3. Fo good conduco: 4. Fo good dilcic: δ δ δ µσ ε δ σ µ 7

8 Polaiaion Polaiaion: Th dicion of h lcic fild. Linal olaid in h dicion. Linal olaid in h dicion.. 3. Consid hi combinaion:

9 In im domain: cos cos cos cos R R R b a b a a Polaiaion. If hn b a cos a Linal olaid in h dicion: - an φ φ

. If hn π a b sin cos sin cos lliicall olaid Lf-hand Coun-clockwis Polaiaion 3 ciculal olaid If

Polaiaion 4 a π b 3. If hn sin cos lliicall olaid Righ-hand Clock wis If ciculal olaid

Polaiaion 5 Summa. Linal olaid:. Ciculal olaid: 3. lliicall olaid:

3 Obsvaion #: Polaiaion 6 n lliicall o ciculal olaid wav can b dcomosd ino wo linal olaid wavs. Obsvaion #: linal olaid wav can b dcomosd ino wo lliicall o ciculal olaid wavs. - hand igh - hand lf

4 Obsvaion #3: Polaiaion 7 cos S Fo a linal olaid wav: Fo a ciculal olaid wav: sin cos cos sin sin cos S Sad ow flow

5 Unifom Plan Wavs Wav quaion: µε Vco fom Scala fom In cangula coodinas: Z Y X T saaion of vaiabls: XYZ Z XY Y XZ X YZ Z Z Y Y X X

6 Saaion: Z Z Y Y X X Unifom Plan Wavs Z Z Y Y X X XYZ

7 Similal C α α cos ] R[ α α Unifom Plan Wavs 3 qui-amliud: consan α qui-has: consan Unifom Plan Wavs qui-has lan: consan v Phas vloci

8 Unifom Plan Wavs 4 d d α α α α Fo Fo Usful mahmaical fomulas: Consid a unifom lan wav: µ µ ε ε µ ε

9 Fo a losslss lan wavs and a alwas ndicula o. µ Sinc c b a b c a c b a Unifom Plan Wavs 5 µ iad fom a k µε µ Sinc k k Dission laion

Unifom Plan Wavs 6 Summa: 3

3 Unifom Plan Wavs 7 Fo a mdium wih a ngaiv miivi and ngaiv mabili Doubl ngaiv: Sinc c b a b c a c b a Lf-handd maial LM: ackwad oagaion

3 Plan Wavs Gnad b Cun Sh ssum a im-hamonic cun: m m h s h J J J J δ : Fo : Fo ε µ µ ε < > Find filds gnad b his cun sh.

33 Fom has maching : Fom bounda condiion : h h J J n h h s µ ε Plan Wavs Gnad b Cun Sh h h ε µ J J N find h lcic fild.

Plan Wavs Gnad b Cun Sh 3 Fom ε ε ε h h h ε h ssum ha µ µ ε ε. Fom bounda condiion : n h h 34

35 J h h Plan Wavs Gnad b Cun Sh 4 h h J h J h Thfo J J h Scial cas: