Review Exercises for Chapter 7

Σχετικά έγγραφα
Chapter 6 BLM Answers

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)

CRASH COURSE IN PRECALCULUS

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.

Trigonometry 1.TRIGONOMETRIC RATIOS

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Matrices and Determinants

Math221: HW# 1 solutions

1 Σύντομη επανάληψη βασικών εννοιών

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

Differentiation exercise show differential equation

1 Elementary Functions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Inverse trigonometric functions & General Solution of Trigonometric Equations

Trigonometric Formula Sheet

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Rectangular Polar Parametric

Section 8.3 Trigonometric Equations

MathCity.org Merging man and maths

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Formulario di Trigonometria

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Answers to Selected Exercises

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

2 Composition. Invertible Mappings

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

PARTIAL NOTES for 6.1 Trigonometric Identities

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Solution to Review Problems for Midterm III

Parametrized Surfaces

Solutions to Exercise Sheet 5

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

Jörg Gayler, Lubov Vassilevskaya

Example Sheet 3 Solutions

Lecture 2. Soundness and completeness of propositional logic

Lifting Entry (continued)

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Lecture 26: Circular domains

Chapter 7 Analytic Trigonometry

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Second Order Partial Differential Equations

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Reminders: linear functions

d 2 y dt 2 xdy dt + d2 x

Differential equations

C.S. 430 Assignment 6, Sample Solutions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

If we restrict the domain of y = sin x to [ π 2, π 2

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

derivation of the Laplacian from rectangular to spherical coordinates

1999 by CRC Press LLC

% APPM$1235$Final$Exam$$Fall$2016$

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Answer sheet: Third Midterm for Math 2339

Homework 8 Model Solution Section

EE512: Error Control Coding

Διαφορικά Αόριστα Ολοκληρώµατα Κανόνες Ολοκλήρωσης. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

z k z + n N f(z n ) + K z n = z n 1 2N

Section 9.2 Polar Equations and Graphs

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Uniform Convergence of Fourier Series Michael Taylor

Finite Field Problems: Solutions

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Geodesic Equations for the Wormhole Metric

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx.

ST5224: Advanced Statistical Theory II

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Trigonometry Functions (5B) Young Won Lim 7/24/14

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Homework 3 Solutions

Transcript:

8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6 b 6 n n n n d n I n n n 85. False. is continuous on but f,,, Diverges d b ln b. 87. True Review Eercises for Chapter 7. d d. C C d d ln C 5. ln ln 6 d C 7. 6 d 6 arcsin C 9. e sin d e cos e cos d e cos e sin e sin d 9 e sin d e cos 9 e sin e sin d e sin cos C () dv sin d v cos () dv cos d v sin u e du e d u e du e d

Review Eercises for Chapter 7 9. u, du d, dv 5 d, v 5. sin d cos cos d 5 d 5 5 d cos sin sin d 5 5 55 C 5 5 5 C 5 6 5 C 5 5 C () () dv sin d u du d dv cos d cos sin cos C v sin u du d v cos 5. arcsin d arcsin d arcsin 8 d arcsin 8 arcsin C 6 8 arcsin C (by Formula of Integration Tables) dv d v u arcsin du d 7. cos d sin cos d sin sin C sin sin C sin cos C sin cos C 9. sec d tan sec d tan sec d sec d tan tan C tan tan C. sin d sin d d sec sec tan tan sec C cos

Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals. d cos d sin cos csc d θ cot C C sin, d cos d, cos 5. tan d sec d + sec d 8 tan sec d sec θ 8tan sec d 8sec tan sec d 8 sec sec C 8 C C 8 C 8 C 7. d cos cos d cos d θ sin C sin cos C arcsin C arcsin C sin, d cos d, cos

Review Eercises for Chapter 7 9. (a) d 8 sin cos d 8cos cos sin d (b) d u du u u C 8 sec sec C u u C tan, 8 C d sec d u, u du d 8 C (c) d d dv d C v u du d 8 C. 8 6 A B 8 A B B5 B 6 5 A5 A 5 8 6 6 d 5 6 d 5 ln 6 ln C. A B C A B C Let : A A Let : A C C Let : 8 5A B C B d d d d d d ln ln arctan C 6 ln ln 6 arctan C

Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 5. 5 5 5 5 5 A B 5 5 A 5 B Let : 9 8A A 9 8 Let 5: 5 8B B 5 8 5 d d 8 9 5 d 8 5 d 9 8 ln 5 8 ln 5 C 7. d 9 ln C 9. sin d sin u du u (Formula ) tan u sec u C (Formula 56) tan sec C. 8 d ln 8 8 d ln 8 ln 8 arctan C 6 arctan 6 C (Formula 5) (Formula ). d sin cos ln tan C u sin cos d5. (Formula 58) dv d v u ln n du nln n d ln n d ln n nln n d 7. sin cos d sin d cos cos d cos 8 sin C 8 sin cos C dv sin d v cos u du d

9. d uu u du 5. u u du u u arctan u C sin cos d cos d cos C u cos, du sin d Review Eercises for Chapter 7 cos sin d arctan C y, u, d u du 5. 57. cos lnsin d sin lnsin cos d 55. y 9 9 d ln C sin lnsin sin C (by Formula of Integration Tables) dv cos d v sin u lnsin du cos sin d y ln d ln d ln d ln d d ln ln C 5 59. d 5 5 5 5 dv d v u ln du d 6. 65. ln d ln ln ln.96 A d u u du u 5 u 5 8 5 u, u, d u du 69. s cos d.8 u uu du 6. sin d cos sin 67. By symmetry,, A. y, y, ln 7. d ln e 7. e e 75. y ln ln y lnln Since ln y, y. ln

Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 77. 79. 8..9 n n n.9 n n n Let.9 y n n n. ln y n ln.9 n n n Thus, ln y.9 y e.9 6 d b 6 b Converges t 5, 5,e.5t dt.5 t e.5t (a) t : $6,,5.59 (b) t : $,, ln.9 n n n.9n.9n.9.9 n n.9 n and.9 n n n e.9 9.7. 5, e.5.5t,, e.5t 8. Diverges ln d b 9 ln b 85. (a) P <.95 e.9.95 d.58 (b) P5 <.95 e.9.95 d.5 Problem Solving for Chapter 7. (a) d d (b) Let sin u, d cos u du, sin u cos u. n d cos u n cos u du n n! n! 5 d cos n u du 5 6 7... n n 6... n 5... nn n n! n! 5 5 5 (Wallis s Formula) 6 5

Problem Solving for Chapter 7 5. ln c ln c ln 9 c c c ln 9 c c 9 ln c ln 9 c c c ln 9 c c ln 9 c ln 9 c ln c ln 5. sin PB OP PB, cos OB AQ AP The triangles AQR and BPR are similar: AR BR AQ BP OR sin cos cos cos sin cos sin sin BR OR OB OR cos OR sin OR sin OR cos sin sin OR cos cos cos cos OR cos sin cos sin sin sin cos y Q P θ R O B A (, )

6 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 7. (a). Area.986 (b) Let (c) tan, d sec d, 9 9 sec. 9 d 9 tan 9 sec sec d Area A tan sec sin cos d d cos cos ln sec tan sin C 9 d ln sec tan sin tan sin 9 d ln ln 9 d ln 5 5 ln 5 sinh sinh tanh u du u tanh u sinh sinh tanh sinh ln 5 tanh ln 5 ln tanhln sech u du 9 sinh u, d cosh u du, 9 9 sinh u 9 9 cosh u 9 sinh u 9 cosh cosh u du u θ + 9 ln 6 9 tanh ln 6 9 ln 5

Problem Solving for Chapter 7 7 9. y ln, y y Arc length y d d d d ln ln ln ln ln ln ln ln.5986. Consider ln d. Let Then u ln, du d d, eu. If were elementary, then eu would be too, which is false. ln d u du Hence, is not elementary. ln d ln d u eu du eu u du.. a b c d a c ac b d ad bc bd a c, b d, a d A B d arctan arctan 8 ln ln d d.555.6.867 C D d arctan arctan ln ln 8 8

8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 5. Using a graphing utility, (a) (b) (c) Analytically, (a) (b) (c) cot cot cot cot. cot cot Now, Thus, The form cot cos sin cos sin cos cot cot cot sin cos sin is indeterminant. cos sin sin sin cos. cos cos sin cot cot cot cot csc cot cot csc cos sin cos sin sin sin cos sin sin cos sin cos cos sin sin cos sin cos sin cos. cot cot. sin sin cos

Problem Solving for Chapter 7 9 7. P P P P c, c, c, c N D 6 P N D P N D P N D P N D Thus,. 9. By parts, b b f g d a f g fg d a b fg d a fg b b a a g f d b a fg d.