Problems in curvilinear coordinates

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Problems in curvilinear coordinates"

Transcript

1 Poblems in cuvilinea coodinates Lectue Notes by D K M Udayanandan Cylindical coodinates. Show that ˆ φ ˆφ, ˆφ φ ˆ and that all othe fist deivatives of the cicula cylindical unit vectos with espect to the cicula cylindical coodinates vanish. Answe We ve ˆ ˆx cos φ + ŷ sin φ ˆφ ˆx sin φ + ŷ cos φ ˆ 0, ˆ φ ẑ ẑ ˆx sin φ + ŷ cos φ ˆφ, ˆ z 0 ˆφ φ ˆφ 0, ˆx cos φ ŷ sin φ ˆx cos φ + ŷ sin φ ˆ

2 ˆφ z 0 ẑ 0, ẑ φ 0, ẑ z 0 2. Show that ˆ ˆ + zẑ. Woking entiely in cicula cylindical coodinates, show that. 3 and 0. Answe Fom figue OP So we ve ˆ + zẑ. V. ˆ + zẑ V V φ 0, V z z V + φ V φ + z V z. + 2 φ 0 + z z 2 + z z

3 2 + 3 ˆ ˆφ ẑ φ 0 z z In ight cicula cylindical coodinates a paticula vecto function is given by V, φ ˆV, φ + ˆφV φ, φ. Show that V has only a z component. Answe ˆ ˆφ ẑ V φ z V, φ V φ, φ 0 ˆ0 + ˆφ0 + ẑ ẑ Thus V has only z component. V φ, φ V, φ φ, V, φ V, φ φ 4. A igid body is otating about a fixed axis with a constant angula velocity ω. Take ω to lie along the z axis. Expess in cicula cylindical coodinates and using cicula cylindical co-odinates. a Calculate V ω b Calculate V Answe We ve ω ωẑ a and ˆ + zẑ ω ˆ ˆφ ẑ 0 0 ω 0 z ω ˆφ 3

4 b V ˆ ˆφ ẑ φ z 0 ω 0 ˆ0 + ˆφ0 + ẑzω zω ẑ zωẑ 5. A paticle is moving though space. Find the cicula cylindical components of its velocity and acceleation. We ve V a φ 2 V φ φ a φ φ + z φ V z ż a z z t ˆtt + ẑzt ˆx cos φt + ŷ sin φt t + żzt d dt ˆx cos φt +ŷ sin φt +t ˆx sin φt φ+tŷ cos φt φ+ẑż ˆx cos φ + ŷ sin φ + t φ ˆx sin φ + ŷ cos φ + żẑ d 2 dt d cos φˆx + sin φŷ + 2 dt ˆ + φ ˆφ + żẑ V, V φ φ, V z ż φ sin φˆx + φ cos φŷ + żẑ cos φˆx+ sin φŷ+ sin φˆx φ+ cos φŷ φ+ φ sin φˆx+ φ cos φŷ + φ sin φˆx + φ cos φŷ + φ 2 cos φˆx φ 2 sin φŷ + zẑ cos φˆx + sin φŷ + φ sin φˆx + cos φŷ + φ sin φˆx + cos φŷ + φ sin φˆx + cos φŷ + φ 2 cos φˆx + sin φŷ + zẑ 4

5 φ 2 cos φˆx + sin φŷ + 2 φ + φ sin φˆx + cos φŷ + zẑ φ 2 ˆ + φ + 2 φ ˆφ + zẑ a φ 2, a φ φ + 2 φ, a z z 6. Solve Laplace s equation 2 ψ 0 in cylindical coodinates fo ψ ψ. Answe We ve 2 ψ We ve Laplace equation 2 ψ 0 ψ + 2 ψ 2 φ + 2 ψ 2 z 2 ie, ψ ψ ψ 0 ψ 0 ψ constant k ψ k ψ k k log + log c ifψ 0, log c log 0 ψ klog log 0 ψ k log 0 7. A conducting wie along the z axis caies a cuent I. The esulting magnetic vecto potential is given by A ẑ µi 2π ln 5

6 Show that the magnetic induction B is given by B ˆφ µi 2π Answe B A ˆ ˆφ ẑ φ z µi 0 0 ln 2π ˆ0 + ˆφ 0 µi 2π ln + ẑ0 µi 2π ˆφ µi 2π ˆφ 8. A foce is descibed by y F ˆx x 2 + y + ŷ x 2 x 2 + y 2 a Expess F in cicula cylindical coodinates opeating entiely in cicula cylindical coodinates fo b. b Calculate the cul of F Answe We ve ˆx ˆ cos φ ˆφ sin φ Then ŷ ˆ sin φ + ˆφ cos φ ẑ ẑ y F ˆx x 2 + y + ŷ x 2 x 2 + y 2 ˆ cos φ + ˆφ sin φ sin φ + ˆ sin φ + ˆφ cos φ cos φ 2 ˆ sin φ cos φ + ˆφ sin 2 φ + ˆ sin φ cos φ + ˆφ cos 2 φ 2 6

7 b F ˆφ ˆφ F ˆ ˆφ ẑ fac φ z 0 0 ˆ0 + ˆφ0 + ẑ A calculation of the magneto-hydonamic pinch effect involves the evaluation of B. B. If the magnetic induction B is taken to be B ˆφB φ Show that Answe B. B ˆ B2 φ ˆ + ˆφ φ + ẑ z B ˆφB φ B. B φ φ B. B Bφ ˆφBφ φ B2 φ B2 φ B2 φ φ ˆφ sin φˆx + cos φŷ φ cos φˆx + sin φŷ B2 φ ˆ ˆ B2 φ 7

8 Spheical pola coodinates. A igid body is otating about a fixed axis with a constant velocity ω. Take ω to be along the z axis. Using spheical pola coodinates a Calculate V ω b Calculate We ve sin θ cos φˆx + sin θ sin φŷ + cos θẑ Then b V ω ω ωẑ ˆx ŷ ẑ sin θ cos φ sin θ sin φ cos θ ˆx ω sin θ sin φ + ŷω sin θ cos φ ω sin θ sin φˆx + cos φŷ ω sin θ ˆφ V ˆ ˆθ sin θ ˆφ 2 sin θ θ φ 0 0 sin θ ω sin θ ˆ2 2 ω sin θ cos θ + ˆθ 2ω sin 2 θ + sin θ 2 sin θ ˆφ0 2 sin θ2ω cos θˆ 2ω sin θˆθ 2 sin θ 2. With A,any vecto 2ωcos θˆ sin θˆθ 2ωẑ A. A aveify this esult in Catesian coodinates. bveify this esult using spheical pola coodinates. Answe a A A x î + A y ĵ + A zˆk A. A x x + A y y + A z z 8

9 b A. A x x + A y y + A z xî + yĵ + zˆk z A x î + A y ĵ + A zˆk A A ˆA + ˆθA θ + ˆφA φ ˆ + ˆθ θ + ˆφ sin θ φ A. A + A θ θ + A φ sin θ φ A A. + A θ θ + A φ sin θ A + A θ θ + A φ sin θ φ φ. ˆ sin θ cos φˆx + sin θ sin φŷ + cos θẑ A sin θ cos φˆx+sin θ sin φŷ+cos θẑ+a θ cos θ cos φˆx+cos θ sin φŷ sin θẑ+ A φ sin θ sin φˆx + sin θ cos φŷ sin θ A ˆ + A θ ˆθ + Aφ ˆφ A 3. Fom the above poblem show that i x y y x i φ This is the quantum mechanical opeato coesponding to the z component of obital angula momentum. Answe We ve then x sin θ cos φ + cos θ cos φ y sin θ sin φ + cos θ sin φ z cos θ sin θ θ i x y y x θ sin φ sin θ θ + cos θ sin θ φ φ 9

10 i sin θ cos φ sin θ sin φ + cos θ sin φ i sin 2 θ sin φ cos φ + sin θ cos θ sin φ cos φ i φ θ + cos θ sin θ sin θ sin φ sin θ cos φ φ θ + cos2 φ φ sin2 θ sin φ cos φ 4. Show that the following thee foms spheical co-odinates of 2 ψ ae equivalent. a d 2 dψ 2 d d b d 2 d 2 ψ c d2 ψ d 2 Answe + 2 dψ d a d 2 dψ 2 dψ 2 d d 2 d + d2 ψ 2 d 2 d2 ψ d dψ d b d 2 d d ψ ψ d 2 d d d dψ d d + ψ d2 ψ d + dψ 2 d + dψ d d2 ψ d + 2dψ 2 d d2 ψ d + 2 dψ 2 d 5. Find the spheical coodinate components of the velocity and accele- 0

11 ation of a moving paticle. Answe We ve xt ˆt t ˆx sin θt cos φt + ŷ sin θt sin φt + ẑ cos θt t d dt ṙ sin θ cos φˆx + cos θ cos φ θŷ + sin θ cos φ φŷ + ṙ cos θẑ sin θ θẑ ṙsin θ cos φˆx + sin θ sin φhaty + cos θż + θcos θ cos φˆx + cos θ sin φŷ sin θẑ + φ sin θ sin φˆx + cos φŷ ṙˆ + θˆθ + sin θ φ ˆφ V ṙ, V θ θ, V φ sin θ φ d 2 dt dˆ ˆ+ṙ 2 dt dˆθ +ṙ θˆθ+ θˆθ+ θ dt +ṙ sin θ φ ˆφ+ cos θ θ φ ˆφ+ sin θ φ ˆφ+ d ˆφ sin θ φ dt ˆ + ṙ d dt sin θ cos φˆx + sin θ sin φŷ + cos θẑ + ṙ θˆθ + θˆθ+ θ d dt cos θ cos φˆx + cos θ sin φŷ sin θẑ + ṙ sin θ φ ˆφ + cos θ θ φ ˆφ+ sin θ φ ˆφ + sin θ d sinφˆx + cos φŷ dt ˆ+ṙ cos θ cos φˆx θ sin θ sin φˆx φ + cos θ sin φŷ θ + sin θ cos φ φŷ sin θẑ θ + ṙ θˆθ+ θˆθ+ θ sin θ cos φˆx θ cos θ sin φ φˆx sin θ sin φ θŷ + cos θ cos φ φŷ cos θ θẑ + ṙ sin θ φ ˆφ + cos θ θ φ ˆφ + sin θ φ ˆφ + sin θ φ cos φ φˆx sin φ φŷ ˆ + ṙ θˆθ + ṙ φ sin θ sin φˆx + sin θ cos φŷ + ṙ θˆθ + θˆθ θ 2ˆ+ θ φ cos θ sin φˆx + cos θ cos φŷ + ṙ sin θ φ ˆφ + cos θ φ ˆφ+ sin θ φ ˆφ sin θ cos φ φ 2ˆx sin θ sin φ φ 2 ŷ ˆ θ 2ˆ + 2ṙ θˆθ + θˆθ + θ φ sin θ ˆφ + θ φ cos θ ˆφ + ṙ φ sin θ ˆφ+ θ φ cos θ ˆφ + sin θ φ ˆφ

12 θ 2 sin 2 θ φ 2 ˆ + θ + 2ṙ θ sin θ cos θ φ 2 ˆθ+ sin θ φ + 2ṙ sin θ φ + 2 cos θ θ φ ˆφ 6. A magnetic vecto potential is given by A µ 0 m 4π 3 Show that this leads to the magnetic induction B of a point magnetic dipole with dipole moment m. Answe sin θ cos φˆx + sin θ sin φŷ + cos θẑ m ˆx ŷ ẑ 0 0 m sin θ cos φ sin θ sin φ cos θ ˆx m sin θ sin φ + ŷm sin θ cos φ m sin θ sin φˆx + m sin θ cos φŷ A µ 0 m 4π µ 0 m sin θ sin φˆx + m sin θ cos φŷ 4π3 µ 0 m sin θ ˆφ 4π 2 B A ˆ ˆθ sin θ ˆφ 2 sin θ θ φ 0 0 sin θ µ 0 m sin θ 4π 2 µ0 m ˆ 2 sin θ 4π 2 sin θ cos θ µ0 m sin 2 θ + ˆθ 4π 2 µ0 m 2 sin θ 2π sin θ cos θˆ + µ 0m 4π sin2 θˆθ 2

13 µ 0m 2π cos θˆ + µ 0m sin θˆθ 3 4π3 µ 0 4π 2m cos θˆ + µ 0 m sin θˆθ 3 4π3 7. The magnetic vecto potential fo a unifomly chaged otating spheical shell is A ˆφ µ 0a 4 σω sin θ 3, > a 2 a adius of spheical shell, σ suface chage density and ω angula velocity Find the magnetic induction B A Answe µ0 a 4 σω ˆ 2 sin θ A ˆ ˆθ sin θ ˆφ 2 θ φ sin θ 0 0 sin θ µ 0a 4 σω sin θ 3 2 µ0 a 4 σω 2 sin θ cos θ + ˆθ sin 2 θ µ0 a 4 σω sin θ cos θˆ + µ 0a 4 σω sin 2 θˆθ sin θ 2µ 0a 4 σω 3 3 cos θˆ + µ 0a 4 σω 3 3 sin θˆθ 8. At lage distances fom its souce, electic dipole adiation has fields, sin θe E ik ωt a E ˆθ, Show that Maxwell s equations, B sin θe ik ωt ab ˆφ ae satisfied if we take E B t and B E ɛ 0 µ 0 t a E a B ω k c ɛ 0, µ 0 /2 3

14 Answe E 2 sin θ ˆ ˆθ sin θ ˆφ θ φ 0 a E sin θe ik ωt 0 ˆ0 + ˆθ0 + sin θ 2 sin θ ˆφa E sin θe ik ωt ik 2 sin θ a E sin 2 θe ik ωt ik ˆφ sin θe ik ωt a E ik ˆφ sin θeik ωt ia E k ˆφ sin θeik ωt ia B ω ˆφ Thus, B t ia sin θeik ωt Bω ˆφ E B t 2 sin θ B 2 sin θ ˆ ˆθ sin θ ˆφ θ sin θe 0 0 sin θa ik ωt B ˆ a B e ik ωt 2 sin θ cos θ + ˆθ a B sin 2 θe ik ωt ik 2 sin θ φ a B e ik ωt 2 sin θ cos θˆ a B sin 2 θe ik ωt ikˆθ a Be ik ωt 2 cos θ ˆ a B sin θe ik ωt ik ˆθ 2 Since is lage, highe powe can be neglected. B a B sin θe ik ωt ik ˆθ 4

15 But Replacing k by ωµ 0 ɛ 0 /2 B a Ek ω a B a Ek ω sin θe ik ωt ik ˆθ k ω µ 0ɛ 0 /2 B /2 sin θeik ωt ia E kµ 0 ɛ 0 ˆθ B sin θeik ωt ia E ωµ 0 ɛ 0 ˆθ Then E t ia sin θeik ωt Eω ˆθ E µ 0 ɛ 0 t ia sin θeik ωt Eωµ 0 ɛ 0 ˆθ B µ 0 ɛ 0 E t 9. ashow that A cot θ ˆφ is a solution of A ˆ 2 b Show that this spheical pola co-odinate solution agee with the solution given below. yz A ˆx x 2 + y 2 ŷ xz x 2 + y 2 cfinally show that A ˆθφ sin θ Answe is a solution. a A 2 sin θ ˆ ˆθ sin θ ˆφ fac θ φ 0 0 sin θ cot θ 5

16 b ˆ sin θ + ˆθ0 + sin θ 2 sin θ ˆφ0 2 sin θ sin θˆ ˆ 2 yz A ˆx x 2 + y 2 ŷ xz x 2 + y 2 ˆ sin θ cos φ+ˆθ cos θ cos φ ˆφ sin θ sin φ cos θ sin φ 2 sin 2 θ cos 2 φ + sin 2 θ sin 2 φ ˆ sin θ sin φ + ˆθ cos θ sin φ + ˆφ sin θ cos φ cos θ cos φ 2 sin 2 θ cos 2 φ + sin 2 θ sin 2 φ c ˆsin θ cos θ sin φ cos φ sin θ cos φ sin φ cos φ + ˆθcos 2 θ cos φ sin φ cos 2 θ sin φ cos φ sin θ sin θ ˆφsin 2 φ cos θ + cos 2 φ cos θ sin θ ˆφ ˆφ cos θ sin θ cot θ A ˆ ˆθ sin θ ˆφ 2 sin θ θ φ φ sin θ 0 0 ˆ sin θ ˆθ0 + sin θ 2 sin θ ˆφ0 ˆ 2 0. Show that L i i ˆθ sin θ φ ˆφ θ b Resolving ˆθ and ˆφ into Catesian components, detemine L x,l y,l z. Answe L p p i 6

17 L i Let i L i ˆ + ˆθ θ + ˆφ sin θ φ ˆ ˆθ sin θ ˆφ 2 sin θ 0 0 sin θ θ sin θ φ ˆθ + sin θ 2 sin θ φ ˆφ θ 2 2 sin θ φ ˆθ + 2 sin θ θ ˆφ sin θ L i i ˆθ + θ ˆφ sin θ φ ˆθ θ ˆφ b i L i sin θ φ ˆθ θ ˆφ ˆx cos θ cos φ + ŷ cos θ sin φ ẑ sin θ sin θ cos θ cos φ i sin θ φ + sin φ cos θ sin φ ˆx+i θ sin θ cos θ cos φ i sin θ φ + sin φ cos θ sin φ ˆx+i θ sin θ cos θ cos φ L x i sin θ φ + sin φ θ cos θ sin φ L y i sin θ φ + cos φ θ L z i φ 7 φ ˆx sin φ + ŷ cos φ θ φ cos φ ŷ i sin θ φ sin θ φ cos φ θ ŷ i φẑ φẑ

18 . With ê a unit vecto in the diection of inceasing q. Show that a.ê h 2 h 3 h h 2 h 3 q b Answe We ve. V h h 2 h 3 ê h h ê 2 ê 3 h h 3 q 3 h 2 q 2 V h 2 h 3 + V 2 h h 3 + V 3 h h 2 q q 2 q 3 Hee V, V 2 0, V 3 0 then V V ê + V 2 ê 2 + V 3 ê 3 V ê V.ê h h 2 h 3 q h 2 h 3 ê h ê 2 h 2 ê 3 h 3 ê h h 2 h 3 q q 2 q 3 h 0 0 h h h 2 ê 2 h 3 ê 3 h h 2 h 3 q 3 q 2 ê h h ê 2 ê 3 h h 3 q 3 h 2 q 2 2. With the quantum mechanical obital angula momentum opeato defined as L i.show that a L x + il y e iφ θ + i cot θ φ 8

19 b Answe, We ve i L x il y e iφ θ i cot θ φ L i sin θ L i sin θ φ ˆθ θ ˆφ φ ˆθ θ ˆφ ˆx cos θ cos φ + ŷ cos θ sin φ ẑ sin θ sin θ cos θ cos φ i sin θ φ + sin φ cos θ sin φ ˆx+i θ sin θ cos θ cos φ i sin θ φ + sin φ cos θ sin φ ˆx+i θ sin θ φ ˆx sin φ + ŷ cos φ θ φ cos φ ŷ i sin θ φ sin θ φ cos φ θ Then cos θ cos φ L x +il y i sin θ φ + sin φ cos θ sin φ +i 2 θ sin θ cos θ cos φ i + i sin θ cos θ sin φ sin θ ŷ i φẑ φ cos φ θ φ + i sin φ + cos φ θ i cot θcos φ + sin φ φ + cos φ + i sin φ θ ie iφ cot θ φ + eiφ θ e iφ θ + i cot θ φ cos θ cos φ L x il y i sin θ φ + sin φ cos θ sin φ i 2 θ sin θ φ cos φ θ i cos θ cos φ cos θ sin φ i sin φ + cos φ φ sin θ sin θ θ i cot θ φ e iφ θ e iφ φẑ 9

20 e iφ θ cot θ φ 3. A cetain foce field is given by 2p cos θ F ˆ + ˆθ p 3 sin θ, p 3 2 Examine F to see if a potential exist. Answe F ˆ ˆθ sin θ ˆφ 2 sin θ θ φ 2p cos θ p sin θ sin θ 2 sin θ ˆφ 2 p sin θ + 2p 3 sin θ 3 2p sin θ 2p sin θ Fo the flow of an incompessible viscous fluid the Navie stokes equations lead to V V n 2 V Hee n is the viscosity and, the density of the fluid. Fo axial flow in a cylindical pipe we take the velocity V to be V ẑv Find the non linea tem V V Answe V V ẑ V ˆ ˆφ ẑ y z 0 0 V ˆφ 0 V V ˆφ 20

21 then V V V ˆ V ˆ ˆφ ẑ 0 0 V 0 V 0 V V ˆ V V 0 ˆ ˆφ ẑ φ z V V In Minkowiski space we define x x, x 2 y, x 3 z, and x 0 ct. This is done so that the space time inteval ds 2 dx 2 0 dx 2 dx 2 2 dx 2 3c velocity of light. Show that the metic in Minkowiski space is g ij Answe x x dx dx x 2 y dx 2 dy x 3 z dx 3 dz x 0 ct dx 0 c dt Space time inteval ds 2 ds 2 dx 2 0 dx 2 dx 2 2 dx 2 3 c 2 dt 2 dx 2 dy 2 dz 2 2

22 Then dx 2 0 dx 2 dx 2 2 dx 2 3 g ij c 2 dt 2 dx 2 dy 2 dz 2 6. Deive by diect application of equation Answe ψ ψ ψ ψ ê + ê 2 + ê 3 h dq h 2 dq 2 h 3 dq 3 ψ ψdσ lim dτ 0 dτ we ve ie, dσ ij ds i ds j h i h j dq i dq j dσ ê h 2 h 3 dq 2 dq 3 + ê 2 h h 3 dq dq 3 + ê 3 h h 2 dq dq 2 σ ê h 2 h 3 dq 2 dq 3 + q ê h 2 h 3 dq 2 dq 3 ê h 2 h 3 dq 2 dq 3 Fo simplifying all thee items dσ q ê h 2 h 3 dq 2 dq 3 + q 2 ê 2 h h 3 dq dq 3 + fo fist tem q 3 ê 3 h h 2 dq dq 2 ψ ψ ψ ψdσ ê h 2 h 3 dq dq 2 dq 3 +ê 2 h h 3 dq dq 2 dq 3 +ê 3 h h 2 dq dq 2 dq 3 2 q q 2 q 3 τ h h 2 h 3 dq dq 2 dq 3 3 substituting 2 and 3 in 22

23 ψ h ψ q ê + h 2 ψ q 2 ê 2 + h 3 ψ q 3 ê 3 23

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

Curvilinear Systems of Coordinates

Curvilinear Systems of Coordinates A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 11 Topics Coveed: Obital angula momentum, cente-of-mass coodinates Some Key Concepts: angula degees of feedom, spheical hamonics 1. [20 pts] In

Διαβάστε περισσότερα

r = x 2 + y 2 and h = z y = r sin sin ϕ

r = x 2 + y 2 and h = z y = r sin sin ϕ Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations

Διαβάστε περισσότερα

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor VEKTORANALYS Kusvecka 4 CURVILINEAR COORDINATES (koklinjiga koodinatstem) Kapitel 10 Sido 99-11 TARGET PROBLEM An athlete is otating a hamme Calculate the foce on the ams. F ams F F ma dv a v dt d v dt

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

3.7 Governing Equations and Boundary Conditions for P-Flow

3.7 Governing Equations and Boundary Conditions for P-Flow .0 - Maine Hydodynaics, Sping 005 Lectue 10.0 - Maine Hydodynaics Lectue 10 3.7 Govening Equations and Bounday Conditions fo P-Flow 3.7.1 Govening Equations fo P-Flow (a Continuity φ = 0 ( 1 (b Benoulli

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

CURVILINEAR COORDINATES

CURVILINEAR COORDINATES CURVILINEAR COORDINATES Cartesian Co-ordinate System A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the

Διαβάστε περισσότερα

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes Orthogonal Curvilinear Coordinates 28.3 Introduction The derivatives div, grad and curl from Section 29.2 can be carried out using coordinate systems other than the rectangular cartesian coordinates. This

Διαβάστε περισσότερα

The Laplacian in Spherical Polar Coordinates

The Laplacian in Spherical Polar Coordinates Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu

Διαβάστε περισσότερα

Solutions Ph 236a Week 2

Solutions Ph 236a Week 2 Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Obital angula momentum and the spheical hamonics Apil 2, 207 Obital angula momentum We compae ou esult on epesentations of otations with ou pevious expeience of angula momentum, defined fo a point paticle

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Chapter 7a. Elements of Elasticity, Thermal Stresses

Chapter 7a. Elements of Elasticity, Thermal Stresses Chapte 7a lements of lasticit, Themal Stesses Mechanics of mateials method: 1. Defomation; guesswok, intuition, smmet, pio knowledge, epeiment, etc.. Stain; eact o appoimate solution fom defomation. Stess;

Διαβάστε περισσότερα

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2 Theoetical Competition: July Question Page of. Ένα πρόβλημα τριών σωμάτων και το LISA μ M O m EIKONA Ομοεπίπεδες τροχιές των τριών σωμάτων. Δύο μάζες Μ και m κινούνται σε κυκλικές τροχιές με ακτίνες και,

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x STEADY, INVISCID ( potential flow, iotational) INCOMPRESSIBLE constant Benolli's eqation along a steamline, EQATION MOMENTM constant is a steamline the Steam Fnction is sbsititing into the continit eqation,

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes Orthogonal Curvilinear Coordinates 28.3 Introduction The derivatives div, grad and curl from Section 28.2 can be carried out using coordinate systems other than the rectangular Cartesian coordinates. This

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Course Reader for CHEN 7100/7106. Transport Phenomena I

Course Reader for CHEN 7100/7106. Transport Phenomena I Couse Reade fo CHEN 7100/7106 Tanspot Phenomena I Pof. W. R. Ashust Aubun Univesity Depatment of Chemical Engineeing c 2012 Name: Contents Peface i 0.1 Nomenclatue........................................

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

3.5 - Boundary Conditions for Potential Flow

3.5 - Boundary Conditions for Potential Flow 13.021 Marine Hydrodynamics, Fall 2004 Lecture 10 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 10 3.5 - Boundary Conditions for Potential

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

General Relativity (225A) Fall 2013 Assignment 5 Solutions

General Relativity (225A) Fall 2013 Assignment 5 Solutions Univesity of Califonia at San Diego Depatment of Physics Pof. John McGeevy Geneal Relativity 225A Fall 2013 Assignment 5 Solutions Posted Octobe 23, 2013 Due Monday, Novembe 4, 2013 1. A constant vecto

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)

Διαβάστε περισσότερα

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim 9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

The Friction Stir Welding Process

The Friction Stir Welding Process 1 / 27 The Fiction Sti Welding Pocess Goup membes: Kik Fase, Sean Bohun, Xiulei Cao, Huaxiong Huang, Kate Powes, Aina Rakotondandisa, Mohammad Samani, Zilong Song 8th Monteal Industial Poblem Solving Wokshop

Διαβάστε περισσότερα

Strain and stress tensors in spherical coordinates

Strain and stress tensors in spherical coordinates Saeanifolds.0 Stain and stess tensos in spheical coodinates This woksheet demonstates a few capabilities of Saeanifolds (vesion.0, as included in Saeath 7.5) in computations eadin elasticity theoy in Catesian

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

1 Full derivation of the Schwarzschild solution

1 Full derivation of the Schwarzschild solution EPGY Summe Institute SRGR Gay Oas 1 Full deivation of the Schwazschild solution The goal of this document is to povide a full, thooughly detailed deivation of the Schwazschild solution. Much of the diffeential

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

ECE 468: Digital Image Processing. Lecture 8

ECE 468: Digital Image Processing. Lecture 8 ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα