Determination of the Optimum Configuration for the FGM Rotating Cylinder Based on Thermo-mechanical Stresses

Σχετικά έγγραφα
Chapter 7a. Elements of Elasticity, Thermal Stresses

Investigation of Different Material Distributions and Thermal Boundary Conditions on Stress Field of FGM Rotating Hollow Disk

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

4.2 Differential Equations in Polar Coordinates

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

/&25*+* 24.&6,2(2**02)' 24

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

The Friction Stir Welding Process

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Chapter 7 Transformations of Stress and Strain

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

)))*+,-!-)#..!""-#)/..+-$-*..-!--+ -*

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

!"!# ""$ %%"" %$" &" %" "!'! " #$!

Homework 8 Model Solution Section

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

Mechanics of Materials Lab

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Example 1: THE ELECTRIC DIPOLE

Electronic Supplementary Information

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

Cable Systems - Postive/Negative Seq Impedance

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

a,b a f a = , , r = = r = T

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ

High order interpolation function for surface contact problem

Research Article Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid

( y) Partial Differential Equations

!" #$! '() -*,*( *(*)* *. 1#,2 (($3-*-/*/330%#& !" #$ -4*30*/335*

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

)# * ' +," -.(. / ( 01(#(' ( 0 #('( +' ")# *'+,"+ (. 20#('( / )%34"5 "+56336"% (%1/ :8;434(

Numerical Analysis FMN011

Department of Mechanical Engineering, University of Tabriz, Iran Department of Mechanical Engineering, University of Tabriz, Iran

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics


Prey-Taxis Holling-Tanner

'( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( +

Blowup of regular solutions for radial relativistic Euler equations with damping

Strain gauge and rosettes

!"# '1,2-0- +,$%& &-

Dr. D. Dinev, Department of Structural Mechanics, UACEG

(... )..!, ".. (! ) # - $ % % $ & % 2007

Matrices and Determinants

MATSEC Intermediate Past Papers Index L. Bonello, A. Vella

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Fundamental Equations of Fluid Mechanics

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

1 String with massive end-points

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Analytical Expression for Hessian

Finite Field Problems: Solutions

A SIMPLE WAY TO ESTABLISH THE EQUATION OF SHELLS s YIELD SURFACE

3.7 Governing Equations and Boundary Conditions for P-Flow

Congruence Classes of Invertible Matrices of Order 3 over F 2

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Second Order Partial Differential Equations

Το άτομο του Υδρογόνου

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

ITU-R P (2012/02) &' (

tel , version 1-7 Feb 2013

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΝΕΚΤΙΚΗΣ ΡΟΗΣ ΜΕ ΕΛΕΥΘΕΡΗ ΕΠΙΦΑΝΕΙΑ ΚΑΤΑ ΤΗ ΙΑ ΟΣΗ ΚΥΜΑΤΩΝ ΠΑΝΩ ΑΠΟ ΠΥΘΜΕΝΑ ΜΕ ΠΤΥΧΩΣΕΙΣ ΠΕΡΙΛΗΨΗ

!! "#$%& ! " # $ &%"+,(-. (# / 0 1%23%(2443

]Zp _[ I 8G4G /<4 6EE =A>/8E>4 06? E6/<; 6008:6> /8= 4; /823 ;1A :40 >176/812; 98/< ;76//40823 E182/;G g= = 4/<1

Erkki Mäkinen ja Timo Poranen Algoritmit

Exercises to Statistics of Material Fatigue No. 5

A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=

Areas and Lengths in Polar Coordinates

Tutorial Note - Week 09 - Solution

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Oscillatory Gap Damping

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Laplace s Equation in Spherical Polar Coördinates

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Second Order RLC Filters

Model NAST (Separable Type)

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. 2 η Πρόοδος. 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 30 Μαρτίου, 2017

Q Q Q 2Q b a a b


Lecture 26: Circular domains

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

MECHANICAL PROPERTIES OF MATERIALS

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

6.3 Forecasting ARMA processes

Supporting Information

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution , -.

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

Transcript:

5-4! 96 4 8 -+ *-./ -,-+.-./, ()*+' %&' -)68 4 ' 5-6 -./ - - >. - < ; : -89 4 4.4 56- >. - < ; : -89 4 56- ' 9 )6 '& * * ;<+ > Q P< A K LMN ; OF.. H I. J 8 @. - < ABC D< @? YZ 5 J Q F H O VW. X ) H 5C? 5CK S T 4 : U J 8 @. 5 :: @N. 5 Q K. N @B< 4 A< Q P< A K @N BBC ) K. ] 5 T 4 / Q \C B< [ K. VW... 4 FN. :: A K a D F - F4 5 / Q \C 4 _ `B; 58< 5 [ /. H A< BZ - ] ^..4 FN. [ 58C K. Jb. @/ Q J 8 \ @. BBC A< - < ABC :9?- Deteination of the Optiu Configuation fo the FGM otating Cylinde Based on Theo-echanical Stesses F. Vakili-Tahai S. Saadatand Hashei A. asoulian Faculty of Mechanical ngineeing, Univesity of Tabiz, Tabiz, Ian Young eseaches and lite Club, Tabiz Banch, Islaic Azad Univesity, Tabiz, Ian Young eseaches and lite Club, Tabiz Banch, Islaic Azad Univesity, Tabiz, Ian Abstact In this pape theo-echanical analysis fo a tating thick cylinde ade of FGM is caied out. Fo this pupose, govening diffeential equations of the tepeatue and displaceent distibution fo the FGM cylinde have been developed assuing plane stain and axial syety. Then, by consideing an exponential function fo fo the ateial ppety distibution of the FGM along the cylinde thickness; and, using analytical solution ethod, the govening diffeential equations fo tepeatue distibution have been solved. Based on the calculated tepeatue distibution and govening diffeential equations fo displaceent the echanical behavio of the cylinde has been investigated. Finally, accoding to the stess distibutions fo diffeent tating speed and intenal pessue, the safety factos have been obtained and the optiu ateial distibution is deteined. Keywods: Theo-echanical Analysis, Analytical Solution, otating Cylinde, Functionally Gaded Mateial (FGM), Optiu Mateial Distibution. K. 4 BZ - C / J 8 5. L ] /.. u / 58A4 ] @ O <.J U J Q ; \ K. P;D : J 8. 5> 5 l. [] J8 LMN S89. I. C lb 5C /: T T. Bv P< _: A K. \ V 4 JN A K LMN A ow YZ 4 5P? 5N ^N4 /: l. [] x... @j 8 6:9- - C J 8.M. 5> 5 q. ; y ].M l U BZ ; FJ8 :Z BZ 58M J 8 M 5> 6 l. [4] x 5.Z J 8 z> C J 8 5 5. ; b] -.M / Z. 8 5. A - J 8 YZ. O d L Nc. af. ] e;- H ^ F.. h?c f. ibj 58g;- 4 Z4. YZ L ] : W YZ F l 5M a k>z? :. ]. L J 8 N 6 - H 58 :.. 4 `B; L/: LK 58 AJC BI 585*H AJC `B; Q - C ; K. on. HH L/: H `B; [] p q. J8 ; Z. F 5 ; 586: 8S hi A< 5> l. * a.s.asoulian@tabizu.ac.i : 95/4/8 :! 95// :) *!

BZ - H l?.4 U BBC C J 8 V: P;D : 5. a D.M l.z yn4 N PB S H 5^. 5> 6 l. H a D [9] Z P;D : @. 5*H - H 58S ^N4 5.. YZ 5 S89.. Z. ] :Z \: B BZ \:. 6.. 4 H O H BZ -.M 5N 58S l. FJ8 [] - [. I. P;D: @. C ^64. BZ \: 5. 5 ow S? 8.4 (`g <) J : @. J 8 @..M ABC D< S89 A K LMN ; OF.. H I. T 4 : U J 8 @. 5 :: Q O VW. X ) H 5C? 5CK S ) K. YZ 5 J Q F H F K. N @B< Q A K @N BBC K. VW... 4 A< :: A K @N Q 5 T 4 / Q \C B< [ [ /. H A< BZ - ^. ] F4 5 / Q \C 4 _ `B; 58< 5.4 FN. [. Jb a D F - C -+ - D& F-6G.- --. yn4 ^ :: K ^ u U : 4 5. Lg; jc ^N4 S T du u ε, ε θθ jc S H ε θθ :4 () @j L 5C? ^N4 S * @j () 58S : U S -S T.4 σ ( λ + µ ) ε + λεθθ (λ + µ ) αt() σ θθ ( λ + µ ) ε θθ + λε (λ + µ ) αt() ε.4 jc ^N4 58S a :4 _ () @j L σ θθ () (4) () T /- M o µ λ FqJ8 ν λ ( + ν)( ν) σ :4 ` N µ (4) ( + ν). a D ν.m l - T F :4 L 5. Lg; ln @j.4 dσ + ( σ σ θθ ) () (5) l 5 Q U b] BZ - - Nj b] 5 * K a D.M l : K4 S 5 on 8 ] F C A< >. l. FJ8. b] @. YZ 5CK S S 58<.>-.M A< [5] J/. J L 5K}.. [6] 5CK S < - C Z 58. A< 5> 6 l. [] :x8 ) ^N4 5. YZ jz L ] FJ8) o YZ FJ8 8M. 5P? 5> l. [8] q. _ ( J8 F H O FJ8 @. 8S Q - 5?... J L.M l L ] FN ; - H @Nj >^ 8}K. N A_ 5 58..M ABC @. J8 58 5 58S89 FJ8..>-.M 5> l. [9] V >... 4 6 ABC A.>.M. J 8 @. HL 58U. - J P8 Z AZ PB.M l l. FJ8 [] J8.4 y 4 Z AZ a D.M l L ] 5 58Q i; C J 8.M A4 ] u H /b. I Nj BBC L H 5*H.M ABC 5> 9 l. [] b [] J 5<.Z J 8 5. 58; J 8 P;D : ;.>-.M l. FJ8 [ ABC l.> l. BZ - C [] AJ q.. ALA59/Sicp V: 5 58 8 8. S ABC 5> 9 l. ^N4 /: -..Z - C J 8.M l BJ: YZ L ] 4 U J 8 :I.4 U ^N4 @g; 8; Q. a D 58..M 5> l. [4] / < J 58S F H O J 8 P;D : 5/ l. FJ8.. S Q ABC U J 8.M [5] J8. ABC ^N4 Z ƒ Q ] ;D jz ƒ ABC 5> 4 l. [6] : 5J< 5*H C FGM Z 58.M Q hj ;D 5. ] YZ Z 5> 4 l. [] >ƒ JO^. H O. J 8 A- Z @. Q? z> 5N L...J 8 5 I.. 4 H O H Q d< @..>.M ABC 5> 5 l. [8]... J 8 4Z. @. Z. @/ Q FN 4

JN.. / B J48. k() k o :4 ` N () @j L YZ. () H. 5 BN o k o Q @N () @j K..4 YZ Q d + dt() [ ] :. () @j A4 (4) @j A4 Q () @N 5 Hl A T() + A T 4 K..4 5 Hl o hj A A A () :. A (4) 5 Hl o () T : 5 Cf Cf A ( ) + Ca C (Ca ) ( ) Cb + C (Cb ) ( ) + Ca (Ca )f ( ) Cb + (Cb )f A ( ) + Ca C (Ca ) ( ) Cb + C (Cb ) :4 FN (5) T N!. Q F V l< (5) : -: () :: Q P< A K d u du ν + ( + ) + ( )u ν + ν A α o[(( + )( ) + A ) ν + (+ )A ] d u du ν + ( + ) + ( )u ν A + A4 :4 ` N (8) T + ν A A α o(+ ) ν + ν A 4 A α o( + ) ν gz i: A 4 A a D () @j lj^ J^ i: N A< 5 (6) () (8) :4 ` N (9) @j L J^ i: 4 ` N g u B α α + B K. α α.4 J^ i: a D (9) :. () L^ L () @g;- N ν α( α ) + ( + ) α + ( ) ν ν α + α + ( ) ν B B () N L S89 F YZ : () o, α () αo :4 4 U a D.M l BN o a α o o a< (6) / 5*:.4 YZ Q 58 H : () T L () T.M l M o o σ [( ν + ν) ε ( + ν)( ν) + νεθθ ( + ν) αt()] o σ θθ [( ν + ν) εθθ ( + ν)( ν) :. 4 A< (8) + νε ( + ν) αt()] dσ o d u [( ν ) ( + ν)( ν) @N () @j 5 Hh- du du u + ( ν ) + ν ( ) dt + ν u / ( + ν)( αo + α o T + αo T) @N (5) @j ln N (8) () T 5*: d u du ( ν ) + [( ν ) + ( ν)] + [ ν ( + ν )]u dt ( + ν) α o[(+ )T + ] () @j A4 :: 5 () (8) :4 A< (9) A K A K d u du ν + ( + ) + ( )u ν + ν dt α o(( + )T + ) ν @N F (9) :4 A< j. 5 k>z 4 S @.C 5 () @j () N JI * X4.C Q BZ. H 8. H ABC 5 5v 5>Z <& F-6G.- -- I Q P< A K @N ;. 5 () @j 5 T 4 J8 I F.. 4 K. d dt() (k() ), a b dt(a) CT(a) + C f dt(b) CT(b) + C f :4 () H BN o f f C C C C / k.4 H. k :Z BZ yn4 b a V: 4

+α d [( ν) α + ν]a +α d [( ν) α + ν]a +α d [( ν) α + ν]b +α d 4 [( ν) α + ν]b p i( + ν)( ν) d5 o + [(( ν ) + )D ( + ν) αoa ] a [(( ν)( ) + )D + ν + + α oa ] a p o( + ν)( ν) d6 o + [(( ν ) + )D ( + ν) αoa ] b [(( ν)( ) + )D + ν + + α oa ] b :. 4 o a< :: N / α α + + u() B + B + D + D () (4) (5) & D& F-6G.- ;- *- HI- -- U F Z C l< ω ^.. 4 J6< \ H 5 lj^ N LMN : I F N YZ 5.N58.4 A< ρω u T, U, T ɵ o u T k α ρ K, α,, ρ ko αo o ρo K, α,, ρ 4 H. a yn4 T U N ρ α K 58 u.m l (6) H 4.4 N 5 :: YZ ρ o o α o k o.4 YZ Q 58 T 58 @N * ɵu :Z yn4 o.4. :Z yn4 58 lj^.4 :: N dσ + ( σ σ θθ ) + ρω o ( ν) ɵ d du d U { u( + ) ( ν )( + ν) d d o d νuɵ d du U + ( U + ) d d o T αo d dt dα ( + ν) (Tα + α + T )} d d d o ɵ du U + u( ) + ρρ oω ( + ν) d o :4 A< (9) @N ρ o o ω : 8Z (8) @j L () ln () (8) (8) @N F b P? ν.5 α, α ± ( + ) 4 ν i: N FJ8 k b B N A4 : p + + u D + D () :4 ` N () L^ L gz o * A K N gz i: 5*: A A D 4, D q q () :. () T hb D D () :4 ` N (4) T L q q o / ν q [( + ) + ( + )( + ) + ( )] ν q [( + )( ) ν + ( + )( + ) + ( )] :4 ` N (5) @j ν A K @N B i: p g u() u + u α α + + B + B + D + D :4 ` N () (6).J ^N4 58S α α ε Bα + Bα + D ( + ) + D ( + ) α α ε B B D D θθ + + + T K. 8S S Q FN V o α σ [(( ν) α + ν)b ( + ν)( ν) α + (( ν) α + ν)b + ((( ν ) + )D ( + ν) αoa ) + ν + ((( ν)( ) + )D + αoa ) ] o α σ θθ [( ν ) + να)b ( + ν)( ν) α + (( ν ) + να)b + (( ν + )D ( + ν) αoa ) + ν + (( ν( ) + )D + αoa ) ] (4) (5) (6) () :J.C S -S 4 @N K. 8S 5 T 4 l< σ pi θθ σ σ po σ θθ (8) (9) :. 5 Hl o 4 5*: :F.4 :Z BZ - a () p o p i σ (a) p i, σ (b) po () (9) (8) S LMN () 5 T 4 -: d5d4 dd6 dd 6 d5d B, B dd 4 dd dd 4 dd :. J^ i: o () :4 ` N (4) () T L d 6 d o /... J 8 4Z. @. Z. @/ Q FN 44

JN.. / B J48. Cf Cf G a a (+ ) C (C ( ) C ( ) ) G C (C C ) a a (+ ) (C ( ) C ( ) )f (C C )f a ( ) C (C ( a + ) C ( ) ) o C (C C ) (4) @N YZ N 5 -: a F (48) :4 _ (49) @j L. A K @N d U du ν + ( + ) + ( ) U d d ν + G 4 + G4 + G5 :4 ` N (5) @j hj G 5 G 4 G + ν G G ( + ) ν + ν G4 G ( + ) ν (ν )( + ν) G5 ( ν) (49) a D gz i: J^ i: @N A< 5 (5) :4 (5) @j L J^ i: 4 ` N g U H γ γ + H. 4 J^ i: o (5) @g;- @N K. ν γ( γ ) + ( + ) γ + ( ) ν ν γ + γ + ( ) ν ν.5 γ, γ ± ( + ) 4 ν i: N FJ8 k b B H γ H (5) γ. :. (5) L^ L @N A4 : (5) (5) :4 ` N (54) @j L gz p + U W 4 W + + + + W @N gz i: Z W W W o F 5 (54) Z o A< H. 5 4 5*: * A K ν Z ( + ) + ( + )( + ) + ( ) ν Z ( + )( ) ν + ( + )( + ) + ( ) ν Z ( + 4)( + 4) ν + ( + )( + 4) + ( ) ν :4 ` N (55) @j L Z :. (56) T hj gz i: oa F G G4 G W 5, W, W Z Z Z :4 ` N (5) @j A K @N B i: (55) (56) o ( ν) ɵ d du d U { u( + ) ( ν )( + ν) ρo ω d d d νuɵ d du U + ( U + ) ρ d d o ω T αo d dt dα ( + ν) (Tα + α + T )} o ρ d d d o ω o ɵ du U + u( ) + ρ ( + ν) d o ρoω N N 58 N 5.N 5 (9) 5.N l/6 58 a F H k*< :. (4) L^ hj :: ɵ ρo ω ρo ω u, T (4) o oαo @N A4 N < 6: A K @N F o {( ν )( d du + d U ) ( ν )( + ν) d d d ν d du U + ( U + ) d d d dt dα ( + ν)(tα + α + T )} d d d du U + ( ) + ρ ( + ν) d :. (4).. AI < J8 N 5 Q (4) & <& F-6G.- --4 (6) T 4` N T K. JI F :4 ;. N < J8 N @N T dt ko dk dt T T d T Kko + + Kk o o d d d d dt dk dt d T K + + K d d d d (4) (4) (45) (44) LMN (6) @j H. 5*: dt dt + d T + + d d d d T dt + ( + ) d d :. N @N @g;- @N A< a F T G + G () T 5 T 4 lj^ (44) (45) :4 A< (46) @j L.4 N o G (46) G :4 A< (4) T @N G a a (+ ) C ( ( ) + G ) + C ( G ( ) ) f C (G + G ) + C ( G ) f (4).4 N BN o f f C C C C hj @N G o (4) LMN. A< G :4 FN (48) T 45

o (6) S @j 5 T 4 5*: :. (6) @j hj H H J^ i: y5y4 yy6 yy6 y5y H, H yy4 yy yy4 yy :4 ` N (69) (68) T L γ y [( ν) γ + ν]a γ y [( ν) γ + ν]a y [( ν) γ + ν] (6) y 6 y o / y 4 [( ν) γ + ν] a y i 5 P ( + ν)( ν)( ) a [(( ν ) + )W ( + ν)g ]( ) a [(( ν)( ) + )W ( + ν)g ]( ) a + [( 4 + 4)( ν ) + ν]w ( ) o y6 P o( + ν)( ν) [(( ν ) + )W ( + ν)g ] [(( ν)( ) + )W ( + ν)g ] [( + 4)( ν ) + ν]w :4 FN 4 o a< :: N / γ γ + U H + H + W + + + W 4 + W N < 5 S S LMN a F (68) (69) () Q LMN 4 _ S; F q hj.. 58< jc ^N4 S Q LMN 6: O [ BBC ) A< V 4 ;. `B;.4 A< J). :.I- - J 8 58..M ABC /- @Nj H 6 [] J8 5: T. 5> l. T 4 5 I YZ Q U -...8 Lg;- 5 J 8. 5CK S [ l: 4_ YZ 5 T 4 AI S; : T [ 6.^ O.J _ Q: [. l: 4_ T 4 5 : ^ :. M.. 4? [].. 4 H O K ^. * S89 [] ;- : 4N9M)-6DKGL- H U K? / 5 g;- BZ :Z ji i () BZ yn4 (p) ^. (ºC) BZ \: (ºC) :Z \: (MPa) BZ \: - (MPa) :Z \: - (ºC) Q: 5 p g γ γ + U U + U H + H + W + + + W 4 + W :4 ` N (59) (58) T.J ^N4 58S γ γ ε Hγ + Hγ + W ( + ) + W ( + ) + + W 4 ( + 4) γ γ ε H θθ + H + W + + W 4 + W S -S T K. 8S V (5) (58) (59) :.C (6) (6) T A4 γ σ [( ν) γ + ν)h ( + ν)( ν) γ + (( ν) γ + ν)h + ((( ν ) + )W ( + ν)g ) + ((( ν)( ) + )W ( + ν)g ) + + (( 4 + 4)( ν ) + ν)w ] γ σ θθ [( ν ) + νγ)h ( + ν)( ν) γ + (( ν ) + νγ) H + (( ν + )W ( + ν)g ) + (( ν( ) + )W ( + ν)g ) + + (( ν ) + ν( 4 + 4))W ] F 4 5*: 8S 5 T 4 l< (6) (6) 4 @j F 5.. J^ i: o a σ P i σ θθ :4 6 (6) @j BZ j. 5 N S F.4 N BN BZ - a σ ( ) P i (64) @N (6) S : 8Z @j ( a P i (6) ) BZ : 5 T 4 5*: a γ a γ H [( ν) γ + ν ]( ) + H [( ν) γ + ν]( ) a P i( +ν)( ν) ( ) a [(( ν ) + )W ( + ν)g ]( ) a [(( ν)( ) + )W ( + ν)g ]( ) a + [( 4 + 4)( ν ) + ν]w ( ) o (6) :. :4 6 :Z j. 5 a FJ8 σ Po σ θθ N S F X4 N BN :Z - σ () Po : 4 8Z P o (64) (65) b ( o ) :Z : o o (66)... J 8 4Z. @. Z. @/ Q FN 46

JN.. / B J48. A< [ 5? 58J P... 4.C T K..4.C / YZ Q 58S :: Q 58J _. H F N <.J jc ^N4? F J FN : lb Jb a D VW.. H 5.4 H O. A Jb a D ^ 58 5 - ^. ] `B; 58< 8 5 C ^. /. YZ Q `B; 5 5 5 T 4. H FN. YZ Q 4 l: B LgZ O... 4 _ [] ;- : 4N S6 )Q -+/ - H T/T(a) ν / 5.8.6.4. (GPa) ρ (kg/ ) k (W/ K) α (/K) -6 /, Pesent study, Pesent study -, Pesent study, ef [], ef [] -, ef [] 4 &<\ + -,-+.- 9 M)-6 DKGL - H U K? ν / 5 / 5 / g;- BZ :Z ji i () BZ yn4 (p) ^. (ºC) BZ \: (ºC) :Z \: (MPa) BZ \: - (MPa) :Z \: - (ºC) Q: 5 C C a D C C a D f a D f a D [].- + )Q -+/ -4 H (GPa) 4 ρ (kg/ ) k (W/K) α (/K) -6 / -6 4. N 58 a< A4 hj Q P Al SiC : 5 T 4 B^ 4 O<> jj8.... 5/ `B; 58 5 8 Q N :: : 5 Q K. N @B<... 4 A4 hj YZ Q `B; 58 5 N ^N4 S? 6: Q. V 8-5 A4 jj8.. `B; 58 5? :Z BZ : 5 T 4 : 4 `B; 58 5. 5. ^N4 S LM< : lb Q LK B^..4 LK / 5 S Q `B; N jc S 6 A4 ^N4 S J8. H _ YZ Q `B; 58 5 N yn4 a< 5 jc 58S 4 O<> 6 A4 jj8. QjI J8 / 9 < N yn4 `B; 58 S jc S? S? F AI σ /p i.5..5. /a 6VW 4N XU & - T -. -.4 & Y& Z[W6 [] (6 ++ J). -.6, Pesent study, Pesent study -, Pesent study -.8, ef [], ef [] -, ef [] -.5. /a.5. J). 6VW 4N XU I& 4 ' ()*+' - T & Y& Z[W6 [] (6 ++ D< S89. 5 Q @? A4 `B; 58 5 SJ8 5: T. 4_ [ ^N4 S Q @? A4.8 SJ YZ Q 5 [] Q: 4_ [ D< S89 4.C S Q J F.8 - YZ Q `B; 58.8 SJ BZ yn4 a< BZ - 4N ^N4 J 8 5 4.C [ 4 O<> jj8 `B; 58< [] Q: [ ^N4 S Q C 58A4 4_ [ :.4 hj.4 n A< [ BBC A< ) 4 C O ; - H Q U H I. BZ - Jb a D FN ; \: S Q YZ.4.C `B; 58< J). -4-58^. YZ Q 5 Q O @. 5 `B; \: 58 BZ Jb a D. F FN \: S ::

< <eq FS 8 6 4 - -4 - - -6.8.85.8.89.9.9.95.9.99 & Y& Z[W6 & \ 4 ' ()*+' -6 T 6 5 4 -+/ ()*+' ].G ;-+' -6 - -.8.85.8.89.9.9.95.9.99 & Y& Z[W6 & H& 4 ' ()*+' - T 5 -+/ ()*+' ].G ;-+' -6 - - S8 S jc S yn4 F N \C ibj K 58 AC F AI ^. FN N.4 ibj 58? F N ( σ eq ) V N ln 58S jc ^N4 58S. 5 T 4 J8 YZ Q `B; 58 5 58 5 N yn4 a< ln S A4. 8- A4 qu.. 4 _ YZ Q `B; `B; 58 5 / 9 < ^N4 ln 58S 4 yn4 F F. J. \C. QjI J8 T U. S8 S ln S 4 O<> qu 8 6 5 4.8.85.8.89.9.9.95.9.99.5 9.5 8.5 & Y& Z[W6 & ()*+' - T -+/ ()*+' ].G ;-+' -6 - - - -... J 8 4Z. @. Z. @/ Q FN 5 FS S /σ.8.85.8.89.9.9.95.9.99 y & Y& Z[W6 ; ^- Z)6V -8 T eq -+/ ()*+' ].G ;-+' -6 @j K. ln S FN N. YZ Q `B; 58 5 Jb a D a D. e;- 8 A4 qu.. 4 _ 8 A4 jj8. QjI J8 / 9 < ^N4 Jb Jb a D? S. J. 4 O<>. J. \C 5 H 4 qu F S 5 - Jb a D 6 58 (: @<) Bv ibj 58 C F ^ 4 (: BZ @<) u J. \C.4 Jb a D F J l< 8. _ NjI 5 O / J <.5 6.5.8.85.8.89.9.9.95.9.99 & Y& Z[W6 & ) ;- -4 T. -. -. -. -+/ ()*+' ].G ;-+' -6 - - -.4.8.85.8.89.9.9.95.9.99 & Y& Z[W6 & I& 4 ' ()*+' -5 T -+/ ()*+' ].G ;-+' -6 48

JN.. / B J48. L. A Jb a D ^. o Q 8 - A4 F.J _ A4 5 J l< 8 Jb a D (<-) K J Jb a D F - /5 l< F^ 4 ; Jb a D ] 58A4.4 A< < p 58^. 5 a BZ - FS FS in.5.5.5.. 4 P. `B; Q ƒ 4 6 8 ω (p) ; ^- Z)6V D-6_' - T H` /- L ].G - UI6 6 5 4 -+/ ()*+' ].G ;-+' -6 - -5 5 5 5 5 4 -+.- T9 ; ^- Z)6V 6_' - T -+/ ()*+' ].G ;-+' Z[W6 ].G L FS in pub - UI6 -+.- T9 ; ^- Z)6V 6_' - T -+/ ()*+' ].G ;-+' Z[W6 ].G L - UI6 ; - -.5 4 P i MPa P i MPa P MPa i P i MPa Optiu Line P i MPa P i MPa P i MPa P i 4 MPa Optiu Line - -5 5 5 5 5 4. H?B. A Jb a D ^ : lb? - ^. S 8 - [. M. S8 Jb a D S S J 8 @. :Z J Q L : lb PB S? /9 \: PB S? Q < N yn4 l... 4 U Jb a D @.C. l. 6/.. H I K. -+.- -6 -+, ()*+' %&' -4-58. ^. ] on J 9 A4. H I. `B; YZ Q 5 Q a<. A Jb a D ].. 4 _ l. o BZ - `B; 58^. < ^. Jb a D L ] a FJ8 e;- uu.. 4 _ A4 BZ - FS in FS in. S8 Jb a D? ^. S. - -5 5 5 5 5 4 -+.- T9 ; ^- Z)6V 6_' -9 T -+/ ()*+' ].G ;-+' Z[W6 ].G UI6 H` /- L -+/ ()*+' ].G ;-+' Z[W6 ].G UI6 /- L +aw ; YZ Q 5 8 - [ >^.5.5.5 ω p ω5 p ω p ω5 p ω p Optiu Line 5 4 ω 5 p ω p ω 5 p ω p 9 ω 5 p 8 Optiu Line 6 5 4 - -5 5 5 5 5 4 -+.- T9 ; ^- Z)6V 6_' - T J 8 5. ; 5 Jb a D / 5 <. A< [. -? `B; 58^. 49

[] Hongjun X., Zhifei S., and Taotao Z., lastic analyses of hetegeneous hollow cylindes, Mechanics eseach Counications, Vol., No. 5, pp. 68-69, 6. [8] Tutuncu N., Stesses in thick-walled FGM cylindes with exponentially-vaying ppeties, ngineeing Stuctues, Vol. 9, No.9, pp. -5,. [9] Akis T., and aslan A.N., xact solution of tating FGM shaft pble in the elastoplastic state of stess, Achive of Applied Mechanics, Vol., No., pp. 45-65,. [] You L.H., You X.Y., Zhang J.J. and Li J., On tating cicula disks with vaying ateial ppeties, Zeitschift fü angewandte Matheatik und Physik, Vol. 58, No. 6, pp. 68-84,. [] Tahani M., and Talebian T., Analysis of Functionally Gaded Cylinical Vessels unde Mechanical and Theal Loads, Aikabi Jounal Of Mechanical ngineeing, Vol. 4, No., pp. 49-58, 9. (In Pesian) [] Heidai A., and Kazei M., lastic-plastic analysis of thick-walled FGM vessels unde intenal pessue, Majlesi Jounal of Mechanical ngineeing, Vol., No., pp. - 8, 9. (In Pesian) [] Tutuncu N., and Teel B., A novel appach to stess analysis of pessuized FGM cylindes, disks and sphees, Coposite Stuctues, Vol. 9, No., pp. 85-9, 9. [4] Ghaja., and Mehabiani S., Theo-echanical analysis of thick-walled cylinde with intenal FGM coating, consideing theal esidual stesses, Jounal of Mechanical ngineeing, Vol. 4, No., pp. 5-66,. (In Pesian) [5] Mahdavi A., Hojati M., and Alashti., Theo-elastic analysis of a tating FGM disk, with vaiable thickness, In ISM Confeence,. (In Pesian) [6] Ahadi Nokhandan M., Jabbazadeh M., Nonlinea theoelastic analysis of FGM annula tating discs with FSDT and TSDT shea defoation plate theoies, Modaes Mechanical ngineeing, Vol. 4, No., pp. 5-88, 4. (In Pesian) [] Azii A., and Gholai Sh., Tepeatue distibution in a hollow cylinde coposed of functionally gaded ateial using non-fouie factional single phase lag odel, Modaes Mechanical ngineeing, Vol. 4, No., pp. 6-6, 4. (In Pesian) [8] Ghanbai Mobaakeh M., and Fahatnia F., Theo lasto- Plastic analysis of functionally gaded thick-walled cylinical shells based on Pandtl-euss flow ule, Modaes Mechanical ngineeing, Vol. 5, No., pp. - 8, 5. (In Pesian) [9] Takabi B., Theoechanical tansient analysis of a thickhollow FGM cylinde, ngineeing Solid Mechanics, Vol. 4, No., pp. 5-, 6. [] Najibi A., and Shojaeefad M.H., lastic Mechanical Stess Analysis in a D-FGM Thick Finite Length Hollow Cylinde with Newly Developed Mateial Model, Acta Mechanica Solida Sinica, Vol. 9, No., pp. 8-9, 6. [] Jabbai M., Sohabpou S., and slai M., Mechanical and theal stesses in a functionally gaded hollow cylinde due to adially syetic loads, Intenational Jounal of Pessue Vessels and Piping, Vol. 9, No., pp. 49-49,. [] Loghan A., Aani A.G., Shajai A.., and Ai S., Tie-dependent theoelastic ceep analysis of tating disk ade of Al SiC coposite, Achive of Applied Mechanics, Vol. 8, No., pp. 85-864,. a D? BZ - S 4 O<> qu ] 4 8- >^. S8 Jb Q AI < -. A Jb a D 58- Jb a D F - /5 < YZ J 8 @. - H.. LK 68. -5 D< S89 :8 -. [.. H I. j? J8 ln S jc 58S Q H 6 A FJ8. QjI / 9 N yn4 YZ Q A? < F? 5 Q: @j? ^ j? F..J K. `B; ; ] 5 T 4. [ : 4Z. 58. J 5 BZ - ^. Fn Jb a D F - / 5 < YZ Q AI zj< 8 -.. [ H BZ - C J 8 58. Z. Q Q @/? 4 T 4 /5 l 5 ) H FN : @/. 5 Jb a D F - (? F Nj.4 A< (-6-6 [] Tutuncu N., and Oztuk M., xact solutions fo stesses in functionally gaded pessue vessels, Coposites Pat B: ngineeing, Vol., No. 8, pp. 68-686,. [] uhi M., Angoshtai A., and Naghdabadi., Theoelastic analysis of thick-walled finite-length cylindes of functionally gaded ateials, Jounal of Theal Stesses, Vol. 8, No.4, pp. 9-48, 5. [] You L., Zhang J., and You X., lastic analysis of intenally pessuized thick-walled spheical pessue vessels of functionally gaded ateials, Intenational Jounal of Pessue Vessels and Piping, Vol. 8, No. 5, pp. 4-54, 5. [4] Dai H., Fu Y., and Dong Z., xact solutions fo functionally gaded pessue vessels in a unifo agnetic field, Intenational jounal of solids and stuctues, Vol. 4, No. 8, pp. 55-558, 6. [5] aslan A., and Akis T., On the plane stain and plane stess solutions of functionally gaded tating solid shaft and solid disk pbles, Acta Mechanica, Vol. 8, No. -, pp. 4-6, 6. [6] aslan A.N., and Akis T., Plane stain analytical solutions fo a functionally gaded elastic plastic pessuized tube, Intenational jounal of pessue vessels and piping, Vol. 8, No. 9, pp. 65-644, 6. FN Q Z. @/ @. 4Z.... J 8 5